
Flow Level Performance Analysis of Wireless Data
Networks: A Case Study

Juha Leino, Aleksi Penttinen and Jorma Virtamo
Networking Laboratory, Helsinki University of Technology

P.O.BOX 3000, FIN-02015 HUT, Finland
Email: firstname.lastname@tkk.fi

Abstract— We give an example of flow level performance
analysis of data traffic in wireless networks by studying a scenario
where two base stations with link adaptation serve in a co-
ordinated fashion downloading users on a road or street between
the stations. Due to the dynamic nature of such systems, a detailed
flow level analysis is challenging and conventional methods run
into computational difficulties. We motivate the detailed analysis
by studying the system under different operational goals such as
maximum throughput, max-min fairness and balanced fairness,
concluding that the performance under these dynamic policies
differ significantly from the performance under more tractable
static policies. We discuss how the corresponding numerical
analyses can be facilitated by applying the notion of balanced fair-
ness and, in particular, introduce a novel approximation method
referred to as value extrapolation. Value extrapolation can be
applied to approximate any performance measure expressed as
the expected value of a random variable which is a function of
the system state. The idea of the value extrapolation is to consider
the system in the MDP (Markov Decision Processes) setting and
to solve the expected value from the Howard equations written
for a truncated state space. Instead of a simple truncation, the
relative values of states just outside the truncated state space are
estimated using a polynomial extrapolation based on the states
inside. This leads to a closed system and, unless the system
is heavily loaded, allows one to obtain accurate results with
remarkably small truncated state spaces.

I. INTRODUCTION

Flow level dynamic performance of a wireless data net-
work and its dependence on traffic is largely beyond reach
of mathematical and computational analysis. Whereas the
complexity of performance analysis in wireline networks
arises typically from the mutual dependencies of interacting
users, the peculiarities of wireless domain create additional
interdependencies between the users and the system itself.
For example, a decision on how bandwidth is allocated to
contending users may affect the overall bandwidth available;
the available bandwidths are defined by the interference in the
network, which itself is typically a function of the bandwidth
allocation. Despite its apparent complexity, the importance of
analytical performance analysis is undisputed in laying down
the foundation for efficient utilization of the scarce wireless
resources.
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We study a scenario where two base stations with link
adaptation serve downloading users on a road or street between
the stations in a coordinated fashion in order to minimize
the adverse effects of interference. Thus we have a dynamic
system where file downloads are initiated in a random manner
and depart from the system upon completion. The capacity
limits of such networks, along with some other cell configu-
rations, have been determined by Bonald et al. [1]. Capacity
limit defines the maximum amount of traffic the network can
sustain. However, for dimensioning a network more detailed
knowledge about the performance, i.e. user perceived quality,
is needed. Although the scenario studied in this paper is a
coarse simplification of a real system utilizing link adaptation
and coordinated operation, it clearly shows that a detailed
analysis of the system is required in order to get a reasonable
idea of the system performance.

Our contribution is twofold. First, we analyze the two-
base-station link adaptation scenario under various perfor-
mance goals and identify the policies how these goals can
be achieved. In contrast to the mere capacity limit, these
studies allow finding out the performance also from the user
point of view, which is a primary requirement for cost-
effective network dimensioning. The difference between static
and dynamic policies is also studied.

The second contribution is related to the performance anal-
ysis of complex teletraffic systems in general. The traditional
approach to modeling a dynamic system usually leads to a
multidimensional Markov system which can be analyzed in
the equilibrium for a truncated state space by solving a set of
linear equations. However, the number of states that can be
taken into account this way seriously limits the applicability
of the approach.

In this paper we apply two approximate methods that allow
computational analysis of significantly larger dynamic systems
with good accuracy. Balanced fairness is a resource sharing
scheme developed by Bonald and Proutière [2], which makes
the dynamic system more tractable. An appealing feature of
the BF approach is that its performance is insensitive to traffic
details. In other words, the stringent assumptions inherent in
the Markov system analysis can be relaxed for the most part
without compromising the results. The second computational
method of the present paper is a novel approximation scheme
referred here to as the value extrapolation. It allows ap-
proximating any Markov system performance measure which
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Fig. 1. Example system with two base stations. Areas A1 and A2 are served
by the station A and areas B1 and B2 are served by the station B. If both the
stations are active simultaneously the maximum rate at A2 or B2 decreases
from R1 to R2 due to interference.

can be described as an expected value of some state related
cost when the system state evolves in time. To reach a
comparable approximation accuracy as with the ordinary state
space truncation, the method needs to take into account only
a fraction of the truncated state space.

The organization of the paper is as follows. Section II
describes the model of the system and Section III introduces
the methods used to analyze the scenario. In particular, the
value extrapolation method is presented and evaluated. Section
IV shows the results how the performance of the system is
affected by different policies. Section V concludes the paper.

II. EXAMPLE SYSTEM DESCRIPTION

Two base stations, A and B, are used in a co-ordinated
fashion to serve elastic traffic, or file downloads, destined
to users located on a road between the base stations, cf.
Fig. 1. The base station nearest to the user is always used
for connection. Link adaptation is modeled as follows. Close
to the base stations (in areas A1 and B1) the total downlink
rate is always R1 irrespective of the state of the other station.
Further away (in areas A2 and B2) the capacity remains at R1

only if the other station is not active simultaneously, otherwise
the rate decreases to R2 due to interference.

We describe the system state by the vector x =
(x1, x2, x3, x4), giving the number of active flows in each
area A1, A2, B2, B1, respectively. We use the term flow class
interchangeably with the term area. The state space of the
system is given by S = {x1, x2, x3, x4 | xi ≥ 0, ∀i}. In
computations we use a truncated state space which is denoted
by S′.

As the system state evolves dynamically, we need to fix a
policy defining how the network resources are used in any
given state. In each state of the system, a policy defines
a rate allocation which corresponds to a rate vector r =
(r1, r2, r3, r4) giving the total rate for each class. The total
rate is shared evenly among the flows which belong to a same
class by time sharing.

The set of feasible allocations is determined as follows.
Let R be the matrix comprising of column vectors each of
which specifies an instantaneous “operation mode” under the
constraints described above:

R =




R1 0 R1 0 0 0
0 R2 0 R2 R1 0
0 R2 R2 0 0 R1

R1 0 0 R1 0 0


 . (1)

For example, the first column of R represents the mode where
both base stations serve the flows in the nearest class (areas A1
and B1 are being served), the second column represents the
mode where both the stations are active and serve the traffic
in the center-most areas. The policy rate vector r can take
the form of any column of R and, additionally, any convex
combination of the columns. These are available through time
multiplexing, which is assumed to take place on a fast small
time scale compared to flow durations. Thus, the available
allocations are defined by the convex hull spanned by the
column vectors of R.

Alternatively, one may determine the hyperplanes that
jointly constrain the feasible values of r. This is just another
way to describe the convex hull and can be done using the
standard gift wrapping algorithm [3]. The feasible rate vectors
r are constrained by Dr ≤ eT (e is a vector of ones), where,
assuming that 1

2R1 < R2 < R1,

D =




1
R1

1
R1

0 0

0 0
1

R1

1
R1

R2

R2
1

1
R1

R1 − R2

R1R2

R1 − R2

R2
1

R1 − R2

R2
1

R1 − R2

R1R2

1
R1

R2

R2
1




.

In the case that 0 < R2 < 1
2R1 the same matrix applies with

the exception

d33 = d42 =
1

R1
.

III. TOOLS FOR PERFORMANCE ANALYSIS

A. Modeling the system

The first step in analyzing a dynamic system is to determine
its capacity limit for a given traffic distribution, i.e. to find the
maximum rate the traffic can be served. For the present system
this is done in Section IV-A. In practice, the system operation
differs from this case in two aspects. First, the performance of
the system is measured with respect to user demands instead
of the sheer volume of transferred data. Second, one must
make resource allocation decisions in a dynamic situation
where number of flows in each class is constantly changing
and occasionally even zero. Whereas operation at the capacity
limit may be easy to describe, more complex performance
objectives require state-dependent operating policies. If we
describe the system state as stated in the previous section by
giving the number of active flows in each class, a wide range
of performance objectives becomes available.

In principle, such a setting can be analyzed within a
Markovian model, i.e. by assuming that the flows in each class
arrive according to a Poisson process and the flow lengths
are exponentially distributed. Within the Markov model any
operating policy comes down to determining the transition
rates downwards from each state, i.e. how the service capacity
is shared in each state. For example, if all capacity is allocated
to serve traffic in class A2, the corresponding transition rate
for class 2 is µ2R1, where 1/µ2 is the mean length of class 2
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flows. Having determined the whole transition rate matrix Q,
the stationary distribution and performance measures of the
system can, in principle, be solved in a straightforward way.

Generally, the basic approach discussed above is extremely
inefficient for multidimensional systems. In practice, the in-
finite state space needs to be truncated and the larger the
truncated state space S′ is used the more accurate results are
achieved. However, determining the steady state distribution
for our system so that the state-space is truncated to allow
maximum of, e.g., 9 flows in each of the flow classes requires
still inversion of a 10000 × 10000 matrix. Thus, approximate
analytical methods are required to obtain more accurate results
at higher loads.

In this paper we consider two approximate methods to
analyze the system at hand. We approximate the resource
sharing policy by a suitable method called balanced fairness
that significantly enhances the tractability. On the other hand,
we approximate the effect of any given policy on the average
performance in the long run by using a novel method called
value extrapolation.

B. BF analysis

Balanced fairness is a resource sharing notion that forces
the system to be reversible [2]. Reversibility allows deriving
the (non-normalized) steady state distribution recursively state-
by-state without the need for matrix inversion and we may
consider a significantly larger number of states in the state
space truncation resulting in higher accuracy. BF can be
defined for our system as follows. In state x, let class i rate
be

φi(x) =
Φ(x − ei)

Φ(x)
, i = 1, 2, 3, 4, (2)

where Φ(x) is referred to as the balance function and ei

denotes a vector of zeros except for the ith component which
is 1. Although any positive Φ(x) makes the system reversible,
balanced fairness refers to the unique balance function which
utilizes the network resources as efficiently as possible in the
sense that in each state at least one resource constraint is
saturated. In other words, balance function in state x is given
by

Φ(x) = max
i

{
(DΦ̃)i

}
, (3)

where Φ̃ = (Φ(x− e1), ...,Φ(x− e4))T and D is the matrix
of the hyperplane constraints of the studied system. Thus, the
balance function and the corresponding resource sharing policy
can be fixed recursively.

The equilibrium distribution is given by

π(x) =
1

G(ρ)
Φ(x)ρx1

1 ρx2
2 ρx3

3 ρx4
4 , (4)

where G is the normalization constant and ρi is the amount
of class-i traffic (bit/s).

As Φ(x) can be derived recursively, we obtain the steady
state distribution by going though the states only once, in
contrast to the matrix inversion which is required by non-
reversible Markov systems. Another nice property of balanced

fairness is its insensitivity. The steady state distribution de-
pends on the traffic characteristics only via traffic load in each
class. Using this resource sharing scheme, the performance
remains unchanged under very relaxed conditions on the
arrival process and flow size distribution [2]. It may also be
used as an approximation of utility based sharing schemes
such as proportional fairness.

Alternatively, one may define the balance function using the
operation mode rate vectors (1). In this case the recursion step
takes the form of an LP-problem [5]:

Φ(x) = minq eTq ,

Rq = Φ̃ ,
q ≥ 0 ,

(5)

where e is a vector of ones.

C. Value extrapolation

The idea of the value extrapolation is to consider the system
in the MDP (Markov Decision Processes) setting, cf. e.g. [6],
[7], and to solve the expected value of a performance measure
from the Howard equations written for a truncated state space.
Instead of a simple truncation, the relative values of states
just outside the truncated state space are estimated using a
polynomial extrapolation based on the states inside. This leads
to a closed system and, unless the system is heavily loaded,
allows one to obtain accurate results with remarkably small
truncated state spaces. Here we give a formal definition of the
method.

A policy R specifies a feasible capacity allocation in each
state. When a policy R is given, the state transition intensities
qx,y(R) are known. Assume now that the performance mea-
sure is described as a revenue rate rx(R) at state x and that we
are interested in the expected performance of the system as it
evolves in time, i.e. the mean revenue rate r(R). Although this
measure can be determined using the steady state probabilities
as

r(R) =
∑
x

rx(R)π(x),

the probabilities are computationally tedious to obtain, as dis-
cussed above. An alternative characterization of r(R) provides
a way to approximate r(R) with significantly higher accuracy.

Let vx(R) be the relative value of state x, i.e. the expected
difference in cumulative revenue over infinite time horizon
when starting from state x rather than from equilibrium:

vx(R) = E

[∫ ∞

0

(rX(t)(R) − r(R)) dt

 X(0) = x

]
,

where X(t) is the state process. With a given policy and
performance measure, the steady state average revenue rate
can be determined by solving the so-called Howard equations
[6],

rx(R)−r(R)+
∑
y∈S

qx,y(R)(vy(R)−vx(R)) = 0, ∀x. (6)

In the truncated state space there are |S′| equations and |S′|+1
variables. The expected state values are fixed only up to an
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additive constant, because only the differences vy(R)−vx(R)
occur in the equations hence we may set, e.g. v0(R) = 0. Note
that the mean revenue rate r(R), our performance measure,
is one of the unknown variables solved from this group of
equations.

The idea of the value extrapolation method is to calculate
r(R) in a truncated state space, which essentially means that
we assume something on the behavior of the relative values
outside the truncated state space. The simplest truncation to
some set S′ is to set qx,y = 0 ∀x ∈ S′,y /∈ S′. Regarding
to the relative values of the states, this corresponds to setting
v(. . . , N + 1, . . .) = v(. . . , N, . . .) in the Howard equations,
where N is the maximum number of flows in the truncated
state space.

The truncation can be done more intelligently if the rel-
ative values of the states behave smoothly outside the trun-
cated state space. More accurate results are achieved if the
outside values are extrapolated using the values inside the
region. First order polynomial extrapolation is v(. . . , N +
1, . . .) = 2v(. . . , N, . . .) − v(. . . , N − 1, . . .), and the second
order extrapolation is v(. . . , N + 1, . . .) = 3v(. . . , N, . . .) −
3v(. . . , N − 1, . . .) + v(. . . , N − 2, . . .).

A strong motivation for this procedure is that the value
extrapolation leads to exact results in certain cases. Consider
for example an M/M/1-queue, with a policy that allows free
entry to the system and with a cost (negative of the revenue)
reflecting the total time in the system (which by Little’s result
is proportional to the mean queue length). The cost rate in
a given state is then simply the number of customers in that
state, i.e. the state index itself. Let arrival rate be λ, service
rate µ and denote ρ = λ

µ . Now the Howard equations can be
written as

i − r + λ(vi+1 − vi) + µ(vi−1 − vi) = 0, ∀i > 0.

The equations are clearly solved by

r =
ρ

1 − ρ
, vi+1 − vi =

i + 1
µ − λ

,

from which by setting v0 = 0, we get

vi =
1
2

i(i + 1)
µ − λ

.

The behavior of the relative value is a simple quadratic polyno-
mial of the state variable. Thus, extrapolating the relative value
with the second order extrapolation yields exact value for r(R)
no matter how small the truncated space is. It can be reasoned
that for any system with cost related to the time in system,
the relative values of states are at least asymptotically (i.e.
for higher states) quadratic functions of the state occupancy
and therefore one can expect the second order extrapolation
to work reasonably well.

The advantage of value extrapolation is that even a few
states in the truncated state space may be enough to get
relatively accurate estimates for the performance measure. The
downside is that the Howard equations need to be solved.

C2

C0

1 2ρ ρ

C1

Fig. 2. Example: A tree network.

D. Efficiency of value extrapolation

We demonstrate the efficiency of value extrapolation method
in a simple wireline example for which analytical results
are available. Consider a two-branch tree network with two
flow classes shown in Fig. 2. Flows arrive to both the routes
(classes) with the same average intensity. The resources are
shared among the classes according to BF. This simple sce-
nario allows deriving exact analytical results under BF [4] and
the results are utilized here for comparison purposes.

We are interested in the mean number of flows in the
system and illustrate the efficiency of the value extrapolation
method in this scenario. Consider the system as a Markov
system, where the policy is fixed by BF, i.e. the state transition
(service) intensities are given by expression (2) with the
corresponding balance function [4]. The truncated state space
is S′ = {x1, x2, | x1, x2 ≤ k} and rx(R) = x1 + x2.

Value extrapolation: We extrapolate values vi,k+1 and vk+1,i

by a suitable method and solve the corresponding Howard
equations for v0,0, . . . , vk,k and, in particular, r(R), with
v0,0 = 0. The three methods considered here are:

• The ordinary truncation; states larger than k are ignored,
in this case vi,k+1 = vi,k.

• Linear extrapolation, vi,k+1 = 2vi,k − vi,k−1.
• Quadratic extrapolation, vi,k+1 = 3vi,k−3vi,k−1+vi,k−2.
Fig. 3 shows the comparison of the extrapolation methods

in estimating the mean number of flows in the scenario with
C0 = 1 and C1 = C2 = 0.6. It can be seen that the quadratic
extrapolation gives quite good approximations even with the
truncation parameter k = 3. With k = 6, the accuracy of
the quadratic approximation is excellent up to load 0.8. It
slightly overestimates the occupancy but clearly outperforms
the simple truncation in this case. However, on higher loads
the overestimation becomes significant.

IV. PERFORMANCE EVALUATION

Applying the two methods described in the previous section
we can now analyze the wireless example network consisting
of the two base stations.

A. Capacity of the system

We describe the capacity of the system by finding the
maximum traffic load that the system can sustain. Let x and
1−x denote the fraction of traffic in A1 and A2, respectively.
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Fig. 3. Value extrapolation in a two-branch tree, k = 3 (top) k = 6 (bottom)

Assuming symmetry the same fractions hold also for B1 and
B2 and the system serves traffic at rate r = R

2 (x, 1 − x, 1 −
x, x), where R is the total capacity to be maximized.

Rmax can be obtained by looking at the constraints D, but
can also be derived intuitively as follows. Assume that the
load is high and all the classes have traffic.

First, let 0 ≤ R2 < 1
2R1. Now it is advantageous to serve

the traffic in areas A2 and B2 so that only one base station
is active. Looking at base station A; it serves area A1 the
time x/R1, area A2 the fraction of time (1 − x)/R1 and,
additionally, must remain quiet the fraction of time (1−x)/R1

when station B serves area B2. Due to symmetry

Rmax = 2
x + (1 − x)
2(1 − x) + x

R1 =
2R1

2 − x
.

Second, let 1
2R1 ≤ R2 ≤ R1. Now the traffic in areas A2

and B2 is served using both the base stations simultaneously.
Looking again at station A; it serves class A1 the time x/R1,
A2 the time (1 − x)/R2, but with different rates. Again due
to symmetry

Rmax = 2
(

x/R1

x/R1 + (1 − x)/R2
R1

+
(1 − x)/R2

x/R1 + (1 − x)/R2
R2

)

=
2R1R2

R1 − R1x + R2x
.

B. Performance under different operational policies

We analyze the performance of the system with different
capacity allocation policies. We use three different dynamic

0 1 2 3 4 5

0

1

2

3

x4

x3

Fig. 4. Example of a nontrivial optimal policy. Capacity allocations for each
of the four classes are given by the bar charts for states with different values
of x3 and x4 but with fixed x1 = 0 and x2 = 3.

policies and compare them to the static policy corresponding
to the fixed rates at the capacity limit. The considered policies
are:

• The optimal policy maximizing the system throughput
• Max-min fairness
• Balanced fairness

The flow level performance of the policies are compared. We
measure the performance of the system with the mean number
of active flows which is proportional to the mean flow duration.

The first studied policy optimizes the system performance
and can be determined by utilizing the MDP theory. Utilizing
the Howard equations (6) and a procedure called policy
iteration (see e.g. [6]), the policy minimizing the mean file
transfer time can be found. When the optimal policy is
known, the value extrapolation method is used to determine
the performance. In order to avoid problems caused by the
boundary of the state space, the policy iteration is executed
using a larger state space than with value extrapolation. The
policy iteration is computationally demanding as the Howard
equations need to be solved multiple times.

The optimal MDP policy maximizes the mean system
throughput. In most states, this is achieved by maximizing the
amount of utilized bandwidth but there are some exceptions.
An example of nontrivial policy is illustrated in Fig. 4. The
capacities are R1 = 5 and R2 = 1 and the traffic intensity
of every class is 0.5. For example, while capacity allocation
r = (0, 1, 0, 5) maximizes the throuhgput in state (0, 3, 2, 1),
it is more efficient to serve the flows in region B2 using
allocation r = (0, 0, 5, 0).

While the policy obtained with MDP maximizes the
throughput of the system, it does not explicitly consider how
the resources are shared among the users. In practise, this may
lead to situations where some users efficiently use up all the
system capacity while others are left without even acceptable
level of service. To avoid such situations, one may impose
additional constraints on the resource sharing to guarantee
“fair” capacity allocation. We use max-min fairness as an
example policy that takes fairness into account. The customers
are treated more evenly than with the system optimal policy.
In each state, the bandwidth of the flow with least bandwidth
is maximized. The performance of the max-min policy is
evaluated using value extrapolation.
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Fig. 5. Mean number of active flows with parameters R1 = 5 and R2 = 1
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Fig. 6. Mean number of active flows in classes 1 (lower curves) and 2 (upper
curves) with parameters R1 = 5 and R2 = 1

The third policy we study is balanced fairness. Balance
function and state probabilities are determined recursively us-
ing (3) and (4). The mean flow number can then be determined
by summing over the state space. BF is significantly faster to
evaluate than the value extrapolation method. A significantly
larger number of states can be included directly in the analysis
to replace the extrapolation need. Thus there is no need to
solve the Howard equations.

We illustrate the performance of the policies with parameter
values R1 = 5 and R2 = 1. The traffic intensities are assumed
equal in all four regions. When value extrapolation method is
used, the state space is truncated so that the maximum number
of flows in each class is 6. With BF, the corresponding limit
is 30. These limits result in accurate results with the traffic
loads used.

Fig. 5 illustrates the mean number of active flows with
different system loads. The MDP policy has the best perfor-
mance but the other dynamic policies are almost equal. The
static policy of allocating equal bandwidth to all the classes
regardless of the system state is significantly worse than the
dynamic policies.

The mean number of active flows in traffic classes 1 and 2
are illustrated in Fig. 6. While MDP policy ensures best service
for both the classes, the differences between the policies are
relatively small. Max-min allocation provides the most equal
service to the classes as expected.

The illustrated results are produced with parameter values
R1 = 5 and R2 = 1 which fall into region 0 < R2 < 1

2R1. In
this case, it is beneficial to turn one base station off while the
other one serves the flows in the middle region. In addition,
we analyzed a scenario with values R1 = 5 and R2 = 4 when
it is more efficient to serve the middle classes simultaneously.
While the policies differ from the illustrated scenario, the
performance is relatively similar.

V. CONCLUSION

Dimensioning of communications networks for elastic data
traffic requires knowledge on flow level performance of the
system with different traffic loads. This knowledge, however,
is difficult to obtain because of the dynamic nature of the
system and the flexibility in the system resource usage. An
ordinary Markov system model ends up with severe difficulties
with state space explosion. It is cumbersome both to build the
model and to solve it.

In this work we have analyzed a two-base-station scenario
with link adaptation and showed how the practical perfor-
mance of the system depends on operating policies. Effects
of link adaptation and transmission coordination are apparent
even in this simplified model. There is a significant gap
between the flow level performance resulting from dynamic
policies and from static policies. Accordingly, the analysis of
the system with static policies is not sufficient to describe the
performance for dimensioning purposes.

Irrespective of operational policies the flow level perfor-
mance of the example system and others alike remains a
difficult task. Balanced fairness seems to be a reasonable
approximation of the performance. With BF one has to go the
state space through only once and no matrix inversions are
needed. Furthermore, the results are insensitive to the traffic
details which is a very desirable property for dimensioning.

We also contributed to approximate performance analysis
by devising an approximation method, the value extrapolation,
which can be applied for estimating any performance measure
expressed as the expected value over the state space. BF seems
to be computationally lighter, but value extrapolation allows
analysis of any resource sharing scheme.

These two approaches do not provide an ultimate solution to
the problem of state space explosion but they do enable analy-
sis of significantly larger systems than traditional analyses are
capable of.
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