
Preventing Secret Leakage fromfork():
Securing Privilege-Separated Applications

Umesh Shankar and David Wagner
{ushankar,daw}@cs.berkeley.edu

University of California at Berkeley

Abstract— If trusted processes’ secrets or privileged
system objects such as file handles are leaked to an untrusted
process, the result could be the loss of secrecy and integrity of
the data produced by the program. The advent of privilege-
separated programs has led to an additional risk: sensitive
data or system objects may be leaked when the trusted
process of the privilege-separated application forks an un-
trusted child process. We have identified several channels by
which information may flow to the child process: memory,
the environment, memory mappings, filesystem information,
and file descriptors. We propose fixes for each of these leaks.
Some are handled by a novel static source code analysis of
the target privilege-separated application’s source code, but
some require modifications to the kernel or compiler.

As a proof of concept, we applied our technique to
privilege-separated OpenSSH running on the Linux 2.6
kernel. Using our tools, we were able to verify easily that
it does not leak secrets from its trusted components to its
untrusted components; all sensitive data is erased or down-
graded appropriately before being inherited by untrusted
components. This suggests that our method is a useful way
of reasoning about privilege-separated programs.

I. I NTRODUCTION

A. Motivation

Trusted processes on a system frequently contain secret
information, such as cryptographic keys or passwords, that
could be used to compromise the secrecy and integrity of
the process’ data. In addition, since these processes are of-
ten granted extensive privileges, they possess capabilities
like file handles and shared memory handles that could be
used for privilege escalation. Keeping sensitive data and
objects from leaking to an adversary is essential for trusted
processes to maintain the secrecy of the application’s
output. Smith has also discussed the need to preserve
secrecy to maintain output data integrity in his work on
“outbound authentication” [16].

Noticing that many compromises of trusted applications
came from the portions that handle user interaction, Provos
et al. introducedprivilege separation [11]. Privilege-
separated designs separate the portion of an application
that needs high privilege into small processes that offer
a narrow interface to larger, unprivileged processes. This
approach minimizes the code that must be privileged and

This work was supported by NSF grant CCF-0430585.

Fig. 1. The question we consider in this paperis whether any secrets
or privileged system objects are leaked across thefork() interface from
the trusted parent process to the untrusted child process; secret leaks may
also compromise the parent’s integrity. We ignore secrets passed across
explicit channels, such as IPC or other communication.

guards it with a narrow interface, reducing the risk of priv-
ilege escalation; if the untrusted portion is compromised,
the trusted portion still maintains its relative isolation.

There is a potential problem with privilege separation
(see Figure 1): since the untrusted processes are forked
from the trusted ones, secrets may be leaked via the
memory, environment variables, and other system objects
that are copied onfork(). Unlike ordinary system output
functions which explicitly accept all affected data in their
arguments,fork() automatically copies all data and
many system objects. Therefore, we need a systematic way
to ensure that secrets are not leaked from the privileged
component to the untrusted one because offork()’s
implicit sharing.

B. Our approach

We first identify the types of leaks that are possible
(Section II) by examining the Linux kernel source code
that implements thefork() system call. The set of
copied data is summarized in Figure 2. We analyze each
of these for its risks and propose solutions for each threat
we identified. Some solutions involve explicitly discarding
privileged objects in the child process, since these objects
can be enumerated easily. However, identifying potential
data leaks requires a more sophisticated approach because
data is easily and frequently copied and used in the
application. To find data leaks, we propose a new static
analysis, combining control-flow (program slicing) and
dataflow (type inference) analyses.

Some privilege-separated programs may callexec()
from within the child process. Theexec() system call
clears the process’ memory space and loads in a new

Data/Object copied onfork() Erased onexec()? Notes
Code memory, sighandlers, pending signals Yes
Data memory Yes
Stack memory Yes
File descriptors No* *File descriptors withCLOSE ON EXEC flag

are closed onexec()
Filesystem information No Includes filesystem root, filesystem names-

pace, umask, working directory
Process memory mapping Yes Includesmmap() regions
Shared memory segments Yes
Environment No Environment may be changed with

execve()

Fig. 2. Copy semantics offork() and exec(). We analyzed the Linux 2.6 kernel source code forfork() andexec() to see what data
or system objects are copied from the parent to the child process byfork() and which are erased or closed by a subsequentexec().

binary. The clearing of the memory space decreases the
number of potential leaks. However, usingexec() can
make data sharing between parent and child process more
difficult by requiring more complex marshaling. This com-
plexity can make it harder to verify the correctness of the
(ideally very small) trusted process. Thus, whether or not
exec() is used, we want some assurance that sensitive
data and privileged system objects are not leaked during
creation of the unprivileged child process. We discuss the
details of achieving such assurance for both cases in the
next section.

In this paper, we confine ourselves to preventing leakage
during process creation. We do not address side-channel
attacks or other observation mechanisms that may reveal
secret information; we do not consider control depen-
dences on sensitive data, just data dependences. Leakage
to other processes or I/O channels via system calls such as
write() is the subject of ongoing work. Furthermore,
we assume that the unprivileged, untrusted child process
has had its security context (typically UIDs and GIDs)
appropriately downgraded.

As a proof of concept for our approach, especially the
static analysis, we have applied our technique to OpenSSH
and were able to show, with little manual effort, that it
does not leak sensitive data to its untrusted portion. Our
advances in supporting privilege separation are particularly
significant in light of current efforts [3], [8] to simplify
and automate privilege separation, which will likely speed
adoption of the technique.

C. Contributions

In summary, we make the following contributions:
• We identify new risks to privilege-separated programs

resulting from implicit copying of data and system
objects from the privileged, trusted parent process to
an unprivileged, untrusted helper child process by
the fork() system call (Section II). During this
copying, sensitive data and privileged system objects
may leak to the child process.

• We propose a new method of systematically reason-
ing about such leaks (Sections II and III)—the first,

to our knowledge—and propose fixes for each.
• We show that many such leaks may be detected us-

ing our proposed program analysis, which combines
control-flow and dataflow analyses (Section III).

• We provide evidence that our method is easy to
use by analyzing the most prominent privilege-
separated application, OpenSSH (Section IV). Using
our method, we showed that OpenSSH is free of
sensitive data leaks. One potential leak was detected,
but was found to be sanitized indirectly through an
aliased pointer.

II. I DENTIFYING POSSIBLE LEAKS

We examined the Linux 2.6 kernel’s implementation of
thefork() andexec() system calls to determine which
data and system objects are copied from the parent process
to the child, and which are erased ifexec() is called
afterwards. The results are summarized in Figure 2. Each
line of the table represents a potential leakage channel. In
this section, we analyze them to decide which represent
real vulnerabilities. In our discussion, we assume that the
untrusted child process has its user and group IDs or
other relevant security context set correctly to reflect its
untrusted status.

If a fine-grained access control system, such as
SELinux [12], is present, some of these channels may
be mediated by the system’s security policy. SELinux is
a reference monitor for Linux that allows fine-grained
control over the use of system objects like files, file
descriptors, and pipes. The system policy specifies which
processes may use which types of system objects in which
ways. Using SELinux can help prevent some kinds of
leaks by interposing an access control check on the use
of the leaked system object. We make a note of several
ways that using SELinux can help prevent leaks.

A. Enumeration of possible leaks

We list all the relevant data and system objects implic-
itly copied byfork(), and analyze the risks associated
with each as well as fixes for each potential leak. Note
that some IPC mechanisms, such as System V Message

Queues, perform an authorization check for each opera-
tion, so the lack of privilege in the child process serves
to prevent privilege escalation. These are not considered
here.

• Code memory, signal handler table, and pending
signals. We do not need to trust the code of the
child process—whether called from a signal or not—
since it runs with low privilege. The code memory
and signal handler set of the parent are not generally
considered secret and may usually be derived from
the source code; nonetheless, we can check that no
sensitive data is used in setting up the signal handler
table. We assume here that no secrets are embedded
in the code of the parent process.
Fix: Use our static analysis (Section III) to make sure
that the signal mask and the set of signal handlers are
not derived from sensitive data.

• Data memory and stack.Secrets could be leaked in
data or stack memory copied to the child process.
Also, there is an additional vulnerability whereby
previously-used stack memory could leak secrets. De-
tails are discussed below in Section II-B. Ifexec()
is used, then the memory space is erased and no data
or stack memory leak is possible.
Fix: If fork() is used withoutexec(), use our
static analysis (Section III) to detect sensitive data
and stack memory leaks. The previously-used stack
memory risks can be alleviated with kernel and
compiler modifications (Section II-B).

• File descriptors. The parent process may have open
file handles that should not be accessed by an un-
trusted child process, because opening them requires
higher privilege than that granted to the child.
Fix: Immediately afterfork(), close all file de-
scriptors in the child process except those needed for
explicit communication with the parent. Ifexec() is
called in the child, theCLOSE ON EXEC flag may be
set on all unneeded descriptors by the parent process
instead. These changes eliminate file descriptor leaks,
but require programmer modification to the source
code. SELinux may be useful in preventing this leak
without source code changes. The default SELinux
policy does not allow a child process to use the parent
process’ file descriptors, so by default no leak is
possible. Any file descriptors required for commu-
nication may be explicitly allowed in the policy.

• Filesystem information. The main pieces of in-
formation in this data structure are the process’
filesystem root directory, filesystem namespace (VFS
mounts), the umask, and the current working direc-
tory. This information is not erased onexec(), but
is not generally considered to be secret: in fact, it is
visible to other processes via the/proc filesystem.
Fix: None needed.

• Process memory mapping.The memory mapping

itself is not a potential secret leak—indeed, it is
visible on /proc—but the mapping may contain
memory-mapped files which require privilege to ac-
cess. Memory-mapped files are unmapped ifexec()
is called.
Fix: If fork() is used without exec(), all
memory-mapped files should be unmapped, except
those needed for explicit communication with the
parent. A list of such mappings is available in the
/proc filesystem under/proc/<pid>/maps.

• Shared memory.Privileged shared memory regions
could be abused by the untrusted child process if
the parent process has attached to the region using
shmat() before callingfork(), since the descrip-
tor is copied onfork(). Shared memory descriptors
are detached onexec(), so there is no risk of
accidental leakage in that case.
Fix: If fork() is used withoutexec(), a parent
process may create shared memory regions using
shmget() but should defer attaching to them using
shmat() until after thefork() call. Our static
analysis (Section III) checks thatshmat() is not
called beforefork(). If attaching to shared memory
segments beforefork() is absolutely required by
the application, the parent process should detach all
shared memory segments immediately before call-
ing fork(). A list of all shared memory map-
pings is available in the/proc filesystem under
/proc/<pid>/maps.

• Environment. This information is not erased on
exec(). Thus, if sensitive data is stored in envi-
ronment variables, it should be erased immediately
following the call tofork() even is if it is followed
by exec().
Fix: Use our static analysis (Section III) to detect
leaks of sensitive data into the environment. Alter-
nately, theexecve() system call allows explicit
specification of the child’s environment variables,
avoiding accidental leakage.

Given that several fixes require data scrubbing or san-
itization immediately before or afterfork(), one may
imagine a user library that implemented these together
in a secure fork() function. Such a function might
detach all shared memory regions, callfork(), then, in
the child process, unmap all memory-mapped files and
close all open file handles.

B. Previously-used stack memory leaks

The stack is inherited acrossfork(). This means
that there is a potential information leakage on the stack
from leftover stack variables. Consider the example in
Figure 3. If secret data is on the stack in a local variable,
and subsequent stack frames beforefork() are all at
higher memory addresses, the secret data may be left
in unused stack memory in the new child process. To

Fig. 3. Previously-used stack memory can leak secrets.If a secret
is in a stack location which is never overwritten beforefork(), a leak
can result. Here,old local secret’s contents may remain in unused
stack memory whenfork() is called. The operating system should
zero-fill all memory below the stack pointer in the newly created child
process.

Fig. 4. Alignment restrictions can leak secrets.If a secret is in a stack
location which is not overwritten due to alignment constraints, a leak
can occur even if the stack is zero-filled below the stack pointer. Here,
old local secret’s contents may be on the stack from a previous
stack frame whenfork() is called becauselocal var 2 must be
aligned to an 8-byte boundary.

avoid this problem, the operating system should zero-fill
stack memory in the child below the current stack pointer
immediately after anyfork(). Note that this change
might break code which relies upon the unsafe practice
of using the address of a local variable from a function
that has already returned. Since such code is already likely
to fail, as it is not memory-safe, we consider this to be an
acceptable tradeoff.

Even if the zero-filling recommendation above is
adopted, it is still possible for data to leak on the stack
due to machine- and compiler-specific alignment options.
Consider the example in Figure 4. An 8-byte aligned
variable (local var 2) may appear in the source code
to overwrite a secret, since the size of the current stack
frame is large enough to overwrite the previous frame
containing the secret. However, the alignment restriction
leads to a leak since the bytes containing the secret are
skipped. To avoid this problem, compilers should make
sure that all extra bytes needed for alignment or padding

are zero-filled.

III. STATIC SOURCECODE ANALYSIS

In Section II, we proposed a static source code analysis
to detect certain kinds of data leaks. Here, we describe
that analysis. In particular, the property we want to check
is that all data that is live at the timefork() is called,
including data memory, stack variables, environment vari-
ables, and attached shared-memory regions, is either not
sensitive or is immediately downgraded afterfork().

A. Overview of the analysis

Checking the desired property requires five steps:

1) The programmer annotates a small set of variables in
the program as containing sensitive data (Section III-
C).

2) Our algorithm automatically computes the set of
live data by using aprogram slice(Section III-D)
that captures the code executed beforefork(),
including the active stack frames whenfork() is
called. All stack variables in active stack frames,
as well as those passed tosetenv() (are thus
are in the environment), are marked as live. Global
variables are always considered live.

3) The algorithm then infers the set of derived sensitive
data in the program slice from the programmer
annotations, using the procedure described in Sec-
tions III-C and III-E.

4) The algorithm intersects the live and sensitive sets.
Data that is both live and sensitive represents a
potential leak, and the algorithm reports the leak as
a warning message.

5) If there are any warning messages, the programmer
checks that the data in question is scrubbed im-
mediately afterfork() in the unprivileged child
process. In addition, if theshmat() system call,
which attaches to a shared memory region, is called
beforefork(), the system reports this as a pos-
sible leak, and the programmer should rewrite the
offending code to defer attaching to the region until
after fork() is called.

B. Tools used

In order to perform our analysis, we employ the
Oink/Elsa front end [9], [10] analysis framework. This
framework provides a C/C++ parser and facilitates per-
forming analyses on the resulting abstract syntax tree
(AST). It also includes integration with multiple backend
analyses. We extended this backend interface to work
with the fully polymorphic (context-sensitive) CQual type
inference system backend [7]. CQual performs sound type
inference on built-in and user-supplied qualifiers in C
programs, and is well-suited to a dataflow analysis [2],
[13], [17], described in more detail in Section III-C. Using
the Oink/Elsa framework, we were able to implement

our program slicing on the AST, then make automatic
annotations to the tree based on the slice, before invoking
the CQual backend.

C. Dataflow analysis using type inference

A type inferenceanalysis may be used to trace the flow
of various kinds of marked data in a program, and to
enforce restrictions on data with certain annotations, called
type qualifiers. CQual is a system that allow programmers
to add type qualifiers with associated rules to C programs,
and has been used for similar applications including find-
ing format-string bugs [13] and isolating sensitive data in
an application’s memory space [2]; the reader is referred
to these for a more thorough exposition of the application
of type inference to security than is provided here. In our
case, we want to be able to infer all potentially sensitive
data from a small set of sensitive data that has been so
marked by a programmer, then flag as a potential leak
any potentially sensitive data that is live whenfork()
is called.

Say the program uses a secret key, which it stores in a
variable,key. The program might then copy the key or
generate a subkey from it for use in a crypto algorithm:

Key key, key_copy, subkey;
...
key_copy = key;
make_subkey(key, &subkey);

Now, we do not want to have to find all the data derived
from the secret key by hand; we would like to indicate that
the variablekey is sensitive and have an analyzer infer
all other sensitive data from it. CQual lets us mark the
secret key as being sensitive using a special type qualifier,
$sensitive:

$sensitive Key key;

Type qualifiers also come with rules: a pointer to aconst
object may only be assigned to another pointer toconst,
for example. Likewise, we may also specify rules about
how the$sensitive qualifier propagates, that is, how
it is inferred to apply to other variables. Here, we specify
that all variables either derived from a sensitive one,
or from which a sensitive one is derived, are marked
sensitive. The inference system then infers the qualifiers
on other variables:

$sensitive Key key;
$sensitive Key key copy, subkey;
...
key copy = key;
make subkey(key, &subkey);

It is easy to see thatkey copy should be
$sensitive, since it is directly assigned fromkey.
However, CQual is capable of looking inside the

make subkey function and determining thatsubkey
is derived fromkey as well, thus correctly inferring the
$sensitive qualifier onsubkey.

Finally, we may specify rules governing the interactions
between qualifiers, just as C has rules for its built-in
qualifiers, e.g., noconst variable may be assigned from
a volatile one. In particular, the set of variables that
are live at the time offork() are annotated as$live
by our analysis (see Sections III-D and III-E). We add
a rule indicating that any variable inferred to be both
$sensitive and $live should generate a warning
message, as it represents a potential leak. Section III-E
shows in more detail how to tie the slicing and inference
together for leak detection; for a more complete example,
see Figure 5.

D. Program Slicing

a) Slicing Algorithm: In order to determine which
variables to mark as$live, we must perform a control-
flow analysis to decide which code is executed prior to
fork() and which stack frames are live whenfork()
is called. This requires generating aprogram slice that
contains just that set of code.

Generating a straightforward flow-independent back-
ward slice fromfork() would likely end up including
the whole program, since the parent and child differ only
in the return value of thefork() function. The reader is
referred to Tip’s survey of program slicing techniques [14]
for more details about difficulties with standard slicing
algorithms.

Instead, our algorithm makes some reasonable assump-
tions about the context in whichfork() is called in order
to generate a correct slice in the common case; in Sec-
tion III-D.0.b, we justify our choice. A more conservative
approximation, which might yield more false positives,
would be simply to perform the type analysis on the whole
program instead of using a slice.

Our algorithm consists of the following steps:

1) From the AST, build a callgraph for the program.
Use a conservative alias analysis to include calls
through function pointers.

2) Define the setT to be the transitive closure, going
backwards fromfork(), of the set of functions
that callfork().

3) Starting in main(), do a depth-first search of
the callgraph, stopping when a call tofork()
is reached. Add each function along the way to
the setF . The depth-first search approximates the
usual order of execution, starting inmain(). For
completeness, we repeat the procedure, starting in
each function that is used as a signal handler rather
than starting inmain(). Now F contains the set
of functions that are (potentially) called before a
fork().

4) F is a slight overapproximation to the slice we want:
if a function callsfork(), then no code in the
function following that call should be included in
the slice. The same is true if a function calls a
function f ∈ T : fork() would be called before
f returns. We therefore refine our slice as follows.
For each function inF , traverse the statements in
order, marking each one encountered as reachable.
Stop traversal after encountering a call to a function
in the setT or when encountering a direct call to
fork().

5) For each signal handler, we search the callgraph to
ensure thatfork() is never called from it. Now
the set of marked statements constitutes the program
slice.

An example of the slicing algorithm is given in Figure 5,
along with the computation of theT andF sets.

b) Correctness of the slicing algorithm:The slicing
algorithm given above assumes that there is only one
fork() call in the program, and that it is called at the
first possible point (assuming all relevant conditionals are
true). More precisely, the algorithm is correct if and only
if all paths by which afork() call may be reached are
equivalent from a secrecy perspective.

If there is more than one program point at which
fork() is called, we can simply analyze each separately
by removing all but the target call and running the
analysis.

A difficult case occurs when, for a given child process,
the fork() point is gated by a condition such that the
set of code that is executed before thefork() is unclear.
Consider this example:

while (...) {
pid = fork();
if (pid == 0) {

child_code();
exit();

} else if (pid > 0) {
parent_code();

} else if (pid == -1) {
error_handling_code();

}
}

The trouble is that our slicing algorithm cannot eas-
ily distinguish betweenparent code(), which is
always executed in the parentafter fork(), and
error handling code(), which is executed after a
failed attempt to fork, butbefore a successful attempt.
The consequence is that the error-handling code will be
wrongly excluded from the slice. If this code affects which
secrets are live, we could miss real security holes.

Fortunately, this does not seem to be a problem in
practice: error handling code tends not to manipulate
sensitive data or objects. We looked at a sampling of

popular daemons to see how they calledfork(). All
of them, including OpenSSH, the Apache HTTP server,
the Cyrus IMAP daemon, and the WU-FTPD FTP server,
use some variant of the idiom above. If, however, the
position of thefork() call were not secret-independent,
say if additional values got assigned secret data in
error handling code(), an extension to our algo-
rithm would be required. We have not yet found any
program that would necessitate such an extension.

We check thatfork() is not called nondeterministi-
cally from a signal handler. Note that althoughsetjmp
and longjmp also introduce exceptional control flow,
since they respect the stack they do not expand the
program slice and so are not a problem for our approach.

E. Finding leaks

There are three kinds of possible leaks detected with
the static analysis: attached shared memory regions, data
and stack memory secrets, and secrets in the environment.
The first is simple to check conservatively: we simply
look for shared-memory attach (shmat()) calls in the
program slice. We have not yet implemented a more
precise analysis that tries to match pre-fork detaches with
attaches.

As for the latter two kinds, once we have the ap-
propriate program slice, we can apply type inference as
described in Section III-C. The set of live data at the
time of fork() is conservatively defined to be: the
set of global variables; all the local variables of any
function that might be on the stack whenfork() is
called (functions in the setT in Section III-D, above); and
all values passed tosetenv(). These are automatically
marked with a$live annotation following the program
slicing operation. Recall that sensitive data structures are
annotated once by hand with a$sensitive annotation.
Using CQual, data derived from sensitive structures is also
inferred to be$sensitive. CQual is configured such
that any data that has both the$sensitive and$live
qualifiers is flagged with an error message as being a
potential leak. An example of the algorithm is given in
Figure 5.

Once potential leaks have been identified, the program-
mer must ensure that all flagged data is erased or otherwise
sanitized immediately afterfork() is called.

The run-time of this algorithm is dominated by the type
inference, which is worst-case quadratic in the number of
qualifier variables and on average somewhat superlinear.

F. Soundness of the analysis

Our static analysis algorithm is sound if it catches all the
leaks due to shared memory regions, data memory, stack
memory, and environment variables. The correctness of the
program slice is discussed above in Section III-D.0.b. Our
analysis on the program slice is as sound as CQual because
of the conservative way in which we determine the set of

Original + slicing + inference

int $sensitive secret();
int f() {

int i;
return fork();

}

void h() { ... }

void g(int s) {
int n = s;

}

int main() {
int m = secret();
g(m);
pid = f();
h();

}

int $sensitive secret();
int f() {

int i;
return fork();

}

void g(int s) {
int n = s;

}

int main() {
int m = secret();
g(m);
pid = f();

}

int $sensitive secret();
int f() {
int $live i;
return fork();

}

void g(int $sensitive s) {
int $sensitive n = s;

}

int main() {
int $sensitive

$live m = secret();
g(m);
pid = f();

}

The setT from Section III-D for this example program is{f(), main()}, sincef() callsfork() andmain()
calls f().

The setF from Section III-D for this example program is{main(), secret(), g(), f()}, since each of
these functions is called beforefork(). Note that the actual slice does not include all ofmain(): sincef ∈ T ,
fork() is called beforef() returns tomain(). Therefore, the code following the call tof() in main(), namely
the call toh(), is omitted.

Fig. 5. Verifying the secrecy of live data.The original code, with a single$sensitive user annotation, is shown on the left. The middle
column reflects program slicing to eliminate code called only after fork(). It eliminates the functionh() and the code inmain() following
the call tof(). On the right, variables that are live at the time offork() (m andi) are automatically annotated with$live. Type inference is
performed. Variables that contain sensitive data (m, n, ands) are then inferred to be$sensitive. Data leaks are indicated by variables marked
both $sensitive and$live. In this case,m represents a potential leak.

live variables. An exception is iffork() is called from a
signal handler, which would violate the usual control flow.
We check for that condition while generating the slice.
CQual itself is unsound in certain cases: inline assembly,
dynamically generated code, and memory-unsafe code
(such as the presence of buffer overflows). Our analysis
does support inference through function pointers.

IV. EXPERIMENT: ANALYSIS OF OPENSSH

We applied our static analysis to the OpenSSH 3.9
daemon to see if there were any sensitive data leaks from
the privileged processes to the unprivileged ones. In our
tests, we analyzed OpenSSH along with the OpenSSL
library that it uses for many cryptographic functions; these
were combined into a single file for analyses using the CIL
tool [5]. The source we analyzed consisted of 1.2 million
lines of code. Our tests were performed on a 64-bit 800-
MHz Itanium CPU with 13GB RAM, running Red Hat
Enterprise Linux with a the Linux 2.4.21 kernel and gcc
3.2.3. Running our static analysis required 420 minutes
and 4.8 GB RAM.

Privilege-separated OpenSSH consists of several pro-
cesses. One privileged component, calledlisten, listens
for new connections and spawns a separate, trusted process
called priv for each new connection. Thispriv com-
ponent performs the per-connection privileged operations
required by OpenSSH: authentication of the remote user,

creation of pseudo-terminals, transition to a particular,
authenticated userid, and session traffic encryption and
decryption. Thepriv component in turn spawns un-
privileged components to handle various types of user
interaction. Thenet component is used to perform the
remote interaction part of the authentication phase, which
has in the past been subject to compromise; it usespriv
as a privileged server via a narrow interface. After success-
ful authentication,priv spawns a shell or other process
requested by the user in that user’s security context.

We applied our static analysis (Section III) for each
of two child process creations:priv creating thenet
process and the user shell process. The user shell process
is created usingexec(), so we only needed to consider
a subset of our analysis results (see Section II for details).
The listen process that spawnspriv is also trusted,
so we did not analyze that transition.

OpenSSH is a well-designed system, and isolates
all its sensitive data into a single global structure,
sensitive data. We annotated this data structure as
being sensitive and proceeded with the algorithm.

Despite the large number of live variables at the
time of fork(), only a single variable in addition to
sensitive data was flagged as containing a potential
leak in the creation ofnet. We hand-verified that the con-
tents ofsensitive data are downgraded or destroyed
in unprivileged child processes immediately following

eachfork() transition. This was straightforward since
the the amount of code to be examined—the code that
followed fork() directly—was small.

The additional variable identified by the analysis, a
pointer namedkey, was a local variable in the main()
function that was used to read secret keys from disk and
initialize the sensitive data structure. Here is a code snippet
where it was used:

Key *key = key_load_private(...);
sensitive_data.host_keys[i] = key;

Becausekey was used to load sensitive data, it pointed to
several sensitive data values. However,key was aliased by
other variables (such ashost keys). When these were
erased, the sensitive values were destroyed or downgraded
suitably; this fact was hand-verified using a debugger. One
can easily imagine that if the data were copied by value
to the sensitive data structure rather than by reference, a
real leak would have been present.

In the creation of the user shell process, we only needed
to consider data leaks via the environment, since it used
exec(). Our static analysis found that no such leaks
exist.

V. RELATED WORK

Static analyses using the CQual type inference system,
like the one we perform in Section III, have been ap-
plied to security before. CQual has been used to find
format string vulnerabilities [13], verify the correctness
of authorization hooks in the Linux kernel [17], and
generate secure crash information [2]. More recently, a
fully polymorphic (context-sensitive) version of CQual
was introduced by Johnson and Wagner to find user-kernel
bugs [7]; we use this version of CQual in our analysis.

Static analysis has recently been applied to the problem
of automating privilege separation in a system called
Privtrans [3]. Another effort to ease the implementation
of privilege separation is the Privman library [8]. If
automated privilege separation becomes more usable, then
we expect that more systems will adopt this approach. If
so, our analysis, which is the first to support privilege sep-
arated applications in addition to unseparated ones, will be
increasingly useful. Of course, well-designed applications
that isolate sensitive data structures from other data in
their design will make automated analysis easier and more
efficient.

Recently, Chow et al. used hardware-level simulation
on a virtual machine in order to perform a dynamic cross-
process taint analysis [4]. Our work focuses on using static
analysis rather than dynamic tracing. Our approach does
not suffer from the code-coverage problem of dynamic
analysis; conversely, the dynamic approach sometimes has
fewer false positives and is good at tracking data across
applications, which our tools do not currently support.

VI. CONCLUSION

The advent of privilege separation as a technique to re-
duce the TCB of security-critical applications has brought
with it some new security risks, since data and system
objects are automatically copied when a privileged process
spawns an unprivileged one using thefork() system
call. In this paper, we have systematically identified the
ways in which sensitive data and system objects may leak
from a trusted parent process to an untrusted child. We
have proposed fixes for each potential leak, including a
static source code analysis in order to catch many kinds
of data leaks. Finally, we used our techniques to prove
that OpenSSH does not leak secrets to its untrusted com-
ponents, at the same time demonstrating the practicality
of our approach.

REFERENCES

[1] K. Ashcraft and D. Engler. Using programmer-written compiler
extensions to catch security holes. InProceedings of the 2002
IEEE Symposium on Security and Privacy, May 2002.

[2] P. Broadwell, M. Harren, and N. Sastry. Scrash: A system for
generating secure crash information. InProceedings of the11th

USENIX Security Symposium, August 2003
[3] D. Brumley and D. Song. Privtrans: Automatically partitioning

programs for privilege separation. InProceedings of the13th

USENIX Security Symposium, August 2004.
[4] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.

Understanding data lifetime via whole system simulation. In
Proceedings of the13th USENIX Security Symposium, August
2004.

[5] G. Necula, S. McPeak, S. Rahul and W. Weimer. “CIL: Inter-
mediate Language and Tools for Analysis and Transformation
of C Programs”. InProceedings of the Conference on Compiler
Construction, 2002.

[6] D. Evans and D. Larochelle. Improving security using extensible
lightweight static analysis.IEEE Software, Jan/Feb 2002.

[7] R. Johnson and D. Wagner. Finding user/kernel pointer bugs with
type inference. InProceedings of the13th USENIX Security
Symposium, August 2004.

[8] D. Kilpatrick. Privman: A library for partitioning applications. In
Proceedings of the USENIX 2003 Annual Technical Conference,
FREENIX Track, April 2003.

[9] S. McPeak, G. C. Necula. Elkhound: A fast, practical GLR parser
generator. InProceedings of Conference on Compiler Construction
(CC04), April 2004.

[10] Oink program analysis framework. Available fromhttp://
freshmeat.net/projects/oink/.

[11] N. Provos, M. Friedl and P. Honeyman. Preventing privilege esca-
lation. In Proceedings of the12th USENIX Security Symposium,
August 2003.

[12] National Security Agency. Security-Enhanced Linux (SELinux).
http://www.nsa.gov/selinux, 2001.

[13] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. ”Automated
Detection of Format-String Vulnerabilities Using Type Qualifiers,”
in Proceedings of the 10th USENIX Security Symposium, August
2001.

[14] F. Tip. “A survey of program slicing techniques”. InJournal of
Programming Languages3(3) , (1995), 121-189.

[15] S. Smalley. “Re: fork and security context transitions”on SELinux
Mailing List, 3 Feb 2004. Available athttp://www.nsa.gov/
selinux/list-archive/0402/6391.cfm.

[16] S. Smith. Outbound authentication for programmable secure
coprocessors. InProceedings of the8th European Symposium on
Research in Computer Security (ESORICS), 2002.

[17] X. Zhang, A. Edwards and T. Jaeger. “Using CQUAL for Static
Analysis of Authorization Hook Placement”. InProceedings of the
11

th USENIX Security Symposium, August 2002.

