Preventing Secret Leakage frahor k() :
Securing Privilege-Separated Applications

Umesh Shankar and David Wagner
{ushankar, daw}@s. ber kel ey. edu
University of California at Berkel ey

Abstract—If trusted processes’ secrets or privileged Privileged Process (parent)
system objects such as file handles are leaked to an untrusted Ufork() Explicit
process, the result could be the loss of secrecy and integrity of i copies data and } Communication
the data produced by the program. The advent of privilege- i system objects _:V (e.g. IPC)

separated programs has led to an additional risk: sensitive
data or system objects may be leaked when the trusted
process of the privilege-separated application forks an un-
trusted child process. We have identified several channels by _. i N .

Fig. 1. The question we consider in this papeis whether any secrets

which Ipformatlon may flow to t.he Ch!ld process. memory, privileged system objects are leaked acrosd thek () interface from
the environment, memory mappings, filesystem information, e rysted parent process to the untrusted child processetdeaks may

and file descriptors. We propose fixes for each of these leaks. ajso compromise the parent's integrity. We ignore secretsquhacross
Some are handled by a novel static source code analysis ofexplicit channels, such as IPC or other communication.

the target privilege-separated application’s source code, but
some require modifications to the kernel or compiler.

As a proof of concept, we applied our technique to P ; ; : ;
privilege-separate d Oper?SSH runpnﬂng on the Linﬂx , ¢ guards itwith a narrow interface, reducing the risk of priv-

kernel. Using our tools, we were able to verify easily that 1€9€ escalation; if the untrusted portion is compromised,
it does not leak secrets from its trusted components to its the trusted portion still maintains its relative isolation

untrusted components; all sensitive data is erased or down-  There is a potential problem with privilege separation
graded appropriately before being inherited by untrusted (see Figure 1): since the untrusted processes are forked
components. This suggests that our method is a useful Way ¢rom the trusted ones, secrets may be leaked via the
of reasoning about privilege-separated programs. . _ .
memory, environment variables, and other system objects
that are copied ofior k() . Unlike ordinary system output
functions which explicitly accept all affected data in thei
A. Motivation arguments,f or k() automatically copies all data and

Trusted processes on a system frequently contain sedfgny system objects. Therefore, we need a system.ayc way
information, such as cryptographic keys or passwords, tHQ; ensure that secrets are not leaked from the pr|\{|leged
could be used to compromise the secrecy and integrity %?mpgnent .to the untrusted one becausef of k() s
the process’ data. In addition, since these processesare”?S'lpIICIt sharing.
ten granted extensive privileges, they possess capabilits. Our approach
like file handles and shared memory handles that could be\Ne first identify the types of leaks that are possible
used for privilege escalation. Keeping sensitive data a gection Il) by examining the Linux kemel source code
objects from leaking to an adversary is essential for taist

processes to maintain the secrecy of the application sat implements thef ork() system call. The set of

output. Smith has also discussed the need to preseco ied data is summarized in Figure 2. We analyze each

S : ST ofhese for its risks and propose solutions for each threat
secrecy to maintain output data integrity in his work %We identified. Some solutions involve explicitl discarglin
“outbound authentication” [16]. . plcitly

- . L rPrivileged objects in the child process, since these object
Noticing that many compromises of trusted appllcatlo Gan be enumerated easily. However, identifying potential
83ta leaks requires a more sophisticated approach because
data is easily and frequently copied and used in the

lication. To find data leaks, we propose a new static
& alysis, combining control-flow (program slicing) and
taflow (type inference) analyses.

Some privilege-separated programs may exdkec()
from within the child process. Thexec() system call
This work was supported by NSF grant CCF-0430585. clears the process’ memory space and loads in a new

Unprivileged Process (child)

I. INTRODUCTION

et al. introducedprivilege separation[11]. Privilege-

separated designs separate the portion of an applicat
that needs high privilege into small processes that off
a narrow interface to larger, unprivileged processes. T
approach minimizes the code that must be privileged an




Data/Object copied onf or k() Erased onexec()? Notes

Code memory, sighandlers, pending signals Yes

Data memory Yes

Stack memory Yes

File descriptors No* *File descriptors withCLOSE_ON_EXEC flag
are closed orexec()

Filesystem information No Includes filesystem root, filesystem names-
pace, umask, working directory

Process memory mapping Yes Includesnmmap() regions

Shared memory segments Yes

Environment No Environment may be changed with
execve()

Fig. 2. Copy semantics off or k() and exec(). We analyzed the Linux 2.6 kernel source code ffor k() andexec() to see what data
or system objects are copied from the parent to the childgg®dyf or k() and which are erased or closed by a subseqaget() .

binary. The clearing of the memory space decreases the to our knowledge—and propose fixes for each.
number of potential leaks. However, usiegec() can « We show that many such leaks may be detected us-
make data sharing between parent and child process more ing our proposed program analysis, which combines
difficult by requiring more complex marshaling. This com-  control-flow and dataflow analyses (Section III).
plexity can make it harder to verify the correctness of the « We provide evidence that our method is easy to
(ideally very small) trusted process. Thus, whether or not use by analyzing the most prominent privilege-
exec() is used, we want some assurance that sensitive separated application, OpenSSH (Section 1V). Using
data and privileged system objects are not leaked during our method, we showed that OpenSSH is free of
creation of the unprivileged child process. We discuss the sensitive data leaks. One potential leak was detected,
details of achieving such assurance for both cases in the but was found to be sanitized indirectly through an
next section. aliased pointer.

In this paper, we confine ourselves to preventing leakage
during process creation. We do not address side-channel
attacks or other observation mechanisms that may revealWe examined the Linux 2.6 kernel's implementation of
secret information; we do not consider control deperhef or k() andexec() system calls to determine which
dences on sensitive data, just data dependences. Leakdaje and system objects are copied from the parent process
to other processes or 1/0 channels via system calls suchtaghe child, and which are erasedékec() is called
write() is the subject of ongoing work. Furthermoreafterwards. The results are summarized in Figure 2. Each
we assume that the unprivileged, untrusted child procel#se of the table represents a potential leakage channel. In
has had its security context (typically UIDs and GIDs)his section, we analyze them to decide which represent
appropriately downgraded. real vulnerabilities. In our discussion, we assume that the

As a proof of concept for our approach, especially thentrusted child process has its user and group IDs or
static analysis, we have applied our technique to OpenS®Hher relevant security context set correctly to reflect its
and were able to show, with little manual effort, that itintrusted status.
does not leak sensitive data to its untrusted portion. Ourlf a fine-grained access control system, such as
advances in supporting privilege separation are partibula SELinux [12], is present, some of these channels may
significant in light of current efforts [3], [8] to simplify be mediated by the system’s security policy. SELinux is
and automate privilege separation, which will likely speed reference monitor for Linux that allows fine-grained
adoption of the technique. control over the use of system objects like files, file
descriptors, and pipes. The system policy specifies which
processes may use which types of system objects in which
In summary, we make the following contributions:  \ays. Using SELinux can help prevent some kinds of
» We identify new risks to privilege-separated programigaks by interposing an access control check on the use

resulting from implicit copying of data and systenof the leaked system object. We make a note of several

objects from the privileged, trusted parent process t@ays that using SELinux can help prevent leaks.

an unprivileged, untrusted helper child process b/x ] )

the fork() system call (Section Il). During this 2~ Enumeration of possible leaks

copying, sensitive data and privileged system objectsWe list all the relevant data and system objects implic-

may leak to the child process. itly copied byf or k() , and analyze the risks associated
« We propose a new method of systematically reasowith each as well as fixes for each potential leak. Note

ing about such leaks (Sections Il and lll)—the firsthat some IPC mechanisms, such as System V Message

Il. IDENTIFYING POSSIBLE LEAKS

C. Contributions



Queues, perform an authorization check for each opera-
tion, so the lack of privilege in the child process serves
to prevent privilege escalation. These are not considered
here.

« Code memory, signal handler table, and pending
signals. We do not need to trust the code of the

itself is not a potential secret leak—indeed, it is
visible on / pr oc—but the mapping may contain

memory-mapped files which require privilege to ac-
cess. Memory-mapped files are unmappeskiéc ()

is called.

Fix: If fork() is used withoutexec(), all

child process—whether called from a signal or not—
since it runs with low privilege. The code memory
and signal handler set of the parent are not generally
considered secret and may usually be derived from
the source code; nonetheless, we can check that n@®
sensitive data is used in setting up the signal handler
table. We assume here that no secrets are embedded
in the code of the parent process.

Fix: Use our static analysis (Section Ill) to make sure
that the signal mask and the set of signal handlers are
not derived from sensitive data.

Data memory and stack.Secrets could be leaked in
data or stack memory copied to the child process.
Also, there is an additional vulnerability whereby
previously-used stack memory could leak secrets. De-
tails are discussed below in Section II-B.etec()

is used, then the memory space is erased and no data
or stack memory leak is possible.

Fix: If fork() is used withoutexec(), use our
static analysis (Section lll) to detect sensitive data
and stack memory leaks. The previously-used stack
memory risks can be alleviated with kernel and
compiler modifications (Section 11-B).

File descriptors. The parent process may have open *
file handles that should not be accessed by an un-
trusted child process, because opening them requires
higher privilege than that granted to the child.

Fix: Immediately afterf or k() , close all file de-
scriptors in the child process except those needed for
explicit communication with the parent.défkec() is
called in the child, theCL OSE_ON_EXEC flag may be

set on all unneeded descriptors by the parent process
instead. These changes eliminate file descriptor leaks,

memory-mapped files should be unmapped, except
those needed for explicit communication with the
parent. A list of such mappings is available in the
/ pr oc filesystem undef pr oc/ <pi d>/ maps.
Shared memory.Privileged shared memory regions
could be abused by the untrusted child process if
the parent process has attached to the region using
shmat () before callingf or k() , since the descrip-
tor is copied orf or k() . Shared memory descriptors
are detached orexec(), so there is no risk of
accidental leakage in that case.

Fix: If fork() is used withoutexec(), a parent
process may create shared memory regions using
shnget () but should defer attaching to them using
shmat () until after thef or k() call. Our static
analysis (Section Ill) checks thathmat () is not
called beford or k() . If attaching to shared memory
segments beforéor k() is absolutely required by
the application, the parent process should detach all
shared memory segments immediately before call-
ing fork(). A list of all shared memory map-
pings is available in thd proc filesystem under

/ proc/ <pi d>/ maps.

Environment. This information is not erased on
exec(). Thus, if sensitive data is stored in envi-
ronment variables, it should be erased immediately
following the call tof or k() evenis ifit is followed

by exec().

Fix: Use our static analysis (Section IIl) to detect
leaks of sensitive data into the environment. Alter-
nately, theexecve() system call allows explicit
specification of the child’s environment variables,
avoiding accidental leakage.

but require programmer modification to the source Given that several fixes require data scrubbing or san-
code. SELinux may be useful in preventing this leakization immediately before or aftefror k() , one may
without source code changes. The default SELinugnagine a user library that implemented these together
policy does not allow a child process to use the pareift a secur e_f or k() function. Such a function might
process’ file descriptors, so by default no leak idetach all shared memory regions, datir k() , then, in
possible. Any file descriptors required for commuthe child process, unmap all memory-mapped files and

nication may be explicitly allowed in the policy.
Filesystem information. The main pieces of in-

close all open file handles.

formation in this data structure are the proces®: Previously-used stack memory leaks
filesystem root directory, filesystem namespace (VFS The stack is inherited acrossor k(). This means

mounts), the umask, and the current working dire¢hat there is a potential information leakage on the stack

tory. This information is not erased @xec(), but from leftover stack variables. Consider the example in

is not generally considered to be secret: in fact, it iBigure 3. If secret data is on the stack in a local variable,

visible to other processes via th@r oc filesystem. and subsequent stack frames befbi@ k() are all at

Fix: None needed. higher memory addresses, the secret data may be left
o Process memory mapping.The memory mapping in unused stack memory in the new child process. To



: are zero-filled.

0 /_\_/
Live local_var_1 I11. STATIC SOURCECODE ANALYSIS
variables local_var.2 In Section Il, we proposed a static source code analysis
8 to detect certain kinds of data leaks. Here, we describe
local_var_3 , that analysis. In particular, the property we want to check
—12 Stack pointer when . . . . .
— fork( called is that all data that is live at the timfeor k() is called,
old_local_secret . . . . .
Old stack including data memory, stack variables, environment vari-
frames | other_old_local ables, and attached shared-memory regions, is either not

L

sensitive or is immediately downgraded aftesr k() .

A. Overview of the analysis

Fig. 3. Previously-used stack memory can leak secrets$f a secret

Checking the desired property requires five steps:
is in a stack location which is never overwritten befémrer k() , a leak 9 property req P

can result. Heregl d_| ocal _secr et 's contents may remain in unused
stack memory wherf or k() is called. The operating system should
zero-fill all memory below the stack pointer in the newly creatdild
process.

1
1
/\/
_ 0
local_var_1
4
Current 4 bytes skipped
stack 8 old_local_secret for alignment
frame
12 (8-byte aligned)
local_var_2
L16 Stack pointer when
fork() called
/X/

Fig. 4. Alignment restrictions can leak secretslf a secret is in a stack
location which is not overwritten due to alignment constigira leak
can occur even if the stack is zero-filled below the stack teoirHere,

ol d_l ocal _secret’s contents may be on the stack from a previous
stack frame wherf or k() is called becauséocal _var 2 must be
aligned to an 8-byte boundary.

avoid this problem, the operating system should zero-fill
stack memory in the child below the current stack pointer
immediately after anyf or k(). Note that this change

might break code which relies upon the unsafe practice

of using the address of a local variable from a function

1) The programmer annotates a small set of variables in
the program as containing sensitive data (Section IlI-
Q).

Our algorithm automatically computes the set of

live data by using grogram slice(Section III-D)

that captures the code executed befbwr k() ,

including the active stack frames whéwor k() is

called. All stack variables in active stack frames,
as well as those passed s®tenv() (are thus
are in the environment), are marked as live. Global
variables are always considered live.

The algorithm then infers the set of derived sensitive

data in the program slice from the programmer

annotations, using the procedure described in Sec-

tions IlI-C and IlI-E.

The algorithm intersects the live and sensitive sets.

Data that is both live and sensitive represents a

potential leak, and the algorithm reports the leak as

a warning message.

) If there are any warning messages, the programmer
checks that the data in question is scrubbed im-
mediately afterf or k() in the unprivileged child
process. In addition, if thehmat () system call,
which attaches to a shared memory region, is called
beforef or k() , the system reports this as a pos-
sible leak, and the programmer should rewrite the
offending code to defer attaching to the region until
afterf or k() is called.

2)

3)

4)

1

that has already returned. Since such code is already likely
to fail, as it is not memory-safe, we consider this to be - Tools used

acceptable tradeoff.

In order to perform our analysis, we employ the

Even if the zero-filing recommendation above iDink/Elsa front end [9], [10] analysis framework. This

adopted, it is still possible for data to leak on the stadkamework provides a C/C++ parser and facilitates per-
due to machine- and compiler-specific alignment optionforming analyses on the resulting abstract syntax tree
Consider the example in Figure 4. An 8-byte aligne@AST). It also includes integration with multiple backend
variable { ocal _var _2) may appear in the source codeanalyses. We extended this backend interface to work
to overwrite a secret, since the size of the current stagkth the fully polymorphic (context-sensitive) CQual type
frame is large enough to overwrite the previous framaference system backend [7]. CQual performs sound type
containing the secret. However, the alignment restrictianference on built-in and user-supplied qualifiers in C
leads to a leak since the bytes containing the secret @m@grams, and is well-suited to a dataflow analysis [2],
skipped. To avoid this problem, compilers should maklg 3], [17], described in more detail in Section III-C. Using
sure that all extra bytes needed for alignment or padditige Oink/Elsa framework, we were able to implement



our program slicing on the AST, then make automaticeke_subkey function and determining thadubkey
annotations to the tree based on the slice, before invokirggderived fromkey as well, thus correctly inferring the

the CQual backend. $sensi ti ve qualifier onsubkey.
i . . Finally, we may specify rules governing the interactions
C. Dataflow analysis using type inference between qualifiers, just as C has rules for its built-in

A type inferencanalysis may be used to trace the flovgualifiers, e.g., n@onst variable may be assigned from
of various kinds of marked data in a program, and tavol ati | e one. In particular, the set of variables that
enforce restrictions on data with certain annotationdedal are live at the time of or k() are annotated a$l i ve
type qualifiers CQual is a system that allow programmer®y our analysis (see Sections IlI-D and IlI-E). We add
to add type qualifiers with associated rules to C prograne, rule indicating that any variable inferred to be both
and has been used for similar applications including findsensi ti ve and $l i ve should generate a warning
ing format-string bugs [13] and isolating sensitive data imessage, as it represents a potential leak. Section IlI-E
an application’'s memory space [2]; the reader is referreshows in more detail how to tie the slicing and inference
to these for a more thorough exposition of the applicatidlwgether for leak detection; for a more complete example,
of type inference to security than is provided here. In owsee Figure 5.
case, we want to be able to infer all potentially sensitive
data from a small set of sensitive data that has been g0 pProgram Slicing
marked by a programmer, then flag as a potential leak
any potentially sensitive data that is live whéor k()
is called.

a) Slicing Algorithm: In order to determine which
variables to mark a$l i ve, we must perform a control-

Say the program uses a secret key, which it stores irflgw analysis to decide which code is executed prior to

variable,key. The program might then copy the key oﬂ( or k() and which stack frames are live whémwr k()

generate a subkey from it for use in a crypto algorithm:S called. This requires generating ogram slicethat
contains just that set of code.

Key key, key_copy, subkey; Generating a straightforward flow-independent back-
ca ward slice fromf or k() would likely end up including
key_copy = key; the whole program, since the parent and child differ only
make_subkey(key, &subkey); in the return value of thé or k() function. The reader is

Now, we do not want to have to find all the data derivefff€ed to Tip's survey of program slicing techniques [14]
from the secret key by hand: we would like to indicate th4P" More details about difficulties with standard slicing
the variablekey is sensitive and have an analyzer infef"lgor'thms' )
all other sensitive data from it. CQual lets us mark the !nstead, our algorithm makes some reasonable assump-

secret key as being sensitive using a special type qualifidpns about the context in whidhor k() is called in order

$sensitive: to generate a correct slice in the common case; in Sec-
o tion 111-D.0.b, we justify our choice. A more conservative
$sensitive Key key; approximation, which might yield more false positives,

Type qualifiers also come with rules: a pointer toenst ~ Would be simply to perform the type analysis on the whole

object may only be assigned to another pointezomst, Program instead of using a slice.

for example. Likewise, we may also specify rules about Our algorithm consists of the following steps:

how the$sensi ti ve qualifier propagates, that is, how 1) From the AST, build a callgraph for the program.
it is inferred to apply to other variables. Here, we specify Use a conservative alias analysis to include calls
that all variables either derived from a sensitive one,  through function pointers.

or from which a sensitive one is derived, are marked 2) Define the sef’ to be the transitive closure, going
sensitive. The inference system then infers the qualifiers  backwards fromf or k() , of the set of functions

on other variables: that callf or k() .

3) Starting inmai n(), do a depth-first search of
$sensitive Key key; the callgraph, stopping when a call foor k()
$sensitive Key key_copy, subkey; is reached. Add each function along the way to
- the setF. The depth-first search approximates the
key_copy = key; usual order of execution, starting imai n() . For
make_subkey(key, &subkey); completeness, we repeat the procedure, starting in

each function that is used as a signal handler rather
It is easy to see thatkey copy should be than starting inmai n() . Now F' contains the set

$sensi tive, since it is directly assigned frorkey. of functions that are (potentially) called before a

However, CQual is capable of looking inside the fork().



4) Fis a slight overapproximation to the slice we wantpopular daemons to see how they calledr k() . All
if a function callsf ork(), then no code in the of them, including OpenSSH, the Apache HTTP server,
function following that call should be included inthe Cyrus IMAP daemon, and the WU-FTPD FTP server,
the slice. The same is true if a function calls aise some variant of the idiom above. If, however, the
function f € T fork() would be called before position of thef or k() call were not secret-independent,
f returns. We therefore refine our slice as followssay if additional values got assigned secret data in
For each function inF', traverse the statements iner r or _handl i ng_code(), an extension to our algo-
order, marking each one encountered as reachahbfthm would be required. We have not yet found any
Stop traversal after encountering a call to a functioprogram that would necessitate such an extension.
in the setT" or when encountering a direct call to We check thaf or k() is not called nondeterministi-
fork(). cally from a signal handler. Note that althouglket j np

5) For each signal handler, we search the callgraph &md | ongj np also introduce exceptional control flow,
ensure thaf or k() is never called from it. Now since they respect the stack they do not expand the
the set of marked statements constitutes the progrgrogram slice and so are not a problem for our approach.

slice.
An example of the slicing algorithm is given in Figure 5,E' Finding leaks
along with the computation of th& and F' sets. There are three kinds of possible leaks detected with

b) Correctness of the slicing algorithnithe slicing the static analysis: attached shared memory regions, data
algorithm given above assumes that there is only oméd stack memory secrets, and secrets in the environment.
fork() call in the program, and that it is called at theThe first is simple to check conservatively: we simply
first possible point (assuming all relevant conditionalks afook for shared-memory attactsiimat () ) calls in the
true). More precisely, the algorithm is correct if and onlyprogram slice. We have not yet implemented a more
if all paths by which a or k() call may be reached areprecise analysis that tries to match pre-fork detaches with
equivalent from a secrecy perspective. attaches.

If there is more than one program point at which As for the latter two kinds, once we have the ap-
fork() is called, we can simply analyze each separatefyopriate program slice, we can apply type inference as
by removing all but the target call and running thelescribed in Section IlI-C. The set of live data at the
analysis. time of fork() is conservatively defined to be: the

A difficult case occurs when, for a given child processset of global variables; all the local variables of any
the f or k() point is gated by a condition such that thdunction that might be on the stack whdror k() is
set of code that is executed before fhar k() is unclear. called (functions in the séf in Section 11I-D, above); and
Consider this example: all values passed teet env() . These are automatically

_ marked with a$l i ve annotation following the program
whi l e (..) A slicing operation. Recall that sensitive data structures a

p! d ~ fork(); annotated once by hand with$sensi t i ve annotation.

i f (.p' d == 0) { Using CQual, data derived from sensitive structures is also
Ch! I'd_code(); inferred to be$sensi ti ve. CQual is configured such
exit (? ; . that any data that has both theensi ti ve and$l i ve

} else if (pid > 0) { o : . ;

qualifiers is flagged with an error message as being a
parenF —COd?(); potential leak. An example of the algorithm is given in

} else if (p|q==-1) { Figure 5.
error_handling_code(); Once potential leaks have been identified, the program-

} mer must ensure that all flagged data is erased or otherwise
} sanitized immediately afteror k() is called.

The trouble is that our slicing algorithm cannot eas- The run-time of this algorithm is dominated by the type
ily distinguish betweenpar ent code(), which is inference, which is worst-case quadratic in the number of
always executed in the parerafter fork(), and qualifier variables and on average somewhat superlinear.
error _handl i ng_code(), which is executed after a )

failed attempt to fork, butbefore a successful attempt. - Soundness of the analysis

The consequence is that the error-handling code will be Our static analysis algorithm is sound if it catches all the
wrongly excluded from the slice. If this code affects whicleaks due to shared memory regions, data memory, stack
secrets are live, we could miss real security holes. memory, and environment variables. The correctness of the

Fortunately, this does not seem to be a problem program slice is discussed above in Section 111-D.0.b. Our
practice: error handling code tends not to manipulatnalysis on the program slice is as sound as CQual because
sensitive data or objects. We looked at a sampling of the conservative way in which we determine the set of



Original + slicing + inference

int $sensitive secret(); int $sensitive secret(); int $sensitive secret();
int f() { int f() { int f() {

int i; int i; int $live i;

return fork(); return fork(); return fork();
} } }
void h() { ...}
void g(int s) { void g(int s) { void g(int $sensitive s) {

int n=s; int n=s; int $sensitive n = s;
} } }
int main() { int main() { int main() {

int m= secret(); int m= secret(); int $sensitive

g(m; g(m; $live m= secret();

pid = f(); pid = f(); g(m;

h(); pid = f();

} }

The setT" from Section 11I-D for this example program i (), nai n() }, sincef () callsfork() andmai n()
callsf ().
The setF from Section III-D for this example program igrai n(), secret(), g(), f()}, since each of
these functions is called befofeor k() . Note that the actual slice does not include alln@fi n() : sincef € T,
fork() is called beford () returns tomai n() . Therefore, the code following the call ) in mai n(), namely
the call toh(), is omitted.

Fig. 5. Verifying the secrecy of live data.The original code, with a singl8sensi ti ve user annotation, is shown on the left. The middle
column reflects program slicing to eliminate code called orftgra or k() . It eliminates the functioh() and the code inmai n() following
the call tof () . On the right, variables that are live at the timefafr k() (mandi ) are automatically annotated wisl i ve. Type inference is
performed. Variables that contain sensitive datar(, ands) are then inferred to b&sensi ti ve. Data leaks are indicated by variables marked
both$sensi ti ve and$l i ve. In this casemn represents a potential leak.

live variables. An exception is ffor k() is called from a creation of pseudo-terminals, transition to a particular,
signal handler, which would violate the usual control flonauthenticated userid, and session traffic encryption and
We check for that condition while generating the slicedecryption. Thepri v component in turn spawns un-
CQual itself is unsound in certain cases: inline assemblyivileged components to handle various types of user
dynamically generated code, and memory-unsafe couigeraction. Thenet component is used to perform the
(such as the presence of buffer overflows). Our analysismote interaction part of the authentication phase, which

does support inference through function pointers. has in the past been subject to compromise; it psasy
as a privileged server via a narrow interface. After success
IV. EXPERIMENT: ANALYSIS OF OPENSSH ful authenticationpri v spawns a shell or other process

We applied our static analysis to the OpenSSH 3rgquested by the user in that user's security context.
daemon to see if there were any sensitive data leaks fromVe applied our static analysis (Section [Il) for each
the privileged processes to the unprivileged ones. In o@f two child process creationgri v creating thenet
tests, we analyzed OpenSSH along with the OpenS®grocess and the user shell process. The user shell process
library that it uses for many cryptographic functions; thesis created usingxec(), so we only needed to consider
were combined into a single file for analyses using the Ci subset of our analysis results (see Section Il for details)
tool [5]. The source we analyzed consisted of 1.2 milliohhe | i st en process that spawnsri v is also trusted,
lines of code. Our tests were performed on a 64-bit 8080 we did not analyze that transition.

MHz Itanium CPU with 13GB RAM, running Red Hat OpenSSH is a well-designed system, and isolates
Enterprise Linux with a the Linux 2.4.21 kernel and gcell its sensitive data into a single global structure,

3.2.3. Running our static analysis required 420 minutegnsi ti ve_dat a. We annotated this data structure as

and 4.8 GB RAM. being sensitive and proceeded with the algorithm.

Privilege-separated OpenSSH consists of several pro-Despite the large number of live variables at the
cesses. One privileged component, calledt en, listens time of f ork(), only a single variable in addition to
for new connections and spawns a separate, trusted processsi ti ve_dat a was flagged as containing a potential
calledpri v for each new connection. Thigri v com- leak in the creation ofiet . We hand-verified that the con-
ponent performs the per-connection privileged operatiomsnts ofsensi ti ve_dat a are downgraded or destroyed
required by OpenSSH: authentication of the remote useér, unprivileged child processes immediately following



eachf or k() transition. This was straightforward since VI. CONCLUSION
the the amount of code to be examined—the code thatrhe advent of privilege separation as a technique to re-

followed f or k() directly—was small. duce the TCB of security-critical applications has brought
The additional variable identified by the analysis, @ith it some new security risks, since data and system
pointer namedkey, was a local variable in the main() objects are automatically copied when a privileged process
function that was used to read secret keys from disk a@fawns an unprivileged one using ther k() system
initialize the sensitive data structure. Here is a COde[:Etip call. In this paper, we have systematically identified the
where it was used: ways in which sensitive data and system objects may leak
from a trusted parent process to an untrusted child. We
have proposed fixes for each potential leak, including a
static source code analysis in order to catch many kinds
Becaus&ey was used to load sensitive data, it pointed tof data leaks. Finally, we used our techniques to prove
several sensitive data values. Howekary was aliased by that OpenSSH does not leak secrets to its untrusted com-
other variables (such asost _keys). When these were ponents, at the same time demonstrating the practicality
erased, the sensitive values were destroyed or downgradéaur approach.
suitably; this fact was hand-verified using a debugger. One
can easily imagine that if the data were copied by value

to the sensitive data structure rather than by reference,[H K. Ashcraft and D. Engler. Using programmer-written corepil
| leak would have been present extensions to catch security holes. Rroceedings of the 2002

rea . p : IEEE Symposium on Security and Privasyay 2002.

In the creation of the user shell process, we only needed] P. Broadwell, M. Harren, and N. Sastry. Scrash: A system f

to consider data leaks via the environment, since it used generating secure crash information. Rmoceedings of the 1
USENIX Security Symposiyuriugust 2003

exec(). Our static analysis found that no such Ieaks{3] D. Brumley and D. Song. Privtrans: Automatically partiting
exist. programs for privilege separation. IRroceedings of thel 3t/
USENIX Security Symposiyrugust 2004.
[4] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rablum.
V. RELATED WORK Understanding data lifetime via whole system simulation. In
Proceedings of thel3t" USENIX Security Symposiyurugust
Static analyses using the CQual type inference system, 2004.

like the one we perform in Section Ill. have been aij] G. Necula, S. McPeak, S. Rahul and W. Weimer. “CIL: Inter-
! mediate Language and Tools for Analysis and Transformation

plied to security before. CQual has been used to find of ¢ programs”. InProceedings of the Conference on Compiler
format string vulnerabilities [13], verify the correctrses Construction 2002.

oAt ; ; [6] D. Evans and D. Larochelle. Improving security using esible
of authorization hooks in the Linux kernel [17], and ™ Lo /oL ’oic anaysislEEE Software Jan/Feb 2002.

generate secure crash information [2]. More recently, &) R. Johnson and D. Wagner. Finding user/kemel pointeysbuith
fully polymorphic (context-sensitive) version of CQual  type inference. InProceedings of thel3*" USENIX Security

. : _ SymposiumAugust 2004.
was introduced by Johnson and Wagner to find user kemf'Ej] D. Kilpatrick. Privman: A library for partitioning apptiations. In

bugs [7]; we use this version of CQual in our analysis. Proceedings of the USENIX 2003 Annual Technical Conference
Static analysis has recently been applied to the problem FREENIX Track April 2003.

: - : : 9] S. McPeak, G. C. Necula. Elkhound: A fast, practical GL&ger
of automating pr|V|Iege separation In a system Ca”ed generator. IrProceedings of Conference on Compiler Construction

Privtrans [3]. Another effort to ease the implementation  (cco4), April 2004.
of privilege separation is the Privman library [8]. If[10] Oink program analysis framework. Available fromttp://

o : freshmeat . net/ proj ect s/ oi nk/.
automated privilege separation becomes more usable, t D N. Provos, M. Friedl and P. Honeyman. Preventing pradesca-

we expect that more systems will adopt this approach. If * jation. In Proceedings of tha2t* USENIX Security Symposiyum
s0, our analysis, which is the first to support privilege sep-  August 2003.

S . i, .1 112] National Security Agency. Security-Enhanced LinuwE[$ux).
arated applications in addition to unseparated ones, will B http:// www. nsa. gov/ sel i nux, 2001,

increasingly useful. Of course, well-designed applig@io [13] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. "Anated
that isolate sensitive data structures from other data in Detection of Format-String Vulnerabilities Using Type Qfiats,”

their design will make automated analysis easier and more g‘oglmcee‘j'”gs of the 10th USENIX Security Symposiiogust

efficient. [14] F. Tip. “A survey of program slicing techniques”. Wournal of
Recently, Chow et al. used hardware-level simulation Programming Languages(3) , (1995), 121-189.
irtual machine in order to perform a dvnamic cross: S. Smalley. “Re: fork and security context transitiomsi’ SELinux
on avir ua_ ac i p y ) "~ Mailing List, 3 Feb 2004. Available dit t p: / / www. nsa. gov/
process taint analysis [4]. Our work focuses on using static sel i nux/ i st - archi ve/ 0402/ 6391. cf m

analysis rather than dynamic tracing. Our approach do@§l S. Smith. Outbound authentication for programmable secur

not suffer from the code-coverage problem of dynamic COprocessors. liProceedings (_)f th&'"™ European Symposium on
k ) ) Research in Computer Security (ESORICX)02.

analysis; conversely, the dynamic approach sometimes Q&g X. zhang, A. Edwards and T. Jaeger. “Using CQUAL for &tat

fewer false positives and is good at tracking data across Analysis of Authorization Hook Placement”. Proceedings of the

e . 11th USENIX i i 2002.
applications, which our tools do not currently support. us Security Symposiurhugust 200

Key *key = key_load_private(...);
sensitive_data. host_keys[i] = key;

REFERENCES



