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Abstract - This paper investigates the effectiveness of a (non-
)code-aided ML-based FB phase synchronizer at the low 
operating signal-to-noise ratio of capacity-approaching codes. We 
show that the performance of the code-aided synchronizer is very 
close to that of a data-aided synchronizer that knows all data 
symbols in advance. This illustrates the optimality of the code-
aided synchronizer. For the non-code-aided and the data-aided 
synchronizer, the linearized mean square phase error (MSPE) is 
evaluated analytically in the case of a first order loop. We 
demonstrate that, the MSPE of the non-code-aided synchronizer 
equals that of the data-aided synchronizer when the carrier 
phase is essentially constant and the loop filter gain is the 
same for both synchronizers, but that the non-code-aided 
synchronizer (as compared to the data-aided synchronizer) yields 
a larger MSPE due to phase fluctuations. This proves that code-
aided FB phase estimation outperforms non-code-aided FB phase 
estimation when that the phase to be estimated is time-varying.  

Carrier Synchronization, FB Phase Estimation, Error-
correcting Codes 

I. INTRODUCTION 
The last decade has seen the development of powerful error 

correcting codes. The impressive bit error rate performance of 
the associated iterative decoding processes implicitly assumes 
coherent detection, meaning that the carrier phase must be 
recovered accurately before the data is decoded. However, 
since the decoder usually operates at extremely low signal-to-
noise ratio (SNR), accurate carrier recovery is a challenging 
task. Numerous efforts to tackle this problem have resulted in 
a myriad of different receivers [1]-[9].  

The iterative scheme in [4], which is based on the 
expectation-maximization algorithm, converges to the true 
maximum likelihood (ML) carrier phase estimate [10],[11]. 
Unfortunately, its performance rapidly degrades in the 
presence of a time-varying carrier phase. In [2], [5], [6], [7] 
and [9], feedback (FB) phase estimation has been adopted to 
cope with carrier phase variations. The ML-based receiver in 
[9] combines the low complexity from the approach in [4] 
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with the ability to automatically track a slowly varying carrier 
phase. Simulation results in [9] show the interesting potential 
of this approach. As opposed to the algorithms in [2], [5] and 
[6], the derivation of the phase estimation algorithm stems 
directly from the ML criterion. Moreover, its computational 
complexity is lower than that of the algorithms in [7] and [8], 
which modify the decoder operation by either taking into 
account the phase statistics or using per-survivor phase 
estimates inside the decoder.  

This contribution zooms in on the approach that was 
adopted in [9]. By means of theoretical analysis and computer 
simulations we compare the tracking performances resulting 
from the iterative code-aided (CA) synchronizer from [9], the 
data-aided (DA) synchronizer which knows all transmitted 
symbols in advance, and the non-code-aided (NCA) 
synchronizer which neglects the underlying encoding rule. We 
illustrate the optimality of [9], and show that CA FB phase 
estimation is more effective than NCA FB phase estimation 
when the phase to be estimated is time-varying; when the 
carrier phase is constant over the observation interval, both 
synchronizers yield essentially the same mean square phase 
error (MSPE).  

II. BRIEF OVERVIEW OF ESTIMATION THEORY 
Suppose that one is able to produce from an observation 

vector r = 1
0}{ −

=
K
kkr  an unbiased  estimate θ̂  of an unknown but 

deterministic parameter θ, i.e., ]ˆ[θrE  = θ for all θ. Then the 
MSPE is lower bounded by the Cramer-Rao Bound (CRB) 
[12]: ])ˆ[( 2θθ −rE  ≥ CRB, where 
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In (1), )~;( θrp  denotes the probability density function of r, 

corresponding to a given trial value θ
~  of θ; )~;( θrp  is called 

the likelihood function of θ
~ , while ln( )~;( θrp  ) is the log-

likelihood function of θ
~ . The expectation Er[.] in (1) is with 
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respect to p(r;θ), L(θ
~ ) is a shorthand notation for ln( )~;( θrp ) 

and L’(θ) denotes the derivative of L(θ
~ ) with respect to   

evaluated at θ~  = θ.  

Now consider the transmission of an arbitrary sequence of 
complex-valued symbols a = 1

0}{ −
=

K
kka  over an additive white 

Gaussian noise (AWGN) channel. The joint probability mass 
function of the symbols 1

0}{ −
=

K
kka  is denoted as p(a). Assuming 

linear modulation using square-root Nyquist transmit pulses, 
and matched filtering at the correct decision instants, the 
discrete-time baseband observation is given by  

rk = akexp(jθ) + wk,  k = 0, ..., K-1 (2) 

where θ is the unknown but deterministic carrier phase. The 
sequence 1

0}{ −
=

K
kkw  consists of independent zero-mean 

complex-valued Gaussian noise terms; Re[wk] and Im[wk] are 
statistically independent, and have a variance equal to N0/2.  

The derivative of the log-likelihood function ln( )~;( θrp ) 

resulting from (2) with respect to θ
~  can be manipulated into 

the following form [13]: 
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where  
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is the a posteriori expectation of the symbol ak conditioned on 
r and θ, with ]~;|Pr[ θrmk sa =  denoting the marginal a 

posteriori probability (APP) of the symbol ak, and 1
0}{ −

=
M
mms  the 

set of constellation points with symbol energy Es = 

∑ −

=

1

0
2||1 M

m ms
M

. Computation of the CRB requires the 

substitution of (3) into (1), and the evaluation of the 
expectation in (1). 

When the data symbol vector a consists of known pilot 
symbols 1

0, }{ −
=

K
kkpa , we obtain ]~;|Pr[ θrmk sa =  equal to 1 for 

kpm as ,=  and zero otherwise, yielding )~,( θrkA  = ap,k in (4). 
The log-likelihood function and the CRB that correspond to 
the transmission of pilot symbols are denoted (.)psL  and 
CRBps, respectively. In the case of an MPSK constellation or 
when the marginal distribution p(ak) is uniform over the signal 
constellation1, it is easily verified from (3) and (1) that that 
CRBps = N0/(2KEs), (irrespective of the details of the code). 

                                                 
1 This property holds for the large majority of codes of 
practical interest.  

In the case of uncoded transmission, the symbols 1
0}{ −

=
K
kma  

are statistically independent, so the APPs of ak reduce to: 
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As (6) depends only on rk, we will denote the corresponding a 
posteriori average of the symbol ak as ).~;( θkk rA  The log-
likelihood function and the CRB that correspond to the 
transmission of statistically independent symbols 1

0}{ −
=

K
kka  are 

denoted Lind(.) and CRBind, respectively. 

This paper considers systems with an iteratively decodable 
error-control code (turbo-, LDPC-codes). In this case, the 
APPs in (4) are a function of all components of the vector r. 
To avoid the computational complexity associated with their 
exact evaluation, the marginal APPs are approximately 
computed by means of the iterative application of the sum-
product (SP) algorithm on a factor graph with cycles [13],[14].  

III. ML-BASED FB PHASE ESTIMATION 
In a first order FB phase estimator or phase-locked loop 

(PLL), the phase estimate is updated once per symbol interval, 
according to the following recursion [15] 

kkk xλθθ +=+
ˆˆ

1  (7) 

In (7), kx  denotes the phase error detector (PED) output. The 

recursion starts with an initial phase estimate 0̂θ , that can be 
obtained from a feedforward synchronizer operating on a short 
pilot sequence.  

In the following, we consider three types of ML-based 
PEDs. The DA PED (based on )~(θpsL′ ) assumes that all data 

symbols are known. The NCA PED (based on )~(θindL′ ) 
assumes that the data symbols are independent, whereas the 
CA PED (based on the true )~(θL′ ) takes the code properties 
into account. We obtain from (3) that 
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Comparison of the PED outputs for NCA and CA operation 
with that for DA operation indicates that the a posteriori mean 
Ak can be considered as a soft decision (SD) regarding ak, 
based upon the received sample rk and the phase estimate kθ̂ . 
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Note from (8) that the DA and NCA PED output depend only 
on )ˆ,( kkr θ ; this is in contrast with the CA PED output whose 
computation depends on the entire vector r: all K samples 

1
0}{ −

=
K
kkr  have to be rotated over an angle kθ̂− , and fed to the 

SP algorithm for producing the SD )ˆ,( kkA θr . Hence, in the 
case of CA operation, the entire received block must be 
processed K times, whereas the received block is processed 
only once in the case of DA or NCA operation.  

In order to avoid the high computational complexity 
resulting from the CA PED, the following iterative CA PLL 
has been proposed in [9]. During the i-th iteration, the FB 
synchronizer generates estimates 1

0
)( }ˆ{ −

=
K
k

i
kθ  essentially 

according to (7), but with the PED output given by  

operationCAiterativeeA
E

x
i

kji
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s
k ],)ˆ,(Im[1 )(ˆ)1(* θ−−= θr  (9) 

where )1(ˆ −iθ  = 1
0

)( }ˆ{ −
=

K
k

i
kθ , and )ˆ,( )1( −i

kA θr  is the a posteriori 

expectation of the symbol ak conditioned on r and )1(ˆ −iθ . 
Hence, from the phase vector )1(ˆ −iθ , the received vector r is 
processed to compute 1

0
)1( )}ˆ,({ −

=
− K

k
i

kA θr , after which the PLL 

generates the phase vector )(ˆ iθ . The iterative process is 
initialized by means of a phase vector )0(θ̂ , that can be 
obtained from a PLL with NCA operation. When convergence 
is achieved after n iterations, the vector r = 1

0}{ −
=

K
kkr  has been 

processed n times. When n << K, considerable savings in 
computation time have been obtained as compared to the non-
iterative PLL that uses the CA PED output from (8). 

Fig. 1 shows the receiver structure for a parallel 
concatenated turbo code. The operation mode (DA, NCA or 
CA) of the PLL is determined by the position of the switch.  

IV. TRACKING PERFORMANCE ANALYSIS  
In order to allow a time varying carrier phase, the observation 
model (2) is modified into 

rk = akexp(jθk) + wk,    k = 0, ..., K-1 (10) 

where θk is the phase during the k-th symbol interval. The 
carrier phase is assumed to perform a random walk 
characterized by i.i.d. Gaussian increments ∆k with zero mean 
and standard deviation ∆σ . It is assumed that {wk} and {∆k} 
are statistically independent, and that θ0 is uniformly 
distributed in [-π,π].  

We first consider the performance of the DA and the NCA 
phase estimator. We define the phase estimation error during 
the k-th symbol period as kk θθφ ˆ−= . The DA and NCA PED 
outputs from (8) can be decomposed as the sum of their 

average )( kS φ  and their zero-mean statistical fluctuation 
)( kkN φ , with 

][)(][)( kkkkkk xExNxES −== φφ  (11) 

denoting the PED characteristic and the loop noise of the 
synchronizer. We show in the Appendix that S(0) = 0. 
Assuming small phase errors, the following linearization 
applies: 

)0()0(' kkk NSx += φ  (12) 

where S'(0) is the slope of the PED characteristic and Nk(0) is 
the loop noise at φk = 0. We show in the Appendix that 
E[Nk(0)Nk’(0)] = S’(0)N0/(2Es)δk-k’, where 
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Substituting (12) into (7) we obtain the model shown in Fig. 2, 
where H(z) = λS'(0)/(z-1+λS’(0)) is the closed-loop response 
(in the z-domain) of the synchronizer. It is evident from Fig. 2 
that the MSPE E[(φk)2] does not depend on k, and consist of 
two contributions that are caused by the AWGN and the phase 
noise (PN), respectively. We obtain E[(φk)2] = MSPEAWGN + 
MSPEPN, with  

2
2

2
2

0
2

2

))0('(
2

))0('(
2])[(

)0(')0('
2]))0([(

S
TB

S
TBEMSPE

S
TB

E
N

S
TBNEMSPE

LL
kPN

L

s

L
kAWGN

λ
σ

λ ∆≅∆=

==
 (14)  

where TBL  is the one-side bandwidth (normalized to the 
symbol rate) of H(z). We have  
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where the approximation is valid for small λ. Substituting (15) 
into (14) learns that a larger value of λ yields a larger AWGN 
contribution but a smaller PN contribution, and vice versa. 
When the carrier phase is time-varying ( ∆σ  ≠ 0), there exists 
an optimal value for λ that minimizes the MSPE. When the 
carrier phase is time-invariant ( ∆σ  = 0), the MSPE can be 
made arbitrarily small by reducing the value of λ. A small λ, 
however, implies a large acquisition time Tacq (i.e. time for the 
MSPE to evolve from its initial value to the steady state value 
of (14)). Assuming a uniformly distributed initial phase error, 
the mean time to acquire in the absence of noise is well 

approximated by 
)0('

2
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Fig. 1: Turbo receiver with ML-based PLL. Legend: I (I-1) = 

(de)interleaver, S/P (P/S) = serial-to-parallel (de)converter, d ( d
~

) = 
observation (marginal APPs) of information bit, pi ( ip~ ) = observation 
(marginal APPs) of parity bit from encoder i ∈ {1,2}. 

 

 
Figure 2: Contributions to the phase error φk 

 

Computing the exact tracking performance of the iterative 
CA FB phase estimator is much more difficult than for NCA 
and DA synchronizers, because of the iterations involved and 
the dependence of the soft decisions on the entire phase 
vector. Instead we will proceed assuming that, at the normal 
operating SNR of the considered code, the MSPE resulting 
from the iterative CA phase estimator converges to the MSPE 
resulting from a fictitious DA phase estimator that knows all 
data symbols in advance; the latter MSPE is given by (14) 
with S’(0) = 1.  

A motivation for this assumption reads as follows. Note that 
in (8) the CA PED output reduces to the DA PED output when 
the APP ]ˆ|Pr[ km ;s θr  is one for sm = ak and zero otherwise. 
This indicates that after convergence, the CA PLL essentially 
behaves like the DA PLL, provided that the ratios R(sm,ak|r; 

kθ̂ ) = ]ˆ;|Pr[/]ˆ;|Pr[ kkkm as θθ rr  are likely to be much smaller 
than 1 for all km as ≠  and all k = 0, ..., K-1. Let us introduce 
the indicator function Iy(k), which equals one when R(sm,ak|r; 

kθ̂ ) ≥ y for at least one sm ≠ ak, and equals zero otherwise. 
Then we obtain 
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where ξ denotes the set of legitimate coded symbol sequences 
of length K. We assume that ]Pr[a  = M-ρK for a ∈ ξ and ]Pr[a  
= 0 otherwise, where the quantities ρ and M denote the rate of 
the code and the number of constellation points, respectively. 
With y = 1 and kθ̂  = θ for all k, equation (16) is nothing but 
the (very small) symbol error rate resulting from an optimal 
maximum a posteriori probability symbol decoder [16]. 
Hence, for small phase errors, the fraction of symbol intervals 
for which Iy(k) =1 is very small, so that we can safely assume 
that the CA PLL operation closely resembles the DA PLL 
operation, at the normal operating SNR of the code. 

V. NCA VERSUS DA FB PHASE ESTIMATION 
In this section we compare the operation of the NCA FB 

phase estimator with that of the DA FB phase estimator; we 
recall that in the previous section we have pointed out that the 
latter estimator essentially behaves like the converged CA 
estimator. At the low SNR supported by capacity-approaching 
codes it is not possible to compute reliable data decisions 
without taking into account the code structure; hence, we 
expect the NCA PLL to perform significantly worse than a 
DA PLL with perfect knowledge on the data symbols. Using 
superscripts ‘NCA’ and ‘DA’ to denote the operation mode of 
the PLL, and assuming that λNCA = λDA, we obtain from the 
previous section: 

indDA
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At the normal operating SNR of powerful codes, Rind is 
significantly larger than one [13]; hence, the acquisition time 
and the PN contribution to the MSPE are larger for NCA 
operation than for DA operation. This meets our expectations. 
The AWGN contribution to the MSPE, however, is the same 
for NCA and DA operation. Hence, when the iterative CA 
PLL is initialized by means of a NCA recursion, the MSPE 
will not further reduce when performing iterations in the CA 
mode. This surprising result can be explained as follows (see 
Table 1 and the first equation in (14)). For given values of λ 
and Es/N0, the reduction of the PED slope S’(0) of the NCA 
PLL (as compared with the DA PLL) is precisely compensated 
by the reduction of the loop bandwidth 2BLT and of the phase 
noise variance E[(αk)2].  

λβ/(z-1+λβ) 

λβ/(z-1+λβ) 

αk/β 

∆k/(λβ) 

φk 
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Table1: Computation of the AWGN contribution to the MSPE of a FB 
estimator 

 DA NCA 
S’(0) 1 1/Rind 
E[(Νk(0))2] N0/(2Es) N0/(2EsRind) 
2BLT λ/2 λ/(2Rind) 
MSPE = E[(Νk(0))2] (2BLT) (1/S’(0))2 λN0/(4Es) λN0/(4Es) 

Let us consider a rate 1/3 turbo-coded BPSK signal. The 
turbo encoder consists of the parallel concatenation of two 
identical non-recursive systematic convolutional encoders 
with generator polynomials (21)8 and (37)8 in octal notation, 
separated by a pseudo-random interleaver of size 333 bits. The 
signal is transmitted over an AWGN channel affected by a 
random walk PN process (see (10)), and applied to the 
receiver of Figure 1, with λ = 0.04. In Figs. 3 and 4 we have 
plot the MSPE at the PLL output as a function of the symbol 
index k. Results are shown for DA, NCA and iterative CA 
operation; note that the iteration i=0 of the CA PLL is a NCA 
recursion. A sequence 16 pilot symbols that precedes the 
actual data symbols is used to produce 0̂θ . The ratio Es/N0 is 
set to -2.77 dB, which has been verified (outside the scope in 

this paper) to be in the operating range of the code. The carrier 
phase is assumed to be either constant over the observation 
interval (Fig. 3), or to perform a random walk with ∆σ  = 2o 
(Fig. 4). We make the following observations 

• When the number of iterations grows, the MSPE resulting 
from the CA synchronizer converges to the DA synchronizer 
MSPE. 
• The NCA synchronizer yields practically the same steady 
state MSPE as the DA synchronizer, when the carrier phase is 
constant. 
• The NCA synchronizer yields a larger steady state MSPE 
than the DA synchronizer, when the carrier phase performs a 
random walk.  
• The DA synchronizer acquires faster than the NCA 
synchronizer. 

The first observation confirms the validity of the assumption 
made at the end of Section 4. The other observations are 
consistent with (17) and with the value of Rind at Es/N0 = -2.77 
dB (has been verified outside the scope of this paper). 
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Figure 3: MSPE of a first order PLL with λ = 0.04, tracking a constant 

carrier phase 
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Figure 4: MSPE of a first order PLL with λ = 0.04, tracking Wiener phase 

noise with σ∆ = 2 degrees 

 

VI. CONCLUSIONS 
This contribution has studied the effectiveness of CA and 

NCA ML-based PLLs at the low operating SNR of iteratively 
decodable codes. The NCA synchronizer assumes that the data 
symbols are independent, whereas the CA synchronizer takes 
the code properties into account. The performance of a 
fictitious DA synchronizer that know all data symbols in 
advance served as a reference to which the performance of the 
NCA synchronizers and the CA synchronizers was compared.  

We have motivated (both analytically and by simulations) 
that, under normal operating conditions, the MSPE resulting 
from the CA synchronizer converges to that of the DA 
synchronizer. This illustrates the optimality of the CA ML-
based FB phase estimator. 

We have demonstrated that the linearized MSPE of the 
NCA FB synchronizer equals that of the DA FB synchronizer, 
when the carrier phase is essentially constant over the 
observation interval and the loop filter gain is the same for 
both synchronizers. This surprising result implies that CA FB 
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phase estimation is ineffective when the phase to be estimated 
is time-invariant.  

We have also shown that the presence of a random walk 
phase noise process results in a NCA feeback phase 
synchronizer MSPE that is Rind times larger than the DA FB 
synchronizer MSPE. Here, Rind = CRBind/CRBps with CRBind 
and CRBps denoting the Cramer-Rao lower bound on the 
MSPE of any unbiased estimator operating on the noisy 
observation of a signal with uncoded symbols and pilot 
symbols, respectively. At the normal operating SNR of 
powerful codes, CRBind/CRBps is significantly larger than 1, 
which illustrates the effectiveness of CA FB phase estimation 
in the presence of phase noise.  

APPENDIX 
CRBps and CRBind   

We first show that, in the case of an MPSK constellation or 
when the marginal a priori distribution p(ak) is uniform over 
the signal constellation,  

CRBps = N0/(2KEs),  (A1) 

irrespective of the details of the code. Replacing in (5) the a 
posteriori averages ),( θrkA  with the true data symbols ak, we 
obtain from (1) 
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In the case of an M-PSK constellation, |ak|2 = 1 for all k; 
hence, (A1) follows directly from (A2). In the case of a long 
sequence in which the mutual dependency between the 
individual symbols is relatively weak (common situation for 

turbo and LDPC codes), the statistical fluctuation of ∑
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(A2) can be ignored as compared to its mean. When the 
marginal a priori distribution p(ak) is uniform2 over the 
constellation, this also yields (A1). 

Further, it is easily verified from (1) and (5) with the APPs 
in (6) replaced with (7)-(8) that 
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2 This property holds for the large majority of codes of 
practical interest.  

where the probability density )~;( θkrp  is given by 
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Lineair performance analysis of DA and NCA PLL 

We first consider NCA feedback phase synchronization. 
Taking in equation (5) r = rk and kθθ ˆ~

= , we find that the 
NCA PED output (13) can be rewritten as follows  
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kk

s

j
kkkk

s
k d

rpd
E

NerrA
E

x k

θ
θ

θ θ

ˆ
)ˆ;(ln

2
])ˆ,(Im[1 0ˆ* == −  (A4) 

Taking the first and the second derivative (with respect to θ) 
of both sides of the normalization constraint ∫ =1);( kk drrp θ , 

and using ( ){ }dxxFdxFdxxdF )(ln)()( =  it can be verified 
that  

( ) 0);(ln
=





θ
θ

d
rpdE k  (A5) 

( ) ( )
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2

22 );(ln);(ln
θ

θ
θ

θ
d

rpdE
d

rpdE kk  (A6) 

It follows directly from kk θθφ ˆ−=  and (A7) that the (A4) 

equals zero at φ = 0. Taking into account (10) and kk θθφ ˆ−= , 
the PED slope S’(0) and loop noise Nk(0) at φk = 0 , resulting 
from (A4) are given by 

( )








−=′

2

2
0 );(ln

2
)0(

θ
θ

d
rpd

E
E

N
S k

s

                       (A7) 

( )
θ

θ
d

rpd
E

N
N k

s
k

);(ln
2

)0( 0=  (A8) 

Because of the statistical properties of {rk}, the loop noise at 
φk = 0 is white3 and its power spectral density is given by 

( )



























=

22
02 );(ln

2
]))0([(

θ
θ

d
rpd

E
E

N
NE k

s
k  (A9) 

Taking into account (A1) and (A3), we obtain  

ind

ps

CRB
CRB

S =)0('  
ind

ps

s
k CRB

CRB
E

N
NE

2
]))0([( 02 =  (A10) 

                                                 
3 In the case of uncoded transmission this follows directly 
from the fact that rk and rk’ are independent for k ≠ k’, but it 
can be shown analytically (outside the scope of this paper) that 
this property holds independently of the code properties. 
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It is easily shown that the above analysis remains valid for 
DA operation provided that we replace )ˆ;( kkk rA θ  with ak, 
p(rk;θ) with p(rk|ak;θ) and CRBind with CRBps.  
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