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Abstract— In the last decade, significant research has been
performed on detection algorithms capable of mitigating the
effects of colored Gaussian thermal noise and transition noise in
digital storage systems. In this paper, we present a new Maximum
A-Posteriori Probability (MAP) sequence detection scheme based
on oversampling and linear prediction. The proposed solution
improves the Bit Error Rate (BER) performance with respect to
conventional systems and makes the detector more robust against
transition noise. The results obtained for a magnetic channel can
be also extended to optical storage systems.

I. INTRODUCTION

High-density longitudinal and perpendicular magnetic
recording systems based on thin-film media exhibit severe
intersymbol interference, colored Gaussian thermal noise and
signal-dependent transition noise. The last kind of noise, also
known as media noise, is due to the magnetic interaction
between data transitions in the information sequence stored
on the medium: therefore transition noise is data-dependent
and its power increases with the recording density.

In the literature, a few channel models have been proposed
to enable the analysis and design of optimum detectors [1], [2].
In this paper the position jitter and width variation model [3],
[4] is used. Based on this channel model, a multidimensional
detection front-end based on a number of filters proportional
to the modeling order of the transition noise was presented
in [5], [6]. Extending previous work on optimal prefiltering [7],
we now propose a new set of sufficient statistics which can
be extracted from the continuous read back waveform at the
output of the channel by means of oversampling.

With this new set of sufficient statistics and using lin-
ear prediction to estimate the realization of the transition
noise process, we propose a detection scheme based on the
Viterbi algorithm with modified branch metric for Maximum
A-Posteriori Probability (MAP) sequence detection. Numerical
analysis and simulation demonstrate good improvements in
terms of Minimum Mean Square Prediction Error (MMSPE)
and bit error rate (BER) of the proposed detector with respect
to conventional state-of-the-art systems.

II. CHANNEL MODEL

In order to describe the proposed oversampled detector, we
consider a longitudinal magnetic recording channel modeled
by a first-order position jitter and width variation [4]. Our
results can be also extended to perpendicular magnetic and

optical recording systems affected by transition noise in a
straightforward manner. Let h(t, w) denote the response to
an isolated transition recorded in magnetic or optical media,
where t is time and w is a parameter characterizing the pulse
width. Let ak ∈ {±1} represent the information bits to be
stored. Assuming that transition noise can be decomposed into
position jitter and width variation, the read back waveform r(t)
corrupted by additive white Gaussian thermal noise η(t) with
power spectral density N0/2 can be expressed as

r(t) =
∑

k

bkh(t + ∆tk − kT, w + ∆wk) + η(t) (1)

where bk = ak − ak−1 ∈ {0,±2} denote transition symbols,
∆tk and ∆wk, modeled as independent Gaussian random
variables with standard deviations σ∆t and σ∆w, represent the
effect of position jitter and width variation noise, respectively,
and T is the symbol period. For the pulse response h(t, w) we
have adopted the well known Lorentzian approximation [8] for
longitudinal recording, i.e.

h(t, w) =

√

4Et

πPW50
·

1

1 + (2t/PW50)
2

where PW50 = 2w is the pulse width at half the maximum
amplitude and Et is the energy of the isolated pulse response.

According to [3], taking an n-th order Taylor series ex-
pansion of the read back impulse, the signal at the channel
output can be approximated as a linear sum of the noise-free
response and residual responses due to deviations around the
nominal position and width of the pulse. Limiting the series
expansion to the first order, the read back impulse associated
to this (first-order) channel model can be approximated as

h(t + ∆tk, w + ∆wk) '

' h(t, w) + ∆tk
∂h(t, w)

∂t
+ ∆wk

∂h(t, w)

∂w
. (2)

Defining the impulse response of the filters modeling the
position jitter and width variation noise process as

ht(t, w) =
∂h(t, w)

∂t
hw(t, w) =

∂h(t, w)

∂w

and using this first-order approximation (2) in (1), the con-
tinuous waveform at the output of the channel can be written
as

r(t) ' y(t) + η(t)



r(t)ak

η(t)

y(t)

ht(t)

hw(t)

bk

∆tk

∆wk

1 − D h(t)

Fig. 1. Storage channel model with first-order media noise and additive
white Gaussian thermal noise.

where we have defined y(t) as1

y(t) =
∑

k

bk

[
h(t−kT )+∆tkht(t−kT )+∆wkhw(t−kT )

]
.

A block diagram descriptive of the first-order channel model
is shown in Fig. 1.

III. SUFFICIENT STATISTICS AND DETECTOR STRUCTURE

It is a widespread belief that, in order to extract sufficient
statistics from the continuous waveform r(t) at the output of
the channel, an optimal detector has to use a filter matched
to the useful signal component, i.e., a filter with impulse
response h(−t). In [5], [6] it was shown that, in the presence
of transition noise, the need for statistical sufficiency yield
a detector front-end with a number of filters proportional
to the modeling order of the transition noise: this approach,
together with multidimensional linear prediction, was applied
to MAP sequence detection and the improvement in terms of
Signal-to-Noise Ratio (SNR) with respect to a conventional
detector, shown in Fig. 2, was demonstrated by bit error rate
simulations. Furthermore, in [9], the SNR improvement of the
proposed multidimensional detector was also confirmed by an
information rate analysis.

We now derive a new set of sufficient statistics, different
from those proposed in [5], [6], and suggest a decoding
algorithm based on this new quantities. First, it is possible
to observe that the noiseless signal

y′(t) = r(t) − η(t)

has a bandwidth which exceeds half the signaling frequency
1/T . Assuming a noiseless signal component y′(t) with a
one-side bandwidth B such that B < β/2T , with β a
properly chosen integer, we can adopt as detector filter p(t)
one that has nonzero response over the bandwidth B and
strictly bandlimited to Bp such that the following condition
is satisfied

Bp <
β

T
− B . (3)

Keeping in mind the results in [7] and the reversibility
principle [10], which states that any reversible transforma-
tion carried out on the received signal does not modify the
performance of an optimal detector, the set of samples at the

1In the following, in order to simplify the notation, we omit the dependence
of the various pulses on the pulse width w .
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output of the front-end filter p(t) with rate β/T is a sufficient
statistic for detection of the information sequence {ak}. The
samples xkβ+` at the output of the sampler are indexed by k
as to the symbol period and by `, with ` = 0, 1, . . . , β − 1,
as the β samples extracted during the k-th symbol period. If
the oversampling factor β is chosen in order to satisfy the
condition (3), the sequence {xkβ+`} is a sufficient statistic
and can be used to enable MAP sequence detection based on
the Viterbi algorithm [11]. In Fig. 3 the proposed detector is
shown. In the following, we select p(t) as a square-root raised
cosine filter with 3-dB bandwidth equal to β/2T .

It should be pointed out that the sequence {xkβ+`} rep-
resents a sufficient statistic, but this conclusion does not
imply that the signal x(t) could be reconstructed from its
samples {xkβ+`}. In fact, the sampling theorem cannot be
applied to the thermal noise component in r(t). In other
words, while {xkβ+`} are sufficient to recover the information
sequence, aliasing would be present in the filtered thermal
noise component µ(t), where µ(t)

4
= η(t)⊗p(t). Therefore, the

observable xkβ+` at the output of the sampler can be expressed
as

xkβ+` =
∑

n

bk−ng[nβ + `] +
∑

n

bk−n∆tk−ngt[nβ + `]

+
∑

n

bk−n∆wk−ngw[nβ + `] + µkβ+` (4)

where g[nβ + `]
4
= h(t) ⊗ p(t)|t=nβ+`, gt[nβ + `]

4
= ht(t) ⊗

p(t)|t=nβ+` and gw[nβ + `]
4
= hw(t) ⊗ p(t)|t=nβ+` are the

oversampled impulse responses at the output of the filter p(t)
and µkβ+` is the realization of the thermal noise process at
time index kβ + `. Note that an oversampling factor β > 1 is
needed to satisfy (3): in this work we have used β = 2 and
β = 3. Finally, note that the thermal noise samples {µkβ+`}
are white thanks to the selection of p(t) as a square-root raised
cosine filter.

IV. DETECTION STRATEGY BASED ON OVERSAMPLED
LINEAR PREDICTION

Assuming a first-order channel model, we have shown that
the quantities at the output of the receiver filter {xkβ+`} are
sufficient statistics for sequence detection. Collecting these



samples into a suitable vector x, we can formulate the MAP
detection strategy as

â = argmax
a

P (a)f(x|a) . (5)

Assuming causality and applying the chain factorization rule
to the conditional pdf, we obtain

f(x|a) =

K−1∏

k=0

f(x
(k+1)β−1
kβ |xkβ−1

0 ; ak
0) (6)

where x
k2

k1
is a shorthand notation for the vector collecting

signal observations at the output of the sampler from time
epoch k1 to k2, K is the length of the recorded information
sequence and ak

0 are the information symbols2 from time
epoch 0 to k. The multidimensional conditional pdf in (6)
can be further factorized as a product of β monodimensional
conditional pdfs, i.e.

f(x
(k+1)β−1
kβ |xkβ−1

0 ; ak
0) =

β−1
∏

`=0

f(xkβ+`|x
kβ+`−1
0 ; ak

0) .

(7)
Using (7), we can now rewrite (6) as

f(x|a) =

K−1∏

k=0

β−1
∏

`=0

f(xkβ+`|x
kβ+`−1
0 ; ak

0)

'
K−1∏

k=0

β−1
∏

`=0

f(xkβ+`|x
kβ+`−1
(k−ν)β ; ak

0) . (8)

In the last step of (8), in order to limit the detector’s memory,
we have assumed Markovianity of order ν in the conditional
observation sequences. Moreover we define a state of the
system accounting for the “postcursors” and “precursors” of
the impulse responses and the order of Markovianity ν as

ζk = (ak−1, ak−2, ak−3, . . . , ak−L) (9)

where L = δ1 + δ2 + ν, with δ1 and δ2 denoting the number
of precursors and postcursors in the impulse responses. The
assumed Markovianity results in an approximation whose
quality increases with ν.

Since the thermal and transition noise processes have
Gaussian distribution, the observation is Gaussian, given the
data. The application of the chain factorization rule to (7)
allows us to factor the multidimensional conditional pdf in
(6) as a product of β one-dimensional conditional Gaussian
pdfs, completely defined by the conditional mean

x̂kβ+` = E
{

xkβ+`

∣
∣
∣ x

kβ+`−1
(k−ν)β ; ak, ζk

}

and the conditional variance

σ̂2
xkβ+`

= E
{

(xkβ+` − x̂kβ+`)
2

∣
∣
∣x

kβ+`−1
(k−ν)β ; ak, ζk

}

where x̂kβ+` can be interpreted as linear predictive estimate
of xkβ+` and σ̂2

xkβ+`
as the relevant MMSPE [12].

2Note that the size of the observation vector x is β times the size of the
data vector a.

Note that, for a given value of ν, the number of pre-
diction coefficients changes with respect to the number of
past samples, indexed by `, defined in the conditioning event
and that the prediction coefficients are data-dependent [5],
[6]. The solution of the Wiener-Hopf matrix equation for
linear prediction based on an oversampled observable will be
presented in Section V.

The detection strategy (5), the factorization (8) and linear
prediction allow us to derive the branch metric to be used
for sequence detection in a Viterbi algorithm. Taking the
logarithm, assuming that the information bits are independent
and identically distributed and discarding irrelevant terms, we
can express the branch metric as

λk(ak, ζk) ∝ ln

β−1
∏

`=0

f(xkβ+` |x
kβ+`−1
(k−ν)β ; ak, ζk) .

The detection strategy (5) can be now formalized as

â = argmin
a

K−1∑

k=0

λk(ak, ζk)

where the branch metrics are expressed as

λk(ak, ζk) =

β−1
∑

`=0

{

(xkβ+` − x̂kβ+`)
2

σ̂2
xkβ+`

+ ln σ̂2
xkβ+`

}

.

Finally, the state-complexity of a linear predictive detector
can be limited by means of state-reduction techniques [13]–
[16]. Let Q < L denote the memory parameter to be taken
into account in the definition of a “reduced” trellis state

ωk = (ak−1, ak−2, . . . , ak−Q) .

The branch metric can be obtained by defining a “pseudo-
state” [17]

ζ̃k(ωk) = (

ωk
︷ ︸︸ ︷
ak−1, . . . , ak−Q
︸ ︷︷ ︸

Q bits

, ăk−Q−1(ωk), . . . , ăk−Q−P (ωk)
︸ ︷︷ ︸

P bits

)

(10)

where P bits are chosen by a Per-Survivor Processing (PSP)
technique [16]. Note that ăk−Q−1(ωk), . . . , ăk−Q−P (ωk) are
the P information bits associated with the survivor of ωk.
The branch metric λ̃k(ak, ωk) in the reduced-state trellis can
be defined in terms of the pseudo-state (10) according to

λ̃k(ak, ωk) = λk(ak, ζ̃k(ωk)) .

V. OVERSAMPLED LINEAR PREDICTION

In this section, we present the linear prediction approach
applied to an oversampled observable collecting the sufficient
statistics {xkβ+`} and outline how to obtain an estimate of
the transition noise samples at the output of the filter p(t).

Given the sufficient statistics {xkβ+`} and defining

skβ+` =
∑

n

bk−ng[nβ + `]



as the quantities collecting the noiseless signal component at
the output of the front-end filter3, we can express the cost
function to be minimized [12] as

Jl(p`, ak, ζk) = E
{[

(xkβ+` − skβ+`)

−
ν∑

m=1

β−1
∑

i=0

p
(`)
k−m,i

[
x(k−m)β+i − s(k−m)β+i

]

−

`−1∑

j=0

p
(`)
k,j

[
xkβ+j − skβ+j

]

︸ ︷︷ ︸

=0 if `=0

]2 ∣
∣
∣ ak, ζk

}

(11)

where p
(`)
n,i is the prediction coefficient for index ` and observa-

tion sample xnβ+i. In fact, for a given prediction order ν, the
number of predictors increases with ` since also the number of
observables available at the detector increases. In other words,
when ` = 0 we can use the last νβ observables for linear
prediction, when ` = 1 we can use the same νβ observables,
as done with ` = 0, and the sample xkβ obtained at time index
kβ. Generally speaking, at time index kβ + `, the number of
samples used in the evaluation of the predictor coefficient is
νβ + `. As a consequence, for every couple (ak, ζk) we have
β Wiener-Hopf systems to be solved in order to obtain, when
` reaches its maximum value β − 1, a number of prediction
coefficients equal to

νβ2 +

β−1
∑

j=0

j = νβ2 +
β (β − 1)

2
.

Moreover, for a given prediction order ν, the proposed detector
can operate on a wider set of observables with respect to a
conventional detector operating at symbol rate, leading to a
better estimate of the transition noise samples. Note finally that
a similar approach was used in [5], [6], where a different set of
sufficient statistics yields a detector with a multidimensional
front-end and the detection strategy yields a formulation of a
multidimensional linear estimate: the approach in this article
can be viewed as multidimensional linear prediction applied
not in space as in [5], [6] but in time.

In order to derive the Wiener-Hopf system, let us rewrite
the vector of observations for linear prediction as

zn
4
=

[
znβ, znβ+1, . . . , z(n+1)β−1

]T

where znβ+` = xnβ+` − snβ+`, ∀` = 0, . . . , β − 1. With this
definition we are now able to formulate the `-th Wiener-Hopf
equation as

R`(ak, ζk) · p` = q`(ak, ζk) (12)

where the system matrix is defined as

R`(ak, ζk) =









Rk−ν,k−ν . . . Rk−ν,k−1 R
(`)
k−ν,k

...
. . .

...
...

Rk−1,k−ν . . . Rk−1,k−1 R
(`)
k−1,k

R
(`)
k,k−ν . . . R

(`)
k,k−1 R

(`)
k,k









3I.e., the first term in (4).

in which Ri,j
4
= E{ziz

H
j |a} is a β × β correlation matrix,

R
(`)
i,j is a correlation matrix whose dimension changes with

respect to the oversampling index ` during the symbol interval
kβ and the vector of known terms is

q`(ak, ζk) =








E{zkβ+` · zk−ν}
...

E{zkβ+` · zk−1}
E{zkβ+` · zk}








.

The linear system defined in (12) can now be solved
using Cholesky factorization [12], obtaining the prediction
coefficient vector

p` = R−1
` (ak, ζk) · q`(ak, ζk) .

Since the transition noise sample we wish to estimate is
data dependent, the system matrix R`(ak, ζk) and the vector
q`(ak, ζk) are also data dependent. The prediction coefficients
can be precomputed, given the state ζk and the current
information bit ak, and stored in a look-up table.

Finally, using the definition of p`, R`(ak, ζk) and
q`(ak, ζk), we can express the `-th MMSPE as

J`(p`, ak, ζk) =σ2
z − 2· pT

` · q`(ak, ζk)+pT
` ·R`(ak, ζk)·p`

=σ2
z − qT

` (ak, ζk) · R−1
` (ak, ζk) · q`(ak, ζk)

=σ2
z − pT

` · q`(ak, ζk)

where σ2
z is the variance of the overall noise (thermal noise

and transition noise).

VI. NUMERICAL RESULTS

A. MMSPE analysis

In order to assess the performance of the proposed over-
sampled detector with respect to other solutions, we adopt the
reference conventional detector shown in Fig. 2 and based
on a matched filter h(−t), a sampler at symbol rate, a
PR4 equalizer [18] and linear prediction applied to colored
Gaussian thermal noise and transition noise. We compare its
performance with that obtained using oversampling and linear
prediction applied to transition noise.

In Fig. 4, it is shown the MMSPE as a function of the
prediction order ν obtained both for the reference detector
(continuous lines) and for the proposed oversampled detector
(dashed and dotted lines) for β = 2. We consider a normalized
density D = 2.5, defined as D = PW50/T . In Fig. 4, note that
the parameter ` is related to the number of noise samples used
for linear prediction, i.e., with ` = 0 the noise samples are νβ
(MMSPE with dotted lines), with ` = 1 the noise samples are
νβ + 1 (MMSPE with dashed lines).

Since media noise arises in transitions, two bit patterns were
considered: (i) one characterized by continuous changes of
the writing current’s polarity, the so called “1T sequence”
pattern {1,−1, 1,−1, . . .}, (ii) one characterized by a bit
pattern like {+1, +1,−1,−1, +1, +1, . . .}, the so called “2T
sequence”. An average MMSPE is also shown, by averaging
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Fig. 4. MMSPE versus the prediction order ν for longitudinal magnetic
recording with D = 2.5, α = 95, λ = 50 and SNR95 = 10 dB.

over all possible bit patterns defining a trellis branch (ak, ζk)
(“averaged” pattern). In the reference detector the number of
precursors and postcursors considered are, respectively, δ1 = 2
and δ2 = 6, while for the proposed oversampled detector these
parameters assume the values δ1 = 5 and δ2 = 8. These values
were selected in order to consider 99% of the energy of the
channel impulse responses, for all considered detectors.

The SNR with transition noise [19] is defined at the output
of the matched filter h(−t) for both detectors as

SNRα =
Ps

σ2
n + σ2

m

(13)

where Ps is the signal power, σ2
n is the thermal

noise power, σ2
m is the transition noise power and

α = 100× [σ2
m/(σ2

n + σ2
m)] denotes the percentage of trans-

ition noise with respect to thermal noise. This definition of
SNR is motivated by the fact that we wish to compare the
performance of all detectors under SNR equal conditions.

In order to evaluate the MMSPE, the signal-to-noise ratio
was fixed at SNR95 = 10 dB, i.e., assuming a 95% transition
noise consisting of 50% position jitter and 50% width variation
(λ = 50). Fig. 4 shows that, using the proposed detector
working on an oversampled observable with a prediction order
ν = 2, it is possible to obtain a relative gain of almost 9.0 dB
when ` = 1 for the all-transition bit pattern, with respect to the
MMSPE gain of 1.5 dB achievable by the reference detector.
Note that this gain is obtained assuming that the estimate of
transition noise is done by exploiting the full available set of
samples, i.e., collecting data from x(k−ν)β up to xkβ+(β−1).
Finally, averaging over all possible bit patterns, the MMSPE
relative gain is 1.5 dB for the conventional detector and almost
10 dB for the proposed detector when ` = 1.

B. BER analysis

Fig. 5 shows the BER performance for (i) a detector based
on a matched filter with impulse response h(−t), partial
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equalization PR4 and Euclidean branch metric (curve labeled
“PR4”), (ii) the reference detector (curve labeled “PR4+LP”)
and (iii) the proposed oversampled detector (curve labeled
“OS+LP”) assuming a transition noise consisting of 50%
position jitter and 50% width variation (λ = 50). In Fig. 5
the state complexity for each detector (parameter S) and other
relevant parameters, such as the prediction order ν, the PSP
parameter P , the number of precursors and postcursors δ1 and
δ2 and the number of samples considered for symbol period β
are also shown: note that, in order to evaluate the robustness
of the proposed detector, we present the BER curves with
different combination of the parameters β, ν and S. The SNR
gain of the proposed detector with respect to the reference one
is approximately 1 dB with oversampling factor β = 2 and
prediction order ν = 1 and 2 dB with oversampling factor
β = 3 and prediction order ν = 2.
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Fig. 6 shows the BER performance for the same three
detectors of Fig. 5 assuming a user density of D = 3.0
and a transition noise consisting of 50% position jitter and
50% width variation (λ = 50). Given the system parameters
β, S, δ1, δ2, ν, P , the proposed detector outperforms the ref-
erence detector of approximately 2 dB. It should be pointed
out that the proposed detector shows an increasing SNR gain
with respect to user density (the SNR gain in Fig. 5 was
approximately 1 dB with the same parameters used in Fig. 6):
these findings demonstrate the capability of our detector to
copy well with transition noise also for a storage system
working at higher user density.

Finally, Fig. 7 shows the BER curves obtained for the same
three detectors of Fig. 5 operating at a user density D = 3.0
for a channel characterized by a transition noise consisting
of 100% position jitter (λ = 100). The proposed detector
outperforms the reference detector of approximately 4 dB.
Fig. 7 also shows the performance of the oversampled detector
at 10 dB with full state-complexity (16384 trellis states). This
result emphasizes the limited penalty introduced by the state-
reduction technique applied in this paper.

The results shown in Fig. 5, 6 and Fig. 7 confirm the
findings in [5], [6]: i.e., when the channel is mainly limited by
position jitter, the SNR gain achievable with the linear predic-
tion approach operating on a multidimensional observable is
increased with respect to that achievable for a channel affected
by transition noise components in equal part (λ = 50).

VII. CONCLUSIONS

A new set of sufficient statistics for digital storage systems
subject to data-dependent transition noise has been proposed.
These sufficient statistics can be obtained through a detector
operating on an oversampled sequence at the output of a suit-
able analog filter. Linear prediction based on an oversampled

observable can be used to modify the branch metrics of a
Viterbi detector in order to improve the performance and make
it more robust against transition noise.

The gain, in terms of SNR at a given bit error rate, achiev-
able using the proposed detector is presented with respect to a
state-of-the-art solution based on partial response equalization
and linear prediction by means of numerical simulations.
Finally, the proposed oversampled signal processing technique
can be similarly applied to perpendicular magnetic recording
systems and to optical storage system.
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