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Abstract— This paper presents the impact of a carrier frequency 

offset on the performance of 2 dimensional spreading OFDM-

CDMA systems. This is measured by the degradation of the 

Signal to Interference plus Noise Ratio (SINR) obtained after 

despreading and equalization. Using some properties of random 

matrix and free probability theories, a new expression of the 

SINR is derived. It is independent of the actual value of the 

spreading codes while still accounting for the orthogonality 

between codes. This model is validated by means of Monte-

Carlo simulations. . It is also exploited to compare the 

sensitivities of MC-CDMA and MC-DS-CDMA systems to 

carrier offset in a frequency selective channel. This work is 

carried out for zero forcing (ZF) and minimum mean square 

error (MMSE) equalizers. 

Keywords: MC-CDMA, MC-DS-CDMA, OFDM-CDMA,  

Carrier offset, SINR. 

I. INTRODUCTION 

Recently, Orthogonal Frequency and Code Division 
Multiplexing (OFCDM) access technology has been 
investigated for the next generation of mobile communication 
systems [1][2]. It is a combination of Orthogonal Frequency 
Division Multiplexing (OFDM) and Code Division Multiple 
Access (CDMA). To achieve high spectrum efficiency, these 
systems will implement a large number of sub-carriers, and, as 
a consequence, will be highly sensitive to synchronization 
errors. More specifically, when the transmitter and receiver 
carrier frequencies are not synchronized, inter-carrier 
interference is generated at the receiver, which degrades the 
Signal to Interference and Noise Ratio (SINR). This effect has 
been intensively studied for OFDM systems [3][4]. 
Concerning MC-CDMA and MC-DS-CDMA schemes, their 
sensitivity to carrier frequency offset has been evaluated in [5] 
and [6]. To derive an analytic expression of the SINR, these 
articles considered the particular case of a gaussian channel 
and a zero-forcing equalizer. Moreover, they assume that the 
chips of the spreading sequences are independent and 
identically distributed (i.i.d.) binary random variables. This is 
the classical random spreading assumption. Unfortunately, 
this model is not accurate for the downlink of actual CDMA 
or OFDM-CDMA systems, since it does not take into account 
the orthogonality between codes. When using an isometric 
spreading matrix, the codes are no longer independent.  

The contribution of this article is thus twofold. First, a 
generalized framework is proposed for modelling the effect of 
carrier frequency offset on 2 dimensional spreading OFDM-
CDMA systems. This encompasses the particular cases of 

MC-CDMA and MC-DS-CDMA. Then, exploiting some 
results from the random matrix theory, an analytic expression 
of the SINR modeling the impact of carrier frequency offset is 
derived. This model works for frequency selective channels 
and any single user detector. To derive the SINR formula, the 
mathematical background developed in [11], [12] and [14] has 
been reused. This formula is independent from the actual 
values of the spreading codes while taking into account their 
orthogonality. This is the main novelty of this article. To 
confirm the validity of the proposed model, the mean 
theoretical SINR is compared to the mean SINR measured via 
Monte Carlo simulations for a BRAN A channel model. It is 
then used to compare the sensitivities of MC-CDMA and MC-
DS-CDMA systems to carrier offset in a frequency selective 
channel, with a zero forcing (ZF) or a minimum mean square 
error (MMSE) equalizer. 

This article is structured as follows. Section 2 describes the 
system model for OFDM-CDMA with carrier frequency 
offset. Section 3 derives an asymptotic expression of the SINR 
using some properties of random matrix theory. Section 4 first 
validates the proposed model by mean of simulations and then 
the SINR formula is exploited to compare the sensitivities of 
MC-CDMA and MC-DS-CDMA systems. 

II. SYSTEM MODEL 

A. System Description 

In this section, the generalized framework describing a 
OFDM-CDMA system is presented. Figure 1 shows a 2 
dimensional (2D) spreading OFDM-CDMA 
transmitter/receiver chain for a downlink communication with 
Nu users [1]. 
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 â −

(s) 
0
 â
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Figure 1- OFDM-CDMA Transceiver. 



Each symbol is first spread by a Walsh-Hadamard sequence of 
Nc chips, and scrambled by a cell specific long pseudo 
random sequence. This scrambling code is used to minimize 
the multi-cell interference. The resulting samples are then 
allocated on the time/frequency grid as shown on Figure 2.  

The first NT samples are allocated in the time direction. The 
next blocks of NT chips are allocated identically on adjacent 
sub-carriers. Each bin with coordinate (n,q) represents the 
signal transmitted on the n

th
 sub-carrier of the q

th
 OFDM 

symbol. 
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Figure 2- Time Frequency grid 

The spreading factor is thus Nc= NF×NT where NF and NT are 
respectively the frequency and time domain spreading factors. 
Assuming a FFT of N points, each user transmits S=N/NF data 
symbols in an OFDM-CDMA block. Particularly, for NT =1, 
this resumes to a MC-CDMA scheme [7] and for NF =1, to 
MC-DS-CDMA [8].  

Given the above notations, the signal at the IFFT input is: 
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s is the index referring to the sub band used for the 
transmission of the symbol am(s) of the m

th
  user. Pm is its 

transmit power which is identical in all sub-bands, Cm,s 
represents its spreading sequence (chip by chip multiplication 
of the user assigned Walsh-Hadamard sequence and the cell 
specific scrambling code).  

At the output of the IFFT, a cyclic prefix of ν samples is 
inserted to discard the inter symbol interference: 
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After D/A conversion, transposition to the carrier 
frequency Fe by the RF unit, and transmission through the 
channel, the signal at the receiver side (Figure 1) is transposed 
to base band with the receiver carrier frequency Fr and 
sampled.  The base-band time-discrete received signal, after 
guard time removal is then:  
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gq(k) (k = 0…W-1) are the complex coefficients of the 
discrete equivalent low-pass channel, with delay spread W 

samples (ν<W). Ts is the sampling clock period assumed 
identical at both sides. Notice that we use a discrete 
representation of the transmission with sampling-frequency 
Fs=1/Ts equal to the bandwidth of the real band pass transmit 
signal. Thus, the coefficients gq(k), of the discrete channel can 
be expressed as a function of the real parameters of the analog 
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qτ  are respectively the complex amplitudes and the 

delays of the l
th
 multi-path, and sinc(x) = sin(x)/x.  ∆F=Fr - Fe 

is the residual carrier frequency offset. The initial phase βq for 
the q-th OFDM symbols means that the receiver is perfectly 
synchronized at the beginning of each 2D symbol. nq(u) is a 

complex additive white Gaussian noise with variance 2σ .  

Assuming a perfect synchronization of the FFT window, 
the receiver selects N consecutive samples and transposes 
them to the frequency domain thanks to the FFT. 

The value of (wNF+p)
th
 sub-carrier of the q

th
 OFDM symbol is 

given by : 
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w is the desired sub-band index (w = 0,…, S-1) and p is the 
index of a sub-carrier in the w

th
 sub-band (p = 0,…, NF-1). 

φ(w,s,p,n,q) is the equivalent channel transfer function 
including the effect of the carrier frequency offset : 
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is the FFT of the 

channel impulse response and ΨN(x) is the function defined by 
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Without loss of generality, we assume that one is interested by 
the symbols of user 0. In order to write the received signal 
with matrix-vector notation, the following matrices are 
defined: P = diag(P0,…, PNu-1) is the NuxNu diagonal matrix 
which entries are the power allocated to each user,  
Q = diag(P1,…,PNu-1) is the (Nu-1)x(Nu-1) diagonal matrix 
containing the power of the interfering users, 
C[s] = (C0[s], C1[s],…, CNu-1[s]) is the NcxNu matrix 
containing all the spreading codes used in the s

th
 sub-band and 
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U[s] = (C1[s],…, CNu-1[s]) is the Nc x (Nu-1) matrix containing 
the codes of the interfering users in the s

th
 sub-band. Both 

matrices C[s] and U[s] depend on sub-band index s because of 
the long scrambling code. We also define the vectors 
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corresponding to the symbols of all and interfering users 
respectively transmitted in the s

th
 sub-band. 

The signal at the FFT output is multiplied by the one-tap 
channel equalization coefficients, descrambled and then it is 
multiplied by the spreading sequence of the reference user and 
summed over the chips to obtain the sample at the input of the 
decision device.   The estimated symbol of the reference user 
on the sub-band w is then: 
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(Notation: A
H
 is the transpose-conjugate of matrix A). 

I0 represents the useful signal, I1 the Multiple Access 
Interference (MAI) generated in the same sub band w, I2 the 
interference generated by all users from other sub-bands and 
I3 the filtered noise. B(w,s) is a Nc×Nc matrix modeling the 
combined effect of channel attenuation and carrier frequency 
offset. It is defined by: 
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If there is no carrier offset, B(w,s) is the null matrix for w≠s 
and is diagonal for w=s. In this case, I2 is equal to zero, there 
is no inter carrier interference. 

Z(w) is a Nc×Nc diagonal matrix which components are the 
equalizer‘s coefficients. 

B. SINR evaluation 

The symbols am(s) are assumed i.i.d. zero mean and unit 
variance random variables. The SINR for every sub band for 
one channel realisation is deduced from (6) by calculating the 
expectations of I0, I1, I2 and I3 : 
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The expectations in (7) are given by : 
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(8) 

These expressions show that the SINR depends of actual value 
of the spreading codes. Hence (8) cannot be used practically 
due to its complexity and its sensitivity to the code allocation. 
In the sequel, we derive a new SINR formula that will be 
independent from the spreading codes while taking into 
account their orthogonality. This work relies on results of 
random matrix and free probability theories. 

III. ASYMPTOTIC PERFORMANCE 

Tse and Hanly [9] were the pioneer in the application of 
random matrix theory to CDMA systems analysis. They 
studied the asymptotic performance of the multi-user MMSE 
receiver for a CDMA system, with random spreading and 
synchronous reception. They found that the dependence of the 
SINR on the spreading codes was vanishing in the asymptotic 

regime (Nc and Nu →∞ while the ratio α=Nu/Nc is kept 
constant). The performances only depend on the system load 

α, noise variance and the power distribution. This work was 
then extended to a multipath fading channel in [10]. 

Unfortunately, the model with random spreading is not 
accurate for the downlink of actual CDMA or OFDM-CDMA 
systems, since it does not take into account the orthogonality 
between codes.  

To solve this issue the authors of [11] proposed a trick. They 
assume that the spreading matrix C[s] is extracted from a Haar 
distributed unitary matrix. Such a matrix is random and 
isometric, which capture the orthogonality of conventional 
spreading matrices. This assumption allows applying very 
powerful results from the free probability theory. In [11] and 
[12], it was found that the dependence of the SINR on the 
spreading codes was also vanishing in the asymptotic regime. 
However, as opposed to [10], the orthogonality between codes 
was accounted for. In addition, it was found that the 
aforementioned assumption is only technical. The simulation 
results obtained in [11][12][13] with the combinaison of 
Walsh-Hadamard sequences and a scrambling code match 
very well with the theoretical model. This is achieved even for 

relatively small spreading factors (Nc ≥32). 

In order to evaluate the different terms of (8) and get ride off 
the dependence on the spreading codes, we apply three 
properties from the random matrix and free probability 
theories. The details of the computations are given in the 
Appendix. The final results are the following:   
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α=Nu/Nc is the system load and ∑
−

=−
=

1
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1 uN

m
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P
N

P is the 

average power of the interfering users. 

IV. PERFORMACE  EVALUATION 

We will now exploit (9) to compare MC-CDMA, MC-DS-
CDMA and OFDM-CDMA spreading schemes. First, we 
assume that the receiver uses a MMSE equalizer : 
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attenuated channel frequency response on sub-carrier 
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In order to validate the asymptotic formula, we first compare 
the result computed with (7) and (10) with the SINR measured 
via Monte Carlo simulations. The simulations assumptions are 
the followings: 

• FFT size: N=64, Spreading factor: Nc= 32 
chips, QPSK modulation. 

• Scrambling code: concatenation of 19 Gold 
codes of 128 chips each. 

• Spreading schemes: MC-CDMA: (NF=32, 
NT=1), OFDM-CDMA: (NF=8, NT=4), MC-DS-
CDMA: (NF=1, NT=32).  

Figure 3 illustrates the comparison between theoretical and 
simulated SINRs for BRAN A channel model [17]. The 
SINRs have been measured in the first sub-band (w=0). Due 
to the variations of the channel caused by the mobile speed (3 
km/h), we compare the means SINRs. The simulations 

performances are realized for a mean ratio 0/ NEb  of 20 dB. It 

is given by 02

1

0

2)(

0

. 
2

)(

. P

E

N

N

N

E

L

l

l

b

σ

α
ν ∑

−

=+=  where 
2
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each multipath of the channel. Figure 3 shows that our 
theoretical model matches perfectly with simulations, even for 
a relatively small spreading factor (Nc=32). As for 
conventional multicarrier systems, the degradation becomes 

noticeable for N∆FT > 1%. The sensitivity of the 3 spreading 
schemes to carrier offset is comparable. 
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Figure 3: validation of theoretical model  (BRAN A). 

Figure 4 presents the sensitivity of the MC-DS-CDMA 
scheme to system load for a gaussian channel. As predicted by 
equation (10), the degradation increases with the load. This 
result is in contradiction with the conclusion of [5] which 
stated that the MC-DS-CDMA scheme was not sensitive to 
system load since [5] supposes that in the latter that the MAI 
is eliminated by the equalizer. 
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Figure 4: sensitivity of MC-DS-CDMA to system load  (Gaussian channel). 

On other side, it was demonstrated in [18] that the MAI at 
the output of a linear receiver is asymptotically gaussian, as 

Nc → ∞. This property allows using the SINR as a criterion to 
determine the system performance. For a QPSK modulation, 
the Bit Error Ratio (BER) is related to the SINR by: 



( )[ ]SINRQEBER =  (11) 

Q(x) is the gaussian tail function, and the expectation is taken 
over the channel realizations. This is validated in Figure 5, 
which shows that the BER obtained with (11) and (10) 
matches perfectly with Monte Carlo simulations. However, it 
is known that the channel coding scheme has a huge impact 
on the comparison between OFDM-CDMA and COFDM 
schemes [19]. As MC-DS-CDMA is very similar to a 
COFDM system, the channel coding scheme must be 
considered for the comparison between spreading schemes.  
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Figure 5: BER comparison between asymptotic model and simulation (Bran A 
channel OFDM-CDMA). 

Since the theoretical model has been validated, we will exploit 
equation (10) to give more insight on the sensitivities of MC-
CDMA and MC-DS-CDMA to carrier frequency offset. 

If the receiver implements a zero-forcing (ZF) equalizer (γ=0), 
equation (10) becomes: 
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Let us note IMC-DS-CDMA(w) the interference power of the w
th
 

sub-carrier of a MC-DS-CDMA scheme (NF=1, NT=N, S=N), 
and IMC-CDMA the total interference for a pure MC-CDMA 
system (NF= N, NT=1, S=1). Based on the above formula, we 
observe that: 
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I  (12) 

With a ZF equalizer, the total interference power of a MC-
CDMA system is the average of the interference experienced 
by each sub-carrier in a MC-DS-CDMA system. For a 
Gaussian channel, it is easily proven that I(w+k) =  I(w). This 

is due to the periodicity of function ψN(x) (ψN(x+1)= ψN(x)). 
Hence, as shown in Figure 6, the interference power is 
independent of the carrier index. The legend ‘mean MC-DS-
CDMA’ refers to the interference computed according to 
equation (12). The accuracy of equation (12) for a ZF 
equalizer in a BRAN A channel is demonstrated in Figure 7 

by giving the mean over channel realizations of the total 
interference power. Figure 8 shows that it is not the case for a 
MMSE equalizer. 
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Figure 6: Interference power  (ZF and Gaussian channel) ∆F=1560ppm. 
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Figure 7: Mean Interference power  (ZF and BRAN A channel) ∆F=1560ppm. 
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Figure 8: Mean Interference power (MMSE BRAN A channel) ∆F=1560ppm. 

V. CONCLUSION 

In this article, we have investigated the effect of carrier 
frequency offset on the performance of 2 dimensional OFDM-
CDMA spreading schemes. A new analytical expression of 
the SINR has been derived. It is valid for various kind of 
single user equalizer (MMSE, ZF) and for any frequency 
selective channel. It is independent of the actual value of the 
spreading codes but takes their orthogonality into account. 
Exploiting this model, we found that, for a ZF equalizer, the 
total interference power of a MC-CDMA system is the 
average of the interference experienced by each sub-carrier in 
a MC-DS-CDMA system.  



VI. APPENDIX 

In this section, the 3 properties from the random matrix and 

free probability theories are first defined. Then their 

application for the computation of (9) is detailed. 
Property 1: If A is a 

cc NN ×  uniformly bounded 

deterministic matrix and ))1(),....,0((
1 −= cmm

c

m Ncc
N

C where 

)(lcm 's are iid complex random variables with zero mean, 

unit variance and finite eighth order moment, then  [10]: 
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0C is obtained by the multiplication of a Walsh-Hadamard 

sequence with a long scrambling code. Hence, the 
assumptions needed for (13) are easily satisfied. This property 

is used to evaluate 
2

0IE , 
2

1IE  , 
2

2IE and 
2

3IE .  

Property 2: Let C be a Haar distributed unitary matrix of size 
Nc×Nu [11]. ) ( 0 UCC =  can be decomposed into a vector 

0C of size cN  and a matrix U of size )1( −×
uc

NN . 

Given these assumptions, it is proven in [12] that: 
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α=Nu/Nc is the system load and ∑
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average power of the interfering users. This property is used 

to evaluate 
2

1IE . 

Property 3: If C is generated from a Nc×Nc Haar unitary 

random matrix then matrices [ ] [ ]sQCsC H  and 

)(),(),()( wZswBswBwZ HH  are asymptotically free almost 

everywhere [15]. In other words, verifying the above 
conditions, one can conclude: 
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(15) 

For definition of freeness, the reader may refer to [11] for 
more details. 

Assuming that ][0 wC is random (13) is used to evaluate 
2

0IE . Since we use a long scrambling code, C0[w] and C [s]  

are independent for w≠s. Using  (13), 
2

2
IE  becomes : 
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This computation method has initially been applied for the 
analysis of multi-cell downlink CDMA systems in [16]. 

Applying (14) for the computations of 
2

1IE and (15) for the 

computations of 
2

2
IE in (16), (9) is obtained. 
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