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Abstract— In this paper, we consider maximum rate oppor-
tunistic scheduling from a single wireless base station to multiple
mobile users with Rayleigh fading channels. We propose a finite-
state Markovian analytical model to capture the dynamics of a
single user’s service, namely per-user service. The model is for
a saturated scenario, where the base station always has buffered
data for transmission. We demonstrate the accuracy of the model
by comparing the analytical results with the results obtained from
extensive simulations.

I. INTRODUCTION

Wireless access technologies are becoming very popular
for last mile connection of Internet-enabled mobile or fixed
devices. Efficient radio resource management over the last
mile access networks has significant impacts on the quality of
service for users and resource utilization for network operators.
This is due to the fact that the shared wireless links are the
main bottleneck due to certain characteristics of wireless chan-
nels. A typical radio resource management system incorporates
subsystems for dynamic resource allocation, access control,
and admission control. Scheduling is an efficient strategy
for dynamic allocation of wireless channel resources among
users with delay tolerant applications. Since the capacities of
wireless access links are considerably smaller than wireline
constituents of a typical connection involving service delivery
from the Internet to a wireless node, it is highly desirable
to deploy an efficient radio resource management system in
order to ensure high spectrum utilization. Thus, modeling
of the major components of a radio resource management
system, in particular, a scheduler, becomes important from this
perspective. Accurate modeling of a scheduling scheme is a
non-trivial problem due to the complex and random nature of
the key parameters such as the random behavior of channel
fluctuations and a scheduling scheme itself.

In a system where a single wireless base station transmits
delay tolerant data to multiple users, when the partial Channel
State Information (CSI) is available, the optimal scheduling
strategy to maximize spectrum efficiency is to transmit to a
single user with the best channel quality in each scheduling
epoch (i.e., time slot) [1], [2]. This can be considered as
an opportunistic service discipline. Opportunistic scheduling
with Adaptive Modulation and Coding (AMC) schemes are
widely proposed for modern wireless systems [3]-[9]. Due

to the wide acceptance of opportunistic scheduling, analytical
modeling of its behavior has been partially considered in some
existing work. In [10], a vacation-based queuing analysis for
Bernoulli arrival is used to obtain delay distribution where
wireless channels are independent and identically distributed
Markov processes. In [12], a model for per-user throughput
of an opportunistic scheduling scheme has been proposed. To
the best of our knowledge, the existing publications either
focus on the static behavior or per-user service or they aim to
obtain certain performance metrics, e.g., throughput. Different
from the existing studies, we develop a general model for the
dynamic behavior of a single user’s service. We demonstrate
that a finite-state Markov process can adequately be used for
this purpose. This conclusion is supported by the presented re-
sults of our extensive simulations. The proposed model can be
used for performance analysis in radio resource management
systems for the last-mile wireless access networks.

The rest of this paper is organized as follows. The important
aspects of the system model are given in Section II. In Section
III, we present the details of the proposed analytical model.
Evaluation of the model against simulation results is given in
Section IV to demonstrate the accuracy of the proposed model.
Some concluding remarks are given in Section V.

II. SYSTEM MODEL

We consider opportunistic scheduling from a single base
station to multiple users, as shown in Fig. 1. An opportunistic
scheduling scheme operates as follows: mobile users estimate
their received Signal to Interference and Noise Ratio (SINR)
from a pilot signal and report the maximum achievable rates
back to the base station through a feedback channel. Compar-
ing the received SINR of different users, the scheduler selects
a single user with the highest achievable rate in each time slot.
If two or more users have similar maximum achievable rates
in a time slot, i.e., a tie scenario, the scheduler may apply a
tie breaking policy. A simple and straightforward policy may
be a random tie breaking policy that gives equal chance to
all users with equal channel qualities. Mapping between the
values of SINR and the achievable transmission rates is often
obtained from system level simulations.

A quasi static flat fading model is assumed for the wireless
fading channels, where the SINR value at a mobile station is
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Fig. 1. System model

a random variable that remains constant for an entire duration
of a time slot. In addition, we consider a finite-state Markov
process, as shown in Fig. 2, to model the dynamics of the
random fluctuations of the wireless channels [13]. In this
model, the received SINR range is divided into multiple areas.
When the signal power is below ζi and above ζi−1 the channel
is considered in sate Si. The transition probability from state
Si to state Sj in the next time slot is denoted by pi,j .
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Fig. 2. Finite-state Markov model for fading channels

In the next section, we explain how the received service
of a single user can be modeled in a system specified in this
section.

III. ANALYTICAL MODEL

In this paper, the scheduling problem with multiple users
is simplified into a scheduling problem where a tagged user
competes with a single super user. The super user combines
the competing capabilities of all users, except the tagged user.
First, the instantaneous achievable rate of the super user is
modeled by a finite-state Markov process. Next, the reduced
problem is solved to obtain the service model of a single user.

A. Channel Model of the Super User

Let N be the number of mobile users and X(t) be the
channel state of a tagged user in time slot t. Denote by
Xi(t), i = 1, . . . , N − 1, the state of the channel from

the base station to the compteting user i in time slot t. The
tagged user wins the competition for transmission in a time
slot if X(t) > max(Xi(t), . . . , XN−1(t)) or when a tie is
randomly broken in its favor. This competition policy suggests
that the tagged user virtually competes with a super user whose
channel state is given by Z = max(Xi, . . . , XN−1). Thus, we
can simplify the analysis by replacing all competing users with
a super user whose channel model can be computed from those
of the N − 1 competing users as follows.

We develop an iterative algorithm to obtain the channel
model of the super user by gradual combination of the channel
models of the N − 1 competing users. First, we develop an
algorithm to combine the channel models of two users. Let
pi,j and qi,j be the probability of transition from state Si to
state Sj for users 1 and 2, respectively. Thus,

pi,j = Pr{X1(t) = Sj |X1(t− 1) = Si}
qi,j = Pr{X2(t) = Sj |X2(t− 1) = Si}. (1)

Denote by Z(t) the channel-state of the combined super node,
given by Z(t) = max(X1(t), X2(t)). Let δi,j be the state
transition probability of Z(t), defined as δi,j = Pr{Z(t) =
Sj |Z(t−1) = Si}. To simplify the expressions, we define the
following events.

Si(t) : {Z(t) = Si}
Si,j(t) : {X1(t) = Si, X2(t) = Sj}. (2)

Since Z(t) is the maximum of two random processes, X1(t)
and X2(t), it will less frequently be in lower states. For very
small values of Pr{Si(t − 1)}, e.g., less than 0.1% of the
average state probability of staying in a typical state, we can
safely eliminate state Si and reduce the number of states.
Alternatively, we can assume that the process will move to
the next higher state with a probability close to 1, i.e.,

δi,j =
{

1, if j = i + 1
0, otherwise, (3)

and
δj,i = 0, if j < i. (4)

For significant values of Pr{Si(t − 1)}, larger than 1% of
the average value of the probability of being in any state,

δi,j = Pr{Sj(t)|Si(t− 1)}

= Pr

{[
j−1⋃

l=1

(Sj,l(t) ∪ Sl,j(t))

]
∪ Sj,j(t)

∣∣∣∣Si(t− 1)

}
,

Since Sj,l(t), Sl,j(t), and Sj,j(t) are mutually exclusive
events,

δi,j =
j−1∑

l=1

[µ(i, j, l) + µ(i, l, j)] + µ(i, j, j), (5)

where

µ(i,m, n) = Pr{Sm,n(t)|Si(t− 1)}
=

Pr{Si(t− 1)|Sm,n(t)}Pr{Sm,n(t)}
Pr{Si(t− 1)} ,



and

Pr{Si(t− 1)|Sm,n(t)} =

Pr

{[
i−1⋃

k=1

Si,k(t− 1) ∪ Sk,i(t)

]
∪ Si,i(t− 1)

∣∣∣∣Sm,n(t)

}
,

P r{Si(t− 1)} =

Pr

{[
i−1⋃

k=1

Si,k(t− 1) ∪ Sk,i(t)

]
∪ Si,i(t− 1)

}
. (6)

Since Si,k(t), Sk,i(t), and Si,i(t) are mutually exclusive
events,

µ(i,m, n) =
[
T1 + T2

T3 + T4

]
Pr{Sm,n(t)}, (7)

where

T1 =

i−1∑

k=1

[Pr{Si,k(t− 1)|Sm,n(t)}+ Pr{Sk,i(t− 1)|Sm,n(t)}] ,

T2 = Pr{Si,i(t− 1)|Sm,n(t)},

T3 =

i−1∑

k=1

[Pr{Si,k(t− 1)}+ Pr{Sk,i(t− 1)}] ,

T4 = Pr{Si,i(t)}. (8)

Using properties of conditional probabilities,

Pr{Si,k(t− 1)|Sm,n(t)} =
Pr{Sm,n(t)|Si,k(t− 1)}Pr{Si,k(t− 1)}

Pr{Sm,n(t)}
=

pi,mqk,nπi,k

πm,n
, (9)

where

πi,k = Pr{Si,k(t)}
= Pr{X1(t) = Si}Pr{X2(t) = Sk}. (10)

Hence,

µ(i,m, n) = (11)

pi,mqi,nπi,i +
∑i−1

k=1(pi,mqk,nπi,k + pk,mqi,nπk,i)

πi,i +
∑i−1

k=1(πi,k + πk,i)
.

We can extend the procedure for computing the channel
model of a super user to an arbitrary number of users by
repeating the above algorithm, until all N−1 competing users
are considered.

B. Service Model of a Single User

Next, the problem is reduced to a scheduling problem with
two users, where the tagged user competes with a single super
user. The reduced scenario can be used to obtain the service
model of the tagged user. Let X(t) and Z(t) represent the
channel states of the tagged user and the equivalent super user,
respectively. Denote by C(t) the service model of the tagged
user. C(t) can be modeled by an (m+1)-state Markov process,
where m is the number of the states of the fading channels. An
extra state of C(t), denoted by S0, indicates a non-scheduled
state, where the tagged user does not win the competition for
transmission in time slot t.

First, we define the following notations:

γi,j = Pr{C(t) = Sj |C(t− 1) = Si}
Event S′i,j(t) : {X(t) = Si, Z(t) = Sj}
σi,j = Pr{S′i,j(t)}
pi,j = Pr{X(t) = Sj |X(t− 1) = Si}
δi,j = Pr{Z(t) = Sj |Z(t− 1) = Si} (12)

To take into account the tie breaking policy, we define a binary
random process, ε(t). When ε(t) = 1, the tagged user wins
the competition; otherwise, when ε(t) = 0, the super user wins
the competition. To simplify the notations, we define a new
variable indicating the probability of breaking a tie in favor of
the tagged user in state Si, εi, as follows:

εi = Pr{εi(t) = 1|Z(t) = Si}. (13)

The tie breaking policy randomly selects one of the users with
the highest achievable rate that gives equal chance of winning
to all users. For this policy,

εi =
N−1∑

k=1

1
k + 1

Pr{k competing user in state Si}. (14)

Pr{k competing user in state Si} =
(

N − 1
k

)
πk

i (1−πi)(N−1−k),

(15)
where πi is the probability that the channel state of a single
user is in state Si. Plugging (15) into (14),

εi =
N−1∑

k=1

1
k + 1

(
N − 1

k

)
πk

i (1− πi)(N−1−k). (16)

Next, we develop an algorithm to compute γi,j . For non-
significant values of Pr{C(t− 1) = Si}, i.e., less than 1% of
the average probability of being in any state,

γi,j =
{

1, if j = 0
0, otherwise. (17)

For significant values of Pr{C(t− 1) = Si}, we break down
the problem into three separate cases: i, j 6= 0; i = 0, j 6= 0;
and i 6= 0, j = 0. For i, j 6= 0, from definition of γi,j in (12),

γi,j = Pr








[
S
′
j,j(t) ∩ (εi(t) = 1)

] j−1⋃

k=1

S
′
j,k(t)




∣∣∣∣C(t− 1) = Si



 . (18)

Since the right hand side of (18) is the union of mutually
exclusive events,

γi,j = Pr{S′j,j(t) ∩ εi(t) = 1|C(t− 1) = Si}︸ ︷︷ ︸
A

+

j−1∑

k=1

Pr{S′j,k(t)|C(t− 1) = Si}︸ ︷︷ ︸
B

. (19)



Term A in (19) is given by

A = Pr
{

S′j,j(t) ∩ ε(t) = 1
∣∣∣∣
[
S′i,i(t− 1) ∩ ε(t− 1) = 1

] ∪
i−1⋃

l=1

S′i,l(t− 1)
}

=
A1 + A2

A3
, (20)

where

A1 =

i−1∑

l=1

Pr{S′j,j(t) ∩ εi(t) = 1|S′i,l(t− 1)}Pr{S′i,l(t− 1)},

A2 = Pr{S′j,j(t) ∩ ε(t) = 1|S′i,i(t− 1) ∩ ε(t− 1) = 1} ×
Pr{S′i,i(t− 1) ∩ ε(t− 1) = 1},

A3 = Pr

{[
S
′
i,i(t− 1) ∩ ε(t− 1) = 1

]
∪

[
i−1⋃

l=1

S
′
i,l(t− 1)

]}
. (21)

Given that
Pr{S′j,j(t) ∩ ε(t) = 1|S′i,l(t− 1)} =

Pr{ε(t) = 1|S′j,j(t) ∩ S′i,l(t− 1)}Pr{S′j,j(t) ∩ S′i,l(t− 1)}
Pr{S′i,l(t− 1)}

= εjpi,jδl,j , (22)

and

Pr{S′j,j(t) ∩ ε(t) = 1|S′i,i(t− 1) ∩ ε(t− 1) = 1} =
Pr{ε(t) = 1 ∩ ε(t− 1) = 1|S′j,j(t) ∩ S′i,i(t− 1)}

Pr{S′i,i(t− 1) ∩ εi(t− 1) = 1} ×

Pr{S′j,j(t) ∩ S′i,i(t− 1)}
= εjpi,jδi,j , (23)

using (21)-(23) we can rewrite (20) as follows.

A =
εjpi,jδi,jεiσi,i +

∑i−1
l=1 εjpi,jδl,jσi,l

εiσi,i +
∑i−1

l=1 σi,l

(24)

Term B in (19) can be expanded as

B = Pr

{
S′j,k(t)

∣∣∣∣
i−1⋃

l=1

S′i,l(t− 1) ∪

[S′i,i(t− 1) ∩ ε(t− 1) = 1]
}

=
B1 + B2

B3
, (25)

where

B1 =
i−1∑

l=1

Pr

{
Sj,k(t)

∣∣∣∣Si,l(t− 1)
}

Pr{S′i,l(t− 1)}

=
i−1∑

l=1

pi,jδl,kσi,l,

B2 = Pr

{
S′j,k(t)

∣∣∣∣S′i,i(t− 1) ∩ ε(t− 1) = 1
}
×

Pr{S′i,i(t− 1) ∩ ε(t− 1) = 1}
= pi,jδi,kεiσi,i,

B3 = εiσi,i +
i−1∑

l=1

σi,l. (26)

Hence

B =
pi,jδi,kεiσi,i +

∑i−1
l=1 pi,jδl,kσi,l

εiσi,i +
∑i−1

l=1 σi,l

. (27)

For i = 0 and j 6= 0, referring to (12),

γ0,j = Pr{C(t) = Sj |C(t− 1) = S0}. (28)

For non-significant values of Pr{C(t− 1) = S0},

γ0,j =
{

1, if j = 0
0, otherwise. (29)

For significant values of Pr{C(t− 1) = S0},

γ0,j = Pr








j−1⋃

k=1

S
′
j,k


 ∪ [S

′
j,j ∩ ε(t) = 1]

∣∣∣∣C(t− 1) = S0





=

j−1∑

k=1

Pr{S′j,k(t)|C(t− 1) = S0}
︸ ︷︷ ︸

D

+

Pr{S′j,j(t) ∩ ε(t) = 1|C(t− 1) = S0}
︸ ︷︷ ︸

F

. (30)

Term D in (30) is given by

D = Pr

{
S′j,k(t)

∣∣∣∣
[

m⋃

l=1

l−1⋃
n=1

S′n,l(t− 1)

]
∪

[
m⋃

l=1

[
S′l,l(t− 1) ∩ ε(t− 1) = 0

]
]}

=
D1 + D2

D3
, (31)

where

D1 =
m∑

l=1

l−1∑
n=1

Pr{S′j,k(t)|S′n,l(t− 1)}Pr{S′n,l(t− 1)}

=
m∑

l=1

l−1∑
n=1

pn,jδl,kσn,l,

D2 =
m∑

l=1

Pr{S′j,k(t)|S′l,l(t− 1) ∩ ε(t− 1) = 0} ×

Pr{S′l,l(t− 1) ∩ ε(t− 1) = 0}

=
m∑

l=1

pl,jδl,k(1− εl)σl,l,

D3 = Pr

{[
m⋃

l=1

l−1⋃
n=1

S′n,l(t− 1)

]
∪

[
m⋃

l=1

[
S′l,l(t− 1) ∩ ε(t− 1) = 0

]
]}

=
m∑

l=1

l−1∑
n=1

σn,l +
m∑

l=1

(1− εl)σl,l. (32)

Thus,

D =

∑m
l=1

∑l−1
n=1 pn,jδl,kσn,l +

∑m
l=1 pl,jδl,k(1− εl)σl,l∑m

l=1
∑l−1

n=1 σn,l +
∑m

l=1(1− εl)σl,l

. (33)



Term F in (30) can be written as

F = Pr

{
S′j,j(t) ∩ ε(t) = 1

∣∣∣∣
[

m⋃

l=1

l−1⋃
n=1

S′n,l(t− 1)

]
∪

[
m⋃

l=1

[
S′l,l(t− 1) ∩ ε(t− 1) = 0

]
] }

=
F1 + F2

F3
, (34)

where

F1 =

m∑

l=1

l−1∑

n=1

Pr{S′j,j(t) ∩ ε(t) = 1|S′n,l(t− 1)}Pr{S′n,l(t− 1)}

=

m∑

l=1

l−1∑

n=1

pn,jδl,jσn,lεj ,

F2 =
m∑

l=1

Pr{S′j,j(t) ∩ ε(t) = 1|S′l,l(t− 1) ∩ ε(t− 1) = 0}

Pr{S′l,l(t− 1) ∩ ε(t− 1) = 0}

=
m∑

l=1

pl,jδl,jεj(1− εl)σl,l,

F3 = Pr

{ 


m⋃

l=1

l−1⋃

n=1

S
′
n,l(t− 1)


 ∪

[
m⋃

l=1

[
S
′
l,l(t− 1) ∩ ε(t− 1) = 0

]] }

=

m∑

l=1

l−1∑

n=1

σn,l +

m∑

l=1

(1− εl)σl,l. (35)

Hence,

F =

∑m
l=1

∑l−1
n=1 pn,jδl,jσn,lεj +

∑m
l=1 pl,jδl,jεj(1− εl)σl,l∑m

l=1
∑l−1

n=1 σn,l +
∑m

l=1(1− εl)σl,l

. (36)

For i 6= 0 and j = 0, referring to the basic property of
a transition probability matrix, i.e., the sum of each row is
equal to 1,

γi,0 = 1−



m∑

j=1

δi,j


 . (37)

Finally, the proposed algorithm in this section for com-
putation of γi,j gives the transition probabilities of a m-
state Markov chain which represent the dynamic behavior of
received service by a single user. In the next section, we give
the results of our simulation to demonstrate suitability of the
model.

IV. SIMULATIONS AND EVALUATION OF THE RESULTS

We performed Monte Carlo simulations to verify the accu-
racy of the proposed analytical model. The simulation scenario
includes a single base station with an arbitrary number of
users, as described in Section II. For the fading channel
simulator, we consider flat fading at fc = 1900 MHz; the
maximum Doppler shift is 10 Hz, and the time slot duration
is 1.25 ms.

We often compare an analytically computed transition ma-
trix, Pm, with the corresponding simulation result, Ps, for
different system settings. Unlike the comparison of scalar
values, matrices of arbitrary dimensions cannot be easily

compared. In this paper, the average normalized norm of the
rows of the error matrix, i.e., Pm − Ps, is used to represent
the modeling error as follows.

em =
1
m

m∑

i=1

√∑m
j=1[Ps(i, j)− Pm(i, j)]2∑m

j=1 Ps(i, j)2
, (38)

where m is the dimension of the matrices.
The summary of comparisons are shown in Figs. 3 and 4.

The modeling error, defined by (38), against the normalized
Doppler frequency shift is shown in Fig. 3 for ζ = [10, 5, 0] dB
(SINR partition levels in Fig. 2) and N = 10. The normalized
Doppler frequency shift represents the speed of channel fading.
This figure shows that the modeling error of a 5-state Markov
process for per-user service is below 2% for a good range of
channel fading speed. The modeling error increases with the
increasing speed of fading process due to decreasing accuracy
of the underlaying channel model. Indeed, a first order Markov
model becomes less accurate for fast fading channels. Figure
4 shows the per-user service model error versus the resolution
of the model, i.e., the number of states in the resulting Markov
process. The number of users for this simulation is N = 10,
and the maximum Doppler shift is 8.8 Hz, which corresponds
to the fading speed of a pedestrian channel. Our observation
is that the modeling error for individual non-zero components
of the transition probability matrix slightly increases as we
increase the number of states. However, the percentage of error
decreases as the number of non-zero components decreases.
Figure 5 shows the modeling error against the number of users.
The initial increase and the later decrease in modeling error
with increasing number of users can be observed in this figure.
The accuracy of the individual components of the computed
probability transition matrix decreases when the number of
user increases. However, when the number of users increases,
the number of zero components of the matrix increases, as
well. This effect decreases the modeling error according to
(38).

V. CONCLUSIONS

In this paper, we used a finite-state Markov process to model
the dynamic behavior of per-user service (service model of
a tagged user) of an opportunistic scheduler for a saturated
scenario, where the base station always have buffered data for
transmission to the users. We tackled the problem by breaking
it into two simpler problems: 1) replacing the competing
users with a single super user; 2) considering an equivalent
scheduling problem between the tagged user and the super
user. We demonstrated that the results of the proposed model
matches the simulation results with negligible approximation
error. The proposed model can be used in performance analysis
of resource management systems for wireless access networks,
when opportunistic scheduling is deployed. For instance, the
proposed model can be used for queueing analysis in order to
study delay performance of opportunistic scheduling. Imple-
mentation of admission control also requires a proper service
model for the underlaying scheduling scheme. Our ongoing
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Fig. 3. Service model error vs. the speed of fading process (fm is the
maximum Doppler shift and ts is the time slot length)
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Fig. 4. Service model error vs. the resolution of the model (number of states)

work considers the extension of the model to an unsaturated
case, which is more applicable. In addition, we will take into
account fairness issues.
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