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Abstract—We consider in this paper the analysis of transmit and the system mutual information were used as performance
beamforming methods in multiple antenna systems over corre- metrics. Based on the geometrical properties of the channel
lated fading channels and with finite rate feedback of the channel space, Mukkavilli et. al. [3] derived a universal lower bound

state information. The problem is formulated as a general vector o . .
quantization problem with encoder side information, constrained ©ON theé outage probability of quantized MISO beamforming

quantization space and non-mean-square distortion function. By Systems with arbitrary number of transmit antenmasver

utilizing the high-resolution distortion analysis of the generalized i.i.d. Rayleigh fading channels. Love et. al. [4] proposed a
quantizer, which is applicable to a wide range of scenarios, we codebook design criterion based on minimizing the maximum
obtain a tight lower bound on the capacity loss of the finite rate j,ner product of the beamforming vectors in the codebook

quantized MISO system over correlated fading channels. The - . .
lower bound of the capacity loss of correlated MISO channels and related the min-max problem to that of Grassmannian line

is a generalization of existing results available for i.i.d. channels. packing which is the problem of maximally separating lines
The bound, in addition to providing insight into the exact nature in the Grassmann manifold. The authors also investigated in
of dependence of the quantization loss on the channel correlation [5] the problem of quantizing the beamforming vector under
matrix, indicates that the loss is less than that of the i.i.d. channels a per-antenna power constraint, which is named as quantized

but with the same exponential decaying factor w.r.t. the feedback - . : .
rate. The generality ICc)>f the framewzrkgis further demonstrated €dual gain transmission. This problem was recently revisited

by considering its application to the analysis of suboptimal Dy Murthy et. al. in [6] and a closed form capacity loss analysis
mismatched channel quantizers, i.e. quantizers designed with an was obtained.

incorrect channel covariance matrix, and comparing it to systems Vector quantization (VQ) techniques combined with Lloyd

with optimal quantizers. Finally, numerical and simulation results algorithm was utilized by Xia et. al. in [7] and Roh et. al. in

of the finite rate quantized MISO beamforming system with . . - S
codebook designeg by the Lloyd algorithm aregpreysemed that [8]- The authors derived an (weighted) inner product criterion

confirm the accuracy of the obtained analytical results. and used the Lloyd algorithm [2] to generate the codebook that
specifically optimize for both the statistical distribution of the
I. INTRODUCTION vector (or matrix) channel as well as the specific performance

tric (for example, the mutual information rate). Both of

. . . . e
Communication systems using multiple antennas at b rg}?se groups analyzed the performance of MISO systems with
I

the transmitter and the receiver have recently received m ited-rate feedback in the case of iid. Rayleigh fading

attention due to their promise of providing significant capaci annels. and obtained closed form expressions of the capacit
increases in a wireless fading environment. The performark)% ! P pacity

of the multiple antenna systems depends heavily on t §§t(0r SNR loss) in terms of feedback rafeand antenna

availability of the channel state information (CSI) at the In ihis aper. we consider the analvsis of transmit beam-
transmitter (CSIT) and at the receiver (CSIR). Most of th %rming mpetﬁod's in multiple antenna s{/stems over correlated
MIMO system design and analysis adoptone of two exrerf 09 PEnIAS T U, SR S Y ST

we consider systems with CSI assumptions in between thé%eformulated as a general vector quantization problem with

extremes. We assume perfect CSIR is available at the recei\%}mder side information, constrained quantization space and

and focus our attention on MIMO systems where CSI goh—mean-square distortion function. By utilizing the high-

conveyed from the receiver to the transmitter through a finifgsCution distortion analysis of the generalized quantizer pro-
ided in [9], which is applicable to a wide range of scenarios,

rate feedback link. Recently, several interesting papers ha\ﬂ;% . . ; L
: : : : obtain a tight lower bound on the capacity loss of the finite
appeared, proposing design algorithms as well as analyﬂca‘ﬁ e quantized MISO systems over correlated fading channels.

guantifying the performance of the finite rate feedback mulr%
c

ple antenna systems [1] - [8]. This paper attempts to add ﬁ'e Iov;/er bound of tr;_e c_apaufty IQS.S of corlrelated_l I\Q:SO
this body of knowledge. annels are a generalization of existing results available on

: . : : i.i.d. channels, and its approximations in high-SNR regimes
Narula et. al. considered in [1] a multiple transmit antenn%% also provided. The bound provides insight into the exact

and single receive antenna (MISO) system which emplo o
finite-rate feedback to describe the beamforming vector. T %ture of dependence of the quantization loss on the channel

Lloyd algorithm [2] was utilized to designing the optimum rrelation matrix, which indicates that the loss is less than that

. of the i.i.d. channels but with the same exponential decaying
beamforming vector codebook, where both the channel 938Ltor w.r.t. the feedback rate. The generality of the frame-

k is further demonstrated by considering its application

. . WO
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matrix, and comparing it to systems with optimal quantizers. 1ll. GENERAL VECTORQUANTIZATION PROBLEM
Finally, numerical and simulation results of the finite rate T
guantized MISO beamforming system with codebook designgg
by the Lloyd algorithm are presented that confirm the accuragy
of the obtained analytical results.

he multiple antenna systems with finite-rate feedback can
modeled as a generalized vector quantization problem with
ditional attributes such as encoder side information, con-
strained quantization space and non mean-squared distortion
measures. High resolution tools commonly used in classical
Il. SYSTEM MODEL vector quantization have been extended to deal with this
i . . generalized problem [9]. We briefly summarize in this section
We consider an MISO system with transmit antennas, the high-resolution analysis results of the generalized vector
one single receive antenna, signaling through a frequengyantizer, which are then specialized to provide a tight lower
flat fading channel. The block fading channel model can BRund on the capacity loss of the finite rate quantized MISO
represented as systems over correlated fading channels.
y=hx+n, (1) It is first assumed that the source varialde= (y, z) is
a two-vector tuple with vectoy € Q representing the actual
wherey is the received signal (scalan, ~ AN¢(0,1) is the quantization variable of dimensioky andz € Z being the
additive complex Gaussian noise with zero mean and ua@ditional side information of dimensidn. Theencoder side
variance, anch¥ € C'*t is the MISO channel response withinformationz is available at the encoder but not at the decoder.
distribution given byh ~ A(0,X;). For the sake of fair Based on a particular source realizatigan the encoder (or
comparison, we normalize the channel covariance matrix suti¢ quantizer) represents vectprby one of theN' vectors
that the mean of the eigen values equals to one, which is he ¥2, -+ ,¥~, Which form the codebook. The encoding or
same as in the case of i.i.d. fading channel witlh = 7,. the quantization process is denoted as= Q(y, z). The
The transmitted signal vector is normalized to have a powdistortion of a finite rate quantizer is defined as
constraint given byE| [x||*] = p, with p representing the
average signal to noise ratio at each receive antenna. D= Ex {DQ (y,?; z)} , (6)
It is assumed that there exists a finite rate feedback link of
(N = 2P) bits per channel update between the transmitter anﬁj1 N . -
receiver. To be specific, a codeba®k= {1, -+ , ¥ }, which whereDq (y,y; z ) is a generahon mean-squared distortion
is composed of unit norm transmit beamforming vectors, fgnction betweeny andy that is parameterized by. It is
assumed known to both the receiver and the transmitter. Badéidher assumed that functiobg has a continuous second
on the channel realization, the receiver selects the best coderder derivative (or Hessian matrix w.r.t. § Wy(y) with
point v from the codebook and sends the corresponding indée (i, /)" element given by
back to the transmitter. At the transmitter, the unit norm vector 1 52

v is employed as the beamforming vector, i.e. w; ;

, :im DQ(Y>Y§Z) . (7

y=y

f— H. v . f— . v . 2 f—
y=h"(V-s)4n = |[b]-(v.V)-s+n, E“S| } po @ Under high resolution assumptions, the asymptotic distor-

tion of a finite rate feedback system can be represented by the
Jmlowing form [9], which is similar to the Bennett's integral
Brovided in [10]

wherev is the channel directional vector given ty= h/|/h||.
The corresponding ergodic capacity or the maximum syst
mutual information rate of the quantized MISO beamformin
system is given by

DEyyz{DQ(y,Q(y,z);zﬂ
: =2—15/Z/Qz<y;z;1@z<y>>p(y, 2A(y) % dy dz(8)

With perfect channel state information available at the trans-
mitter (B = oo), it is optimal to chooser = h/|h| as the whereE,(y) denotes the asymptotic projected Voronoi cell
beamforming vector, and the corresponding system ergoth@at containsy with side informationz as N approaches

Co = En|log (1+p- - |[(v.9)P)| . (3

capacity is given by infinity. In equation [8), A(y) is a function representing the
relative density of the codepoints, which is called point density,
Cp = Fp [10g2 (1 +p- Hh||2ﬂ ) (4) suchthat\(y)dy is approximately the fraction of quantization

points in a small neighborhood gf. FunctionI(y; z; E) is

&{ée normalized moment of inertia profile that represents the
ymptotic normalized distortion or the relative distortion of
e quantizeiQ at positiony conditioned on side information

z with Voronoi shapeE. Both A(y) andI(y; z; E) are the

key performance determining characteristics that can be used

1o (1 pa .(1f V.V 2)) to analyze the effects of different system parameters, such as
82 (v, V)l ; € the enects ot ¢ . ame

1+ pa source distribution, distortion function, quantization rate etc.,
5) on the finite rate quantizer.
wherea = ||h||? is the norm square (or the power gain) of The normalized moment of inertia profile of an optimal
the vector channel response. guantizer is defined as the minimum moment of inertia of

Therefore, the system capacity loss due to the finite r
guantization of the transmit beamforming vectors can
represented as

CL=Cp—Co=FE




all admissible region&,(y), i.e. IV. UNCORRELATEDMISO BEAMFORMING SYSTEMS

I RN . I(v:z:E 9 Although the analysis of finite rate quantized MISO beam-
opt(y; 7) = By (y)eHo (vi2: Ea(y) ©) forming system over i.i.d. Rayleigh fading channels has been
investigated in several past works, we revisit this problem from

& source coding perspective by formulating it into a general

vector quantization problem and provide analysis based on the
general framework.

1/kq ; ; s [T 11T P

N |W.(y)| The source variable is denoted @s= [v§, v{']" of di

Top(y'5 2) Z Topt(y'5 2) = kot 2 12 » (10) " mensior2t with vg andv, representing the real and imaginary

a ka parts of the (complex) channel directional vectgrand the
where parametek,, is the volume of an-dimensional unit side information is denoted as= |/h||? of dimensionk,, = 1.

sphere given by For vectors in the vicinity ofv (with vg and v, representing

B /2 11 its real and imaginary parts), source variablés constrained

Fn = C(n/2+1) (11) under the multi-dimensional real functi@{v) corresponding

The asymptotic distortion of an optimal finite rate quantizetP definition (17), which is given by
can be lower bounded by the following form g(v) = viver +vivi -1
= TS TS
D(Qopt) 2 DLow,l ) (12) VRVI T VI VR
with the first element representing the norm constraint and the
second element the phase constraint. Funagjipwn) has size
an » 1/(1+’%) I+ k. = 2, which leads to the actual degrees of freedom of the
Diow1 =2 *a - / (Iop(y) - p(¥)) ©dy ’

that forms a lattice partition on the quantization sp&@celhe
optimal moment of inertia can be tightly lower bounded by

=0, (19)
where lower bound) 1 is given by

quantization variables to be kg = 2¢ — 2. The instantaneous
capacity loss due to effects of finite rate CSI quantization is

(13) ; ; : gy X

. N ' . taken to be the system distortion functifiy(v, v ; «), which

with the average moment of inertia profilgf,(y) given by has the following second order approximation
. po o\ (2
Ic‘;‘;)t(y) :/z Iopt(y; z) -p(z‘ y) dz . (14) Dq(v,v;a) = —log, <1 1 s . (1 — |(v, V>‘ ))
When the sensitivity matridW ,(y) can be factored into the ~ P T (I — )V, (20)
following form In2(1+ pa)
W, (y) = f(z)- W(y) , (15) Where matrix2 € R*a**% is given by

it can be shown that the asymptotic distortion lower bound
Dy ow, is actually achievable
D -D _ 16) After some manipulations, the _constrained sensiti\_/ity matrix
(Qopt) = Diows (16) W (V) can be shown to be given by, from equatid8)(

By substituting the tight lower bound.@) of the moment of R pa
inertia profile into equationsl@) and (14), we can obtain cor- Wc,a(v) = m “dop—o . (22)
responding tight lower bount}y,(y) of the average moment of p

L ' . Substituting 22) into (10), the optimal moment of inertia
inertial pr.oflle,.and the onvir bound oy 1 Of the asymptotic profile can be obtained by the following form
system distortion respectively

If the source variable (vectory is further subject tokc Icopt(V; @) = Icopla) R fc,opt(a)

constraintsgiven by the vector equation —1/(t—1)
gly) =0, 17 In2-(1+ pa) t ’
the asymptotic distortion analysis is still valid with the follow-here the parametey; is given by
ing modifications. First, the actual degrees of freedom of the i1
quantization variable reduce frokg to kj, = kq — kc. Second, S N (24)
the sensitivity matrix is replaced by its constrained version (t—=1)!
W. ,(y) given by When the elements of the channel respohsae i.i.d. Gaus-
sian distributed, the overall system distortion (or the capacit
We o (y) = V3 - Wa(y) Ve, (18) y ( pacity

loss) can be obtained frord3) and has the following form

where V, € RF*k js an orthonormal matrix with its D (Qopt) = Detows
columns constituting an orthonormal basis for the orthogonal P ’

compliment of the range spac® gaay g(y)). Lastly, the B (t—1)- (2Fo (t+1,1;5 —p) '/J’) 5 B/-1) (o5
multi-dimensional integrations used in evaluatifgoy,1 and n In2 '  (29)
Dy ow1 is performed in the constraint spagéy) = 0. wheres Fy is the generalized hypergeometric function, and the

optimal point density\* (v) is a uniform distribution given by
1This replacement can be extended to other variables and definitions. In

the r'est of this paper, we will dlr_ectly use to represent a guantity that is A* (V) _ 'y;l ’ v E {v ‘ g (v) _ 0} . (26)

obtained by replacingopt with Iopt if a is a function ofIopt, i.€.a = a (Iopt)



V. CORRELATED MISO BEAMFORMING SYSTEMS lower boundﬁC_L_om of correlated MISO c_hannels is smaller
It is generally difficult to extend the analysis of quantize&an that of the i.i.d. MISO channels [9], i.e.
MISO systems from i.i.d. channels to correlated channels by ~ a ~
using the statistical approximation approach adopted in [8] and 0 < Derowa(Zh) < Derowa(lt) - 1)
other previous works. By viewing the problem using a sourggith equality in () if and only if 3y, = I,. This means that
coding perspective, we provide in this section the distortiqn 4. channels are the worst channel to quantize in the sense

analysis of correlated MISO channels. of having the largest distortion or capacity loss.
A. Distortion lower boundDc.iow,1(Xn) B. Analysis in High-SNR Regimes
When the elements of the MISO channel respohsare | high SNR regimes, the constraint sensitivity maWi ,,

correlated and have a complex Gaussian distribution, i®duces to be

h ~ N¢(0, ), by substituting the moment of inertia profile oo 7

Ieopt(v; @) given by R3) into equation [13), the system  WHS"(v, o) = lim ——F—~ I=—, (32)
' o : ~ : p—oo In2- (1+ pa) In2
asymptotic distortion lower bound.. o1 can be expressed
in the following form, which is independent of/, the side information information
~ «a as well as the SNRp. This means that 1) the encoder
Detow1(Zh) £ DeLow1(Zh) can discard the available side informatien without any
t— 1) A D > loss of system performance; 2) one single codebook is used
= =D P bile ) 27 B/U=D (27) for different system SNRs in high SNR regions. In this

In2-|32 . ) ~
n_ %l o _ case, the moment of inertia profilgp(v, ) and the average
where (i (p, ¢, £p) is a constant coefficient which onlymoment of inertia profildy(v, o) also reduce to be constants
depends on the antenna sizechannel correlation matriXs  jndependent of the location as well as side information
and system SNR, and is given by

ot W H- t—1).4, /D
o —(t+1) j})—!p;snr _ (\;\;)tH snr_ ( ) t ) (33)
Bi(p, t, Zn) = (v'=3tv) In2-t
Jv:g(v)=0 By substituting 83) into the distortion lower bound given by
(t=1)/t t/(t—1) (13), the system capacity loss of i.i.d. MISO channels in high
X o Fp (t +1, 1;; _H'O_l) ) dv) .(28) SNR regime is given by
viaY v (1

. . . : . Dish (Sh=1,) = —— .27 B/(-D 34

The optimal point density\* (v) that achieves the minimal ctowa(Zn = 11) t - G4
distortion is given by which is consistent with the analysis obtained in [8] based
on a statistical approach. For correlated MISO channels, the
high-SNR asymptotic distortion lower bourid?"" ; can be

-Low,
shown to have the following form, from equactico'vﬂXﬂ[

)1/<H>

AT - — 1
A (V) = Bi (p, t, Bp) I/ <(szh1V) (t+1)

(t—1)/t
p _ t .
x o Fp (t+ 1,1;; —)) (29 - (t=1) (ILizy Ani
vy Deigni(Zn) = ( 2.1
All the derivations provided in this article are brief due to < ¢ (ln A 4)/)\h 4 t/(t—1)
(t—1) AZARAL )

space limitations. B .273/(#1)7(35)
From the proposed distortion lower boutg:. ow1 (1),  Tliss (1= An e/ An4)
we can make the following observations: .
WhereAh,i| , are the eigen-values of matrX,.

t
1) The asymptotic distortion lower bound provided in =
equation 27) is a general format that is suitable for arbitrary VI. M ISMATCHED ANALYSIS OF MISO SYSTEMSWITH
channel correlations with covariance matk,. The distortion FINITE RATE FEEDBACK
lower bound of i.i.d. MISO channels given by equati@®)( | the previous sections, we provided asymptotic analysis of
is a special case when the covariance makix is equal to SO systems with optimal CSI quantizer, in the sense that the
the identity matrix, i.eXn = I;. codebook or the encoding algorithm is designed to perfectly
2) Since the sensitivity matritWe . (V) given by 22) match the distortion function and the source distribution.
satisfies the factorable condition given by equati@B),(the However, imperfect codebook and suboptimal quantizer might
distortion lower boundDc.. o1 is achievable and equal to thebe used in practical situations in order to reduce the design

asymptotic distortion of the optimal quantizer, i.e. and encoding complexity or due to imperfect knowledge of the
. N source distribution. For example the codebook designed for
De-Low1 = Dg-opt & De-Low1 = Do-opt - (30) i.i.d channels could be employed in a correlated environment.

We provide in this section a capacity loss analysis of the
3) It can be observed from equatior25) and R7) that the quantized MISO beamforming system when the quantizer
distortions of correlated and i.i.d. MISO channels have the mismatched and suboptimal. The results further serve to
same exponential decaying factor?/(*=1) with the feedback demonstrate the usefulness and generality of the proposed
rate B. Furthermore, it can also be shown that the distortidnamework.



A. Source Distribution Mismatch (or Point Density MismatchMI_SO _channels with optimal quantizers in high-SNR regimes,
For the correlated MISO channels, the channel distributid{ich is given by

depends on the covariance mat®,, which needs to be - ~ s t=1  _pu-1)
estimated both at the transmitter and the receiver. A mismatéhmis-p-Low.1(Zn) I Deiowall) = m2-t 2 :
between the measured covariance ma¥i§ and the actual ? (41)

3 will cause system performance degradation. This means that: 1) Even with mismatched quantizers that

Based on the mismatched covariance malg', a sub- use codebooks generated from i.i.d. channels samples, the
optimal codebook is generated with the mismatched poigystem asymptotic distortion (or capacity loss) of correlated
density given by, from equatioi2g), MISO channels is still less than that of the i.i.d. channels; 2)

(1) The performance of the mismatched quantizer is dominated

) _ my—(t—1)/t Hsm-—1 "~ by its suboptimal codebook, and hence does not depend on

Amis (V) = B1(p; £, 2) ((V (Zn) V) the channel correlations in high SNR regimes.

p (t=1)/t VIl. N UMERICAL AND SIMULATION RESULTS
2F0 t+ 1, 1, ; Ty (36)
vil(EM T v - .
o Distortion Analysis
10 T T

By substituting the mismatched point density,s given by
(36) into the distortion integrald), the system distortion lower
bound of the mismatched quantizer can be obtained

5mis—P—Low,l = / fc\:l\,’opt(x) :
x: g(x)=0

po(x)- )\mis(X)il/(til) dx) .9=B/(t-1) (37)

Simulation

------ Analysis

SNR = 20dB ]

Capacity Loss (Bit/Channel Use)

As a special case, if the codebook designed for i.i.d. MISO
channels is used for correlated MISO systéme. X0 =1,

the mismatched point densitmis(v) is uniform and the
asymptotic distortion of the mismatched quantizer can be T T e
obtained by the following analytical closed form expression Feedback Rate B

after some manipulations

SNR'=-10dB

= Fig. 1. Capacity loss of & x 1 MISO system with different CSI feedback
f) ) ) = (t - 1) “Bs (Pa h) 2—B/(t—1) 38 rate B =1,2,---,10 bits per channel update
mls—P—Low,l( h) = no2-t : ) ( )

where the constant coefficiept (p, X1) is given by

We plot in Fig.1 the system capacity loss due to the finite-
-1 rate quantization of the CSI versus the feedback fatéor

t .
Ah, a 3 x 1 MISO system over correlated fading channels. The
Ps (p, En) = 1+ Z p)‘h:iH (1 - Ahj) spatially correlated channel is simulated by the correlation
=1 JFi ’ model in [11]: A linear antenna array with antenna spacing of
1 -1 half wavelength, uniform angular-spread [ir30°, 30°] and
FeXP (W) il (p)\h 1) ' (39) angle of arrival¢p = 0°. Both the simulation results with

codebook generated by the inner product criterion proposed
where Ej(-) is the exponential integral function. in [8] and the analytical evaluation of distortion lower bound
. . _ De.Lowa given by R7) are shown in the plot, demonstrating
B. Comparison With Other Quantizers the accuracy of the proposed asymptotic distortion analysis

In order to understand how the mismatched channel qerovided in SectiofV.

variance matrix(Z]hm = It) affects the MISO system per- In order to see the effects of channel correlation on CSI
formance, a distortion comparison between optimal and miggantization in a MISO system, we show in FRjthe curves
matched quantizers under both correlated and i.i.d. fadin§capacity loss versus quantization rate (both simulation and
channels is formed. By utilizing the concavity property ofnalytical lower bound) of the same MISO system under
function 35(p, Xn) w.rt. matrix 3y, it can be proved that different channel correlations with adjacent antenna spacing

Dnis-p-Low, 1(Z 1) satisfies the following inequality D/X\=0.2,0.3,0.5,2.0 and SNRp = 20dB. As a comparison
~ ~ ~ to uncorrelated MISO channels, we also show in Rghe
< Dmi < ) ; ’ s .
De-Lowa (En) < Dris-pLowt(2h) < Detow () (40) " gistortion ratio of correlated MISO channels over i.i.d. fading
Moreover, it can also be shown that the mismatched systéftannels with quantization rat& = 10 bits, and under

distortion Diis.p-Low, 1(X 1) converges to the distortion of i.i.d. different channel correlations. It can be observed from the
plot that the system distortion of correlated MISO channels is

2This can be also viewed as the case where the channel covariance mathiCtly less than that of the i.i.d. channels and the analytical
is completely unavailable at both the transmitter and the receiver. result agree well with the actual simulation results.
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Fig. 2. Capacity loss versus CSI quantization rate & a 1 MISO system
over different correlated fading channels Bf/ A = 0.2,0.3,0.5,2.0
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Fig. 3. Distortion comparison of correlated and uncorrelated MISO channels

We demonstrate in Figd the system capacity loss of the 2]

mismatched quantizer with codebook designed f8id. i.i.d.

Distortion Analysis

Mis-matched Quantizers
D/X'=0.3,0.5,0.7,2:0 ]
: &
Optimal Quantizer for
i.i.d. MISO Channels

Capacity Loss (Bit/Channel Use)

Optimal Quantizer
D/X=0.3

10~ i i i i

Feedback Rate B

Fig. 4. Capacity loss of mismatched MISO quantizers with codebook
designed for i.i.d. channels used in correlated fading environment

investigate the specific problem of MISO beamforming for
spatially correlated channels. We obtain a tight lower bound
on the capacity loss of the finite rate quantized MISO system,
which is a generalization of existing results available on i.i.d.
channels. The bound provides insight into the exact nature of
dependence of the quantization loss on the channel correlation
matrix, which indicates that the loss is less than that of the i.i.d.
channels but with the same exponential decaying factor w.r.t.
the feedback rate. The generality of the framework is further
demonstrated by considering its application to the analysis
of suboptimal mismatched channel quantizers, i.e. quantizers
designed with an incorrect channel covariance matrix. Finally,
numerical and simulation results of the finite rate quantized
MISO beamforming are presented that confirm the accuracy
of the obtained analytical results.
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