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Abstract— We consider a multi-user multiple-input single-output
(MU-MISO) scenario, where the decentralized users are served
by a centralized transmitter with multiple channel inputs via
frequency selective vector channels. For this broadcast setup, we
jointly design the transmitter and receivers based on a minimum
sum mean square error (MSE) criterion. Contrary to previous
work in this field, we do not restrict the receivers to be scalar
weights but employ finite impulse response (FIR) receive filters.
Since the sum MSE minimization has no closed-form solution
neither for linear precoding nor for Tomlinson-Harashima pre-
coding (THP), we propose to use an alternating optimization
and prove the convergence of the resulting iterative algorithm.
The simulations show that the obtained linear and nonlinear
precoding solutions with FIR receivers clearly outperform the
state-of-the-art precoders with scalar receivers.

I. INTRODUCTION

Precoding is inevitable for the broadcast setup [1], i.e., one
centralized transmitter serves several decentralized receivers,
e.g., the downlink of a cellular system with a base station (BS)
with multiple antennas transmitting to several single antenna
mobile stations (MS). Clearly, precoding is superior to receive
processing in such MU-MISO systems, since the decentralized
receivers have fewer degrees of freedom than the transmitter.

The data are transformed linearly before transmission in
the case of linear precoding. Compared to matched filter
[2] and zero-forcing (ZF) schemes [3]–[7], minimum MSE
(MMSE) based linear precoders show an excellent perfor-
mance [8]–[11]. For THP, the receivers are equipped with
modulo operators giving the transmitter the additional degrees
of freedom to add a perturbation signal by means of a modulo
feedback loop to reduce transmit power (e.g., [12]). As for
linear precoding, MMSE-THP [11]–[14] clearly outperforms
ZF-THP [14]–[17]. Thus, we focus on linear and non-linear
precoding based on the MMSE criterion in this paper.

Most publications on precoding considered block processing
so far, i.e., either precoding for flat channels [3], [4], [10],
[11], [13], [16] or precoding for frequency selective channels
but with block filters which process the data of a whole block
[2], [5]–[7], [17]. Nevertheless, FIR precoders were proposed
in [8], [12] and infinite impulse response (IIR) THP was
considered in [14]. FIR precoders are preferable compared
to block processing for frequency selective channels due to
the substantially reduced complexity. Because of the practical
disadvantages of IIR filters, viz., possible instability due to

finite precision and additional delay due to the necessity to use
a non-causal implementation, we only consider FIR precoders.

Although the conventional design of precoding assuming
scalar receivers is appropriate for flat channels, enhancing the
receivers improves the performance for frequency selective
channels. In [2], the matched filter at the transmitter was
supported by a matched filter at the receiver. The resulting
signal-to-noise ratio (SNR) gain is advantageous in single-
user scenarios. In [6], a ZF equalizer supplemented the ZF
precoder which leads to a substantial transmit power decrease.

We also enhance the receivers in this paper; instead of
simple scalar weights, the equalizers are FIR filters. These FIR
equalizers are jointly optimized with the precoder minimizing
the MSE. Unfortunately, the resulting optimization has no
closed-form solution. Hence, we propose to employ following
alternating optimization (similar to [11] for flat fading chan-
nels) to find the MMSE filters. First, the precoder is updated
while keeping the receivers fixed. Second, the receivers are
updated while keeping the transmitter fixed. These two steps
are repeated until convergence which we prove in this paper.
Moreover, we give a ZF solution in closed-form which is an
excellent initial value for our iterative algorithm.

We assume perfect knowledge of the channel state informa-
tion (CSI). Clearly, this is an unrealistic assumption, but our
problem statement and solution can easily be extended to erro-
neous CSI such as in [18], [19]. In this paper, we focus on the
problem formulation/solution and highlight the performance
improvement by a joint MMSE precoder/equalizer design.

After introducing the system model in Section II, we de-
velop and discuss the iterative joint MMSE precoder/equalizer
solution in Section III. The simulation results can be found in
Section IV and conclusions are drawn in Section V.

Notation: Vectors and matrices are respectively denoted by bold
lower and upper case letters. [A]m,n is the m-th element in the n-th
column of the matrix A. E[•], ‖ • ‖2, ∗, (•)∗, (•)T, (•)H, ⊗, tr(•),
and (•)+ denote expectation, Euclidean norm of a vector, convo-
lution, complex conjugation, transposition, conjugate transposition,
Kronecker product, trace of a matrix, and Moore-Penrose pseudo
inverse, respectively. diag(•) returns a diagonal matrix with the
arguments on the diagonal. δ[n] is the unit impulse. 0M , 0M×N , and
1M represent the M -dimensional zero vector, M × N zero matrix,
and M×M identity matrix, respectively. ei ∈ B

M is the i-th column
of 1M , where M is given by the context and B = {0, 1}.
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II. SYSTEM MODEL

Fig. 1 shows the MU-MISO block diagram of the downlink
(FIR filters are square boxes, pure spatial filters are triangles)
comprising a BS equipped with Na antennas and B single-
antenna MSs. The channel’s impulse response of order1 Q is

H[n] =
Q∑

q=0

Hqδ[n − q],

where Hq ∈ C
B×Na and the k-th row of H[n] is the FIR

vector channel from the BS to the k-th MS. Furthermore, the
received signal is perturbed by temporally white and spatially
uncorrelated Gaussian noise, i.e., η[n] ∼ NC(0,Rη) with
Rη = diag(σ2

η1
, . . . , σ2

ηB
) and E[η[n]ηH[n + ν]] = Rηδ[ν].

For THP, modulo operators M(•) are deployed at the
receivers to increase the degrees of freedom for the transmitter,
since they map any element of a coset of the corresponding
lattice to its representative in the fundamental Voronoi region
(see e.g., [12], [20]). The transmitter chooses the element of
the coset by means of the modulo feedback loop comprising
the spatial feedback filter F (lower triangular with zero main
diagonal to avoid a delay-free loop) and the temporal feedback
filter T [n] (strictly causal to ensure realizability) of order NT

T [n] =
NT∑
i=1

T iδ[n − i] (1)

with T i ∈ C
B×B . Since the output v[n] of the feedback loop

is computed successively, the MSE of THP can be further
minimized by reordering the symbols. Correspondingly, the
data vector s[n] is first processed by the permutation matrix

Πν =
B∑

i=1

eie
T
bi
∈ B

B×B , (2)

where ei,ebi
∈ B

B and the B-tupel O = {b1, . . . , bB} with
bi ∈ {1, . . . , B} is the precoding order. In other words, the
i-th entry of v[n] corresponds to the bi-th entry of s[n]. The
signal v[n] is passed through the feedforward filter of order L

P [n] =
L∑

�=0

P �δ[n − �] with P � ∈ C
Na×B (3)

to get the transmit signal y[n] ∈ C
Na . Note (e.g., [15]) that

E[v[n]vH[n + ν]] = σ2
v1Bδ[ν] due to the modulo operator.

The quantizers Q(•) at the receivers map the estimate
ŝ[n] ∈ C

B to the modulation alphabet, i.e., s̃[n], s[n] ∈ A
B .

The common weight β of all receivers is only introduced for
notational simplicity, as we will see in Section III.

The impulse responses of the FIR equalizers of order F at
the receivers are comprised in

G[n] =
F∑

f=0

Gfδ[n − f ].

Note that the taps Gf ∈ C
B×B , f = 0, . . . , F, are diagonal,

since the receivers cannot cooperate.

s[n] Πν

T [n]

F

v[n]
P [n]

y[n]

H[n]

η[n]

G[n]
ŝ[n]

Q(•)

M(•)

M(•)
s̃[n] d̂[n]

BB

BBB Na

receivers
transmitter

β1B

Fig. 1. System model for THP with FIR equalizer G[n].

s[n] Πν
d[n]
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v[n]

BB

B

Fig. 2. Linear representation of the modulo operator.

Since any vector a′ ∈ τZ
B + j τZ

B can be added to the
modulo input without changing its output, i.e., M(x + a′) =
M(x), the transmitter can choose a desired value for this shift
of the received signal (e.g., [12]). This shift of the received
signal is removed by the modulo operators at the receivers
and its desired value is created by the modulo operator in
the feedback loop at the transmitter. With this understanding,
we can interpret the linear representation in Fig. 2, where the
signal a[n] ∈ τZ

B +j τZ
B added by the transmitter’s modulo

operator has been moved to the front of the feedback loop. The
data signal s[n] is the desired value of the modulo outputs
at the receivers. As the signal portion a[n] is removed by
the receivers’ modulo operators, the signal d[n] is the desired
signal for the inputs of the receivers’ modulo operators.

From Fig. 2, we have that

d[n] = ΠT
ν (1B − F )v[n] − ΠT

ν

NT∑
i=0

T iv[n − i]. (4)

The estimate for d[n], i.e., the input of the receivers’ modulo
operators, can be written as (see Fig. 1)

d̂[n] = βG[n] ∗ H[n] ∗ P [n] ∗ v[n] + βG[n] ∗ η[n].

Alternatively, the estimate is given by

d̂[n] = β

F+Q+L∑
i=0

S(i)GHPv[n − i] + β

F∑
i=0

S̃
(i)

G̃η[n − i],

(5)
where we introduced the selection matrices

S(i) = eT
i+1 ⊗ 1B ∈ B

B×B(F+Q+L+1), ei ∈ B
F+Q+L+1,

S̃
(i)

= eT
i+1 ⊗ 1B ∈ B

B×B(F+1), ei ∈ B
F+1,

1Note that Qk = Q,∀k for notational simplicity.
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and put the coefficients of the filters into the matrices

P =
[
P T

0 , . . . ,P T
L

]T
∈ C

Na(L+1)×B ,

H =
Q∑

q=0

[0L+1×q,1L+1,0L+1×Q−q]
T ⊗ Hq,

G =
F∑

f=0

[0Q+L+1×f ,1Q+L+1,0Q+L+1×F−f ]T ⊗ Gf , and

G̃ =
[
GT

0 , . . . ,GT
F

]T
∈ C

B(F+1)×B .

The block Toeplitz convolution matrices for the channel and
the non-cooperative equalizers are H ∈ C

B(Q+L+1)×Na(L+1)

and G ∈ C
B(F+Q+L+1)×B(Q+L+1), respectively. Note that

S(i)GHP is the tap of G[n] ∗ H[n] ∗ P [n] with delay i.
For linear precoding (no modulo operators, no feedback

loop: M(x) = x, Πν = 1B , T [n] = 0δ[n], and F = 0), (5)
is also applicable, but with v[n] = s[n] and d̂[n] = ŝ[n].

III. JOINT TRANSMIT AND RECEIVE FILTER DESIGN

A. Problem Formulation

We try to find the precoding filters P [n], F , T [n], the
precoding order O (represented by Πν), the equalizers G[n],
and the latency time ν (time difference between application
of precoder and decision at receivers) minimizing the MSE2

ε(P ,F ,T 1, . . . ,T NT , β, ν,O,G) = E
[
‖d[n − ν] − d̂[n]‖2

2

]
(6)

under the total transmit power constraint

E[‖y[n]‖2
2] = σ2

v tr(PP H) = Etr. (7)

Besides minimizing the MSE subject to above constraint, we
must ensure the structural properties of F (strictly lower
triangular) and G (matrix with diagonal blocks).

Unfortunately, the MSE ε(. . . ) is non-convex in P , F ,
T i, i = 1, . . . , NT, β, G and no closed-form solution can be
found (this is also true for linear precoding). Therefore, we
must resort to iterative techniques. Since the solution of the
optimization for fixed G can be solved as in [12] (see Subsec-
tion III-B) and G can easily be found (see Subsection III-C and
e.g., [21]), when fixing the other variables, we propose to apply
alternating optimization to find the precoder and equalizer
filters, as depicted in Fig. 3. Based on an initial value G(0)[n]
for the equalizers, the transmitter and the receivers are updated
alternately. During a transmitter update, the feedforward filter
P [n], the feedback filters T [n] and F , the latency time ν,
and the precoding order O are recomputed based on the fixed
receivers G[n]. Additionally, a new value for the common
weight β of the receivers is computed which is necessary
to have a closed-form solution for the precoding filters [12].
In a receiver update, G[n] is recomputed while keeping all
the other variables fixed. The iteration is terminated after the
maximum number of updates iid or when the relative MSE
decrease is below the threshold cth.

2For linear precoding: ε(P , β, ν, G) = E[‖s[n− ν]− ŝ[n]‖22].

{cth, iid}
Initialization

{β1, . . . , βB}

G(0)[n] = diag(β1, . . . , βB)δ[n]

Tx Update {P (�),F (�),T
(�)
1 , . . . ,T

(�)
NT

}
{β(�), ν(�),O(�)}

Rx UpdateG(�) G(�)

� = � + 1

no

yes

n > iid or |ε(�+1)
P −ε

(�+1)
G |

ε
(�+1)
P

< cth

{P opt,F opt,T opt
1 , . . . ,T opt

NT
, βopt, νopt,Oopt}

s[n]
Transmission

y[n]

Fig. 3. Schematic of the alternating optimization for the joint transmit and
receive filter computation.

Note that the iteration is completely performed at the
transmitter. The receivers are only updated virtually. Once
the optimum transmit filters and parameters are determined,
the transmitter can transmit pilot symbols which enable the
receivers to design the equalizers based on the MMSE criterion
without the explicit knowledge of the precoding filters.

B. Update of Transmitter

When recomputing the precoding filters, we form an equiv-
alent channel Hequ = G[n] ∗ H[n] with the equivalent noise
ηequ = G[n] ∗ η[n]. Then, the MMSE optimization of the
precoding filters is performed as in [12] based on Hequ and
ηequ. We do not show the derivation of the THP filters as
in [12] due to space limitations. Instead, we refer to [12]
for the development of the efficient algorithm to compute
the precoding filters based on a symmetrically permuted
Cholesky factorization shown in Table I. The matrix Hequ ∈
C

B(F+Q+L+1)×Na(L+1) is defined similarly to H but contains
the coefficients of Hequ[n] instead of H[n]. The constant
ξ = tr(G̃RηG̃H)/Etr is the reciprocal SNR.

For linear precoding we get via Lagrangian multipliers

P WF =
1

βWF
HH

equ

(
HequH

H
equ + ξ1B(F+Q+L+1)

)−1

S(νWF).

The scalar βWF follows from σ2
s tr(PP H) = Etr. By plug-

ging the filter solution into the MSE, νWF can be found by
minimizing the resulting expression (see [12]).

C. Update of Receivers

For the update of the receivers, we need a new system
model. The input of the modulo operator of the k-th receiver
can be expressed as

d̂k[n] = βgk[n] ∗ eT
k H[n] ∗ P [n] ∗ v[n] + βgk[n] ∗ ηk[n].
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TABLE I

ALGORITHM FOR TRANSMITTER UPDATE.

1: Θ← (HequH
H
equ + ξ1B(F+Q+L+1))

−1

D← 0B(F+Q+L+1)×B(F+Q+L+1)

3: εmin ←∞
4: for ν = F + Q + L, . . . , L:

Πν ← 1B

ε← 0
for i = B, . . . , 1:

k ← Bν + i
9: bi ← argmin

b∈{1,...,i}
Θ(Bν + b, Bν + b)

Πν ←Πν with rows bi and i exchanged
Π← 1B(F+Q+L+1) with rows Bν + bi and k exch.
Θ←ΠΘΠT

13: D(k, k)← Θ(k, k)
Θ(k, 1 : k)← Θ(k, 1 : k)/D(k, k)

15: Θ(1 : k − 1, 1 : k − 1)← Θ(1 : k − 1, 1 : k − 1)
−D(k, k)(Θ(k, 1 : k − 1))HΘ(k, 1 : k − 1)

ε← ε + D(k, k)
17: if ε < εmin:

νWF ← ν
εmin ← ε

L← lower triangular part of Θ
21: C← blockdiag(1B , . . . ,1B , ΠνWF , . . . , ΠF+Q+L)Hequ

P ← CHLHDS(νWF),T

βWF ←
√

σ2
v‖P‖2F/Etr

PWF ← P/βWF

F WF ← 1B − (S(νWF)LS(νWF),T)−1

for i = 1, . . . , F + Q + L− νWF:
T i ← −ΠνWF ΠT

νWF+iS
(νWF+i)CP

In matrix-vector notation, we have

d̂k[n] = βgT
k Akv′[n] + βgT

k ηk[n], (8)

where the coefficients of gk[n] =
∑F

f=0 gk,fδ[n − f ] are
collected in gk = [gk,0, . . . , gk,F ]T ∈ C

F+1 and

Ak =
Q+L∑
q=0

[0F+1×q,1F+1,0F+1×Q+L−q] ⊗ aT
k,q

is the F + 1×B(F + Q + L + 1) block Toeplitz convolution
matrix corresponding to aT

k [n] = eT
k H[n] ∗ P [n], i.e., the

combination of the k-th channel and the feedforward filter.
Furthermore, ηk[n] = [ηk[n], . . . , ηk[n − F ]]T and v′[n] =
[vT[n], . . . ,vT[n − F − Q − L]]T, whose covariance matrix
is σ2

v1B(F+Q+L+1). The desired value for the modulo input
d̂k[n] of receiver k is

dk[n − ν] = eT
k ΠT

ν

(
(1B − F ) S(ν) −

NT∑
i=1

T iS
(i+ν)

)
v′[n].

The MMSE equalizers result from

gT
WF,k = argmin

gT
E
[
|dk[n − ν] − d̂k[n]|2

]
. (9)

Setting the derivative of the MSE cost function to zero leads
to

gT
WF,k = β−1xT

k AH
k

(
AkAH

k + ξk1F+1

)−1

(10)

with xT
k = eT

k ΠT
ν ((1B−F )S(ν)−∑NT

i=1 T iS
(i+ν)) and ξk =

σ2
ηk

/σ2
v . Not surprisingly, (10) contains the term β−1. We see

that the scalar β needed for the precoder update drops out
after the equalizer update.

From (10), we see that the k-th receiver must have the means
to estimate xT

k AH
k to be able to design its equalizer after the

transmitter has obtained the precoding filters from the iteration.
Thus, the training symbols must be precoded accordingly.

Clearly, above expression (10) for the equalizer is also
valid for linear precoding, but we have to perform following
substitutions: σ2

v → σ2
s and xk → S(ν),Tek.

D. Initialization of Algorithm

The most important property of a useful initialization is that
none of the equalizers may be zero, i.e., gk[n] �= 0δ[n],∀k.
A very simple initialization would be G(0)[n] = 1Bδ[n].
However, we observed that a ZF initialization leads to a
considerable reduction of necessary iterations. Via the closed-
form ZF solution presented in the sequel, we find the weights
β1, . . . , βB which are used to initialize the equalizers as
G(0)[n] = Bδ[n] = diag(β1, . . . , βB)δ[n]. With β = 1 and
G[n] = G(0)[n], we get for the estimate

d̂[n] = B

Q+L∑
i=0

S(i)HPv[n − i] + Bη[n].

Due to the ZF constraint, the MSE simplifies to

E
[
‖d[n − ν] − d̂[n]‖2

2

]
= tr(BRηBH) =

B∑
k=1

|βk|2σ2
ηk

.

Consequently, the optimization problem can be stated as

{P ZF,F ZF,T ZF,1, . . . ,T ZF,NT ,BZF, νZF,OZF} =

argmin
{P ,F ,T 1,...,T NT ,B,ν,O}

tr(BRηBH)

subject to the transmit power constraint E[‖y[n]‖2
2] =

σ2
v tr(PP H) = Etr, a constraint on the structure of F , i.e.,

SiFei = 0i, ∀i = 1, . . . , B, a constraint on the structure
of B, i.e., B =

∑B
k=1 βkekeT

k , and the ZF condition

HP = S(ν),TB−1ΠT
ν (1B−F )−

NT∑
i=1

S(ν+i),TB−1ΠT
ν T i.

The resulting ZF transmit filter can be written as

F = 1B − ΠνBS(ν)HP ,

T i = ΠνBS(ν+i)HP , ∀i = 1, . . . , NT = Q + L − ν, and

P =
B∑

i=1

β−1
bi

(
Π

(O)
ν,i S(ν)H

)+

ebi
eT

i

with Π
(O)
ν,i = ΠT

ν ST
i SiΠν . The B different receiver weights

read as

|βbi
| = 4

√
ξ−1
bi

α
(O)
ν,i,bi

√√√√∑B
m=1 σ2

v

√
ξbm

α
(O)
ν,i,bm

Etr
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with

α
(O)
ν,i,bi

=
∣∣∣∣
∣∣∣∣(Π(O)

ν,i S(ν)H
)+

ebi

∣∣∣∣
∣∣∣∣
2

2

,

bi = argmin
�∈{1,...,B}\{bi+1,...,bB}

α
(O)
ν,i,�, ∀i = B,B − 1, . . . , 1.

(11)
The precoding order optimization has to be performed for
all possible latency times ν to find the optimal latency time.
However, we set νfix = L following the arguments in [12].

E. Convergence Analysis

Let the MSE be denoted by ε(P,G), where P represents
the variables recomputed in the transmitter update and G that
recomputed in the receiver update. In the transmitter update
at the �-th iteration, the variables in P(�) are chosen to min-
imize the MSE for a given G(�−1). Thus, ε(P(�),G(�−1)) ≤
ε(P,G(�−1)) for any P and in particular,

ε(P(�),G(�−1)) ≤ ε(P(�−1),G(�−1)).

Similarly, the variables in G(�) are chosen to minimize the
MSE for fixed P(�). We can follow that ε(P(�),G(�)) ≤
ε(P(�),G) for any G and therefore,

ε(P(�),G(�)) ≤ ε(P(�),G(�−1)).

Combining the two results, we see that the MSE is monoton-
ically decreasing during the iteration:

ε(P(�),G(�)) ≤ ε(P(�),G(�−1)) ≤ ε(P(�−1),G(�−1)).

Since the MSE is lower bounded, i.e., it is non-negative, our
proposed iterative algorithm converges.3

IV. SIMULATION RESULTS

We now want to analyze our proposed signal processing
algorithm in terms of its BER over different SNR values by
using Monte-Carlo computer simulations. The BERs as seen
in the plots are obtained by averaging over 10000 different
channel realizations. The channel taps Hq were determined
by the 3GPP spatial channel model (SCM) for MIMO systems
in urban micro-cell environments and the 3GPP ‘Pedestrian A’
power delay profile [23], so that

∑Q
q=0 E[tr(HqH

H
q )] = BNa.

We “transmitted” 100 symbols per user over each channel
within an SNR range of [−10dB, 25dB]. The signal-to-noise
ratio is defined as SNR = Etr

tr(Rη) . The iterative scheme is

abandoned when |ε(�+1)
P − ε

(�+1)
G |/ε

(�+1)
P < 0.001, i.e., the

iteration depth (ID) is variable. The remaining parameters
are: B = 4 users, Na = 4 transmit antennas, Q + 1 = 4 multi-
paths, filter order L = F = 4, and 16-QAM symbols with
unit variance. Fig. 4 displays the simulation results in the
most general case. Our proposed signal processing algorithm
(“RxSP, ID=var.”) is compared to the case of pure precoding,

3At this point, it has not been proven yet, whether the algorithm converges
to the global minimum or not. In the case of pure linear processing, the
algorithm should converge to the global minimum following considerations
similar to those in [22]. In the case of nonlinear precoding, a convergence to
the global minimum cannot be guaranteed due to the suboptimal optimization
of the precoding ordering in (11).
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Fig. 4. Performance improvements for different multi-user (MU) scenarios
in a frequency-selective (FIR) channel environment. The proposed iterative
algorithm, both linear and nonlinear, shows considerable gains for symmetric
and asymmetric channels.
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Fig. 5. BER over SNR performance for different initializations of THP. Note
that Na = 7 to ensure the existence of the ZF solution. The performance of
the closed-form ZF solution, which is used for initialization, is also plotted.

i.e., G[n] = 1Bδ[n] and � = 0. Both linear and nonlinear
filters at the transmitter are treated. We observe gains between
1dB and 2dB for the linear and nonlinear case (at a BER
of 10−1 which we assume to be the target uncoded BER
for coded transmission), respectively, both for symmetric and
asymmetric channels.4 In the latter, the multi-paths of two
users are ten times stronger than those of the two others with-
out violating

∑Q
q=0 E[tr(HqH

H
q )] = BNa. We want to point

out, that in the nonlinear case, the choice of the initialization
slightly changes the BER (see Fig. 5). A ZF initialization on
the one hand decreases the number of necessary iterations by a

4This still holds true when Q = 0, i.e., the channel is frequency flat. This
is in contrast to results in [11], where a spatially uncorrelated channel model
was used and considerable gains were only observed for asymmetric channels.
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Fig. 6. The linear scheme is not capable to operate more users than transmit
antennas available at the base station. For the nonlinear scheme, we observe
a huge gain, although the system is overloaded. This is intercessional for
iterative, nonlinear signal processing algorithms.

factor of 10 (not shown here), but on the other hand results in a
slightly worse performance compared to an initialization with
an identity matrix. For linear transmit filters, the iteration depth
can be cut down by a factor of 3 without degradation. In Fig. 5,
we also compare our proposed algorithm to zero-forcing THP
without iteration, i.e., the initialization solution. Although we
allowed for different receiver weights for different users, zero-
forcing THP with scalar receivers is outperformed by all
MMSE approaches over the whole SNR range.

Last but not least, we want to show the superiority of
nonlinear, iterative algorithms in systems, that are overloaded
(see Fig. 6). To this end, we transmit to more users than
antennas available at the transmitter (B = 5, Na = 4). Fig. 6
also shows the results for the case, where the receivers design
their equalizers based on the given precoder after only one
iteration (“RxSP” without “ID”). As we can see, the linear
filters are not capable of operating such a scenario. Contrary,
the nonlinear iterative approach does not collapse, it comes
along with a huge gain, also compared to systems without
enhanced receivers or only one iteration.

V. CONCLUSIONS

We presented an iterative algorithm to compute jointly
optimized precoders and FIR equalizers for frequency se-
lective MU-MISO channels. We mainly discussed the case
of non-linear precoding (THP), since it is harder to solve,
but also gave the solutions for the linear case. We proved
the convergence of the iterative algorithm and demonstrated
that considerable gains (up to 2dB) compared to state-of-the-
art precoding approaches can be achieved by the proposed
scheme. Furthermore, we suggested a ZF initialization, that
dramatically cuts down the number of necessary iterations.
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