

Abstract— We present a new multi-rate architecture for

decoding irregular LDPC codes in IEEE 802.16e WiMax
standard. The proposed architecture utilizes the value–reuse
property of offset min-sum, block-serial scheduling of
computations and turbo decoding message passing algorithm.
The decoder has the following advantages: 55% savings in
memory, reduction of routers by 50%, and increase of
throughput by 2x when compared to the recent state-of-the-art
decoder architectures.

Index Terms— low-density parity-check (LDPC) codes, offset

min-sum, on-the-fly computation, decoder architecture, layered
decoding, turbo-decoding message passing, irregular
LDPC,IEEE 802.16e.

I. INTRODUCTION
Low-Density Parity-Check (LDPC) codes and turbo codes

are among the known near Shannon limit codes that can
achieve very low bit error rates for low signal-to-noise ratio
(SNR) applications [1]. When compared to the decoding
algorithm of Turbo codes, LDPC decoding algorithm has more
parallelization, low implementation complexity, low decoding
latency, as well as no error-floors at high SNRs. LDPC codes
are considered for virtually all the next generation
communication standards.

LDPC codes can be decoded by Gallager’s iterative two-
phase message passing algorithm (TPMP), which involves
check-node update and variable-node update as a two phase
schedule. Various algorithms are available for check-node
updates and widely used algorithms are sum of products (SP),
min-sum (MS), and Jacobian-based BCJR (named after its
discoverers Bahl, Cocke, Jelinik, and Raviv). The authors in
[2] introduced the concept of turbo decoding message passing
(TDMP, sometimes also called layered decoding) using BCJR
for their architecture-aware LDPC (AA-LDPC) codes. TDMP
offers 2x throughput and significant memory advantages when
compared to TPMP. TDMP is later studied and applied for
different LDPC codes using sum of products algorithm and its
variations in [3]-[4]. TDMP is able to reduce the number of
iterations required by up to 50% without performance
degradation when compared to the standard message passing
algorithm. A quantitative performance comparison for
different check updates was given by Chen and Fossorier et al.

[5]. Their research showed that the offset min-sum (OMS)
decoding algorithm with 5-bit quantization could achieve the
same bit-error rate (BER) performance as that of floating point
SP and BCJR with less than 0.1 dB penalty in SNR.

While fully-parallel LDPC decoder designs [6] suffered
from complex interconnect issues, various semi-parallel
implementations based on structured LDPC codes [2],[7]-
[9],[13]-[14] alleviate the interconnect complexity. All the
structured LDPC codes share the property that the H matrix
is constructed out of cyclic shifted version of identity matrix
and null matrices. In this work, we propose to apply TDMP
for the offset MS for block LDPC codes used in IEEE 802.16e
(Mobile WiMax). WiMax technology involves microwaves
for the transfer of data wirelessly. It can be used for high-
speed, mobile wireless networking at distances up to a few
miles. The main contribution of this work is an efficient
architecture, that utilizes the value–reuse property of OMS,
cyclic shift property of structured LDPC codes and
enhancement of our previous work of block serial scheduling
[7]. The resulting decoder architecture has, to our best
knowledge, the lowest requirements of logic, interconnection,
and memory.

The rest of the paper is organized as follows. Section II
introduces structured block LDPC codes, OMS decoding
algorithm, and TDMP. Section III presents the value-reuse
property and new micro-architecture structure for check-node
units (CNU). The data flow graph and architecture for TDMP
using offset MS is shown in Section IV. Section V presents
the FPGA implementation results and discussion. Section VI
concludes the paper.

II. LDPC CODES AND DECODING

A. Block LDPC Codes of WiMax
The block irregular LDPC codes have competitive

performance and provide flexibility and low
encoding/decoding complexity [10]. The entire H matrix is
composed of the same style of blocks with different cyclic
shifts, which allows structured decoding and reduces decoder
implementation complexity. Each base H matrix in block
LDPC codes has 24 columns, simplifying the implementation.
Having the same number of columns between code rates
minimizes the number of different expansion factors that have
to be supported. There are four rates supported: 1/2,2/3,3/4,
and 5/6, and the base H matrix for these code rates are

VLSI Architectures for Layered Decoding for
Irregular LDPC Codes of WiMax

Kiran K. Gunnam1, Gwan S. Choi1, Mark B. Yeary2 and Mohammed Atiquzzaman3

1Department of ECE, Texas A&M University, College Station, TX-77843
2School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK-73109

3School of Computer Science, University of Oklahoma, Norman, OK-73109

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

4542

defined by systematic fundamental LDPC code of bM -by-

bN where bM is the number of rows in the base matrix and

bN is the number of columns in the base matrix. The
following base matrices are specified: 12 x 24, 8 x 24, 6 x 24,
and 4 x 24. The base model matrix is defined for the largest
code length (N = 2304) of each code rate. The set of shifts in
the base model matrix are used to determine the shift sizes for
all other code lengths of the same code rate. Each base model
matrix has 24 (= bN) block columns and bM block rows.
The expansion factor z is equal to N/24 for code length N. The
expansion factor varies from 24 to 96 in the increments of 4,
yielding codes of different length. For instance, the code with
length N = 2304 has the expansion factor z=96 [10]. Thus,
each LDPC code in the set of WiMax LDPC codes is defined
by a matrix H as

b

bbbb

b

b

H

NMMM

N

N

P

PPP

PPP
PPP

H =





















=

,2,1,

,22,21,2

,12,11,1

 (1)

where jiP , is one of a set of z-by-z cyclically right shifted
identity matrices or a z-by-z zero matrix. Each 1 in the base
matrix bH is replaced by a permuted identity matrix while

each 0 in bH is replaced by a negative value to denote a z-by-
z zero matrix.

B. Offset min-sum decoding algorithm
Assume binary phase shift keying (BPSK) modulation (a 1 is
mapped to -1 and a 0 is mapped to 1) over an additive white
Gaussian noise (AWGN) channel. The received values ny are

Gaussian with mean 1±=nx and variance 2σ . The
reliability messages used in belief propagation (BP)-based
offset min-sum algorithm can be computed in two phases: 1.
check-node processing and 2. variable-node processing. The
two operations are repeated iteratively until the decoding
criterion is satisfied. This is also referred to as standard
message passing or two-phase message passing (TPMP). For

the ith iteration, ()i
nmQ is the message from variable node n to

check node m , ()i
mnR is the message from check node m to

variable node n ,)(nΜ is the set of the neighboring check
nodes for variable node n , and)(mΝ is the set of the
neighboring variable nodes for check node m . The message
passing for TPMP based on OMS is described in the following
three steps as given in [11] to facilitate the discussion on
TDMP in the next section:
Step 1. Check-node processing: for each m and)(mn Ν∈ ,

() () ()()0,max βκδ −= i
mn

i
mn

i
mnR , (2)

()

()
()() 1min

\
i i

mn mn
iR Qn mn m n

κ −= = ′′∈ Ν
, (3)

where β is a positive constant and depends on the code
parameters [5]. In general, for the irregular codes, we will also
apply the correction on variable node messages. The sign of
check-node message ()i

mnR is defined as

() ()()
()

1

\

sgni i
mn n m

n m n

Qδ −
′

′∈Ν

 
=   
 

∏ ,

Step 2. Variable-node processing: for each n and)(nm Ν∈ ,
 () () ()

()

0

\

i i
nm n m n

m m m

Q L R ′
′∈Μ

= + ∑ , (4)

where the log-likelihood ratio of bit n is ()
nn yL =0 .

Step 3. Decision: for final decoding
() ()

()
∑
∈

+=
nMm

i
mnnn RLP 0 . (5)

A hard decision is taken by setting ˆ 0nx = if () 0n nP x ≥ ,

and ˆ 1nx = if () 0n nP x < . If 0=THx , the decoding

process is finished with ˆnx as the decoder output; otherwise,
repeat steps (1-3). If the decoding process doesn’t end within
predefined maximum number of iterations, maxit , stop and
output an error message flag and proceed to the decoding of
the next data frame.

In TDMP, the block LDPC with j block rows can be
viewed as concatenation of j layers or constituent sub-codes
similar to observations made for AA-LDPC codes in [2]. In
TDMP, after the check-node processing is finished for one
block row, the messages are immediately used to update the
variable nodes (2), whose results are then provided for
processing the next block row of check nodes (1). This differs
from TPMP, where all check nodes are processed first and
then the variable-node messages will be computed. Each
decoding iteration in the TDMP is composed of j number of
sub-iterations. In the beginning of the decoding process,
variable messages are initialized as channel values and are
used to process the check nodes of the first block row. After
completion of that block row, variable messages are updated
with the new check- node messages. This concludes the first
sub-iteration. In similar fashion, the result of check-node
processing of the second block row is immediately used in the
same iteration to update the variable-node messages for third
block row. The completion of check-node processing and
associated variable-node processing of all block rows
constitutes one iteration.
The TDMP can be described with (6-9):

)0()0(
, ,0 nnnl LPR == [Initialization for each new received

data frame], (6)

max,,2,1 iti =∀ , [Iteration loop]

1,2, ,l j∀ = , [Sub-iteration loop]

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

4543

kn ,,2,1=∀ , [Block column loop]
()[] [] ()1

,
),(),(

,
−−= i
nl

nlS
n

nlSi
nl RPQ , (7)

() ()[] ()()knQfR
nlSi

nl
i
nl ,,2,1,

,

,, =′∀=
′

′ , (8)

[] ()[] ()i
nl

nlSi
nl

nlS
n RQP ,

),(
,

),(
+= , (9)

where the vectors ()i
nlR ,
 and ()i

nlQ ,
 represent all the R and Q

messages in each non-zero block of H matrix, (,)s l n denotes
the shift coefficient for the lth block row and nth non-zero block
of the H matrix (note that null blocks in the H matrix need
not be processed); []),(1

,
nlSi

nlR − denotes that the vector 1
,
−i
nlR is

cyclically shifted up by the amount (,)s l n , k is the check-
node degree of the block row. A negative sign on (,)s l n
indicates that it is cyclic down shift (equivalent cyclic left
shift).)(⋅f denotes the check-node processing, which can be
done using BCJR, SP or MS. For the proposed work we use
MS as defined in (1-3).

III. VALUE-REUSE PROPERTIES OF CHECK-NODE PROCESSING

Fig 1. Serial CNU for OMS using value-reuse property.
This section presents the micro-architecture of serial CNU for
OMS, which was used in our recent work on TPMP
architecture [11]-[12]. The same CNU can be used in TDMP
architecture presented in the next section. For each check node
m , ()i

mnR ()mn Ν∈∀ takes only 2 values. The least

minimum and the second least minimum of the entire set of
the messages can be defined from various variable-nodes to
the check-node m as,

()

()
()11 min .i

m
iM Qmnn m
−= ′′∈ Ν

, (10)

()

()
()12 2 min .i

m
iM nd Qmnn m

−= ′′∈ Ν
 (11)

Now (3) becomes
()i
mnR = ()1 i

mM , () indexMmn _1\Ν∈∀ (13)

 ()2 i
mM= , indexMn _1= .

Since ()mn Ν∈∀ , ()i
mnδ takes a value of either 1+ or 1− and

()i
mnR takes only two values. Equation (2) gives rise to only

three possible values for the whole set ()i
mnR ()mn Ν∈∀ . In a

VLSI implementation, this property greatly simplifies the
logic and reduces the memory. Since only the two least
minimum numbers need to be identified, the number of
comparisons can be reduced, while in the CNU proposed in
[8], 2k comparators are used to compute (3) associated with
that check node. We present efficient serial implementations
for CNU. Fig. 1(a) shows the CNU micro-architecture for (3,
19) code. In the first 19 clock cycles of the check-node
processing, incoming variable messages are compared with
the two up-to-date least minimum numbers (partial state, PS)
to generate the new partial state, M1, which is the least
minimum value, M2, which is the second minimum value and
index of M1. The final state (FS) is then computed by
offsetting the partial state. It should be noted that the final

state includes only ()1 i
mM , ()1 i

mM− , ()2 i
mM± with offset

correction. Figure 1(b) is the block diagram of the same
architecture. M1_M2 finder computes the two least numbers
and stores them in partial state. The offset module applies the
offset correction, and stores the results in the final state
module. R Selector then selects the output R messages. In
operation, the final state and partial state will operate on
different check nodes simultaneously. Normally CNU (check-
node unit) processing is done using the signed magnitude
arithmetic for (1-2) and VNU (variable-node unit processing)
(4-5) is done in 2’s
complement arithmetic. This requires 2’s complement to
signed conversion at the inputs of CNU and signed to 2’s
complement at the output of CNU. In the proposed scheme,
2’s complement is applied to only 2 values instead of k
values at the output of CNU. The value re-use property also
reduces the memory requirement significantly.
Conventionally, the number of messages each CNU stores is
equal to the number of edges it has, that is k . Now only four
units of information are needed: the three values that ()i

mnR

may take and the location of ()1 i
mM The memory savings due

to this value re-use property of OMS [11]-[12] for WiMax
LDPC codes is quantified in section V.

IV MULTI-RATE DECODER ARCHITECTURE USING TDMP
AND OMS

A. Architecture Description
 A new data flow graph is designed based on the TDMP and
on the value-reuse property of the OMS algorithm described
above(see Fig. 2). For ease of discussion, we will illustrate the
architecture for the specific structured code denoted as rate ¾
code A. Note that all the codes have the same number of block
columns. By changing the parameter k supplied to the CNU
and by varying the parameter j, the number of block rows to
be processed, this architecture supports all the codes in the
802.16e standard. For rate 3/4 code A of length 1152 has j =6

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

4544

block rows and check-node degree of the 6 block rows is
given by k_v= [13 12 12 12 12 13] and the block size is z
= 48. Assume that the desired parallelization is M=24. The
cyclic shifter needed is MM × . The zz × cyclic shift is
achieved with cyclic shifts of MM × in combination with
the appropriate address generation and this works for only
z=24,48 and 96. The complete P vector of size z is available
in M memory banks of depth 2)/(== Mzceils . The
shifter is constructed as a cyclic down logarithmic shifter to
achieve the cyclic shifts specified by the binary encoded value
of the shift. The logarithmic shifter is composed of

)(2log M stages of M 2-in-1 multiplexers. Cyclic up shift by
u can be simply achieved by doing cyclic down shift with

uz − on the vector of size. Say now if we want to change the
parallelization M to 48. If we construct a single 48 x 48 cyclic
shifter, it can only handle z=48. So, we use two 24 x 24 cyclic
logarithmic shifters to construct the 48 x 48 shifter while
being able to work as two independent 24 x24 shifters to
support the expansion factor z=24. We need to introduce some
additional multiplexers to achieve this. This way the decoder
can support the expansion factors of 24, 48 and 96. Similarly,
the cyclic shifter implementation for M=96, is constructed out
of 4 24 x 24 cyclic logarithmic shifters. One should note that it
is not possible to achieve cyclic shifts specified by

(,)s l n ,(=0,1,..z-1)on a vector of length z with a cyclic shifter
of size MM × if M is not a integer multiple of z.

So to be able to accommodate different shifts needed, we
can use a Benes network as in [15], which is of complexity

1)(2log2 −M stages of M 2-in-1 multiplexers. A memory
can be used to store control inputs needed for different shifts
in case of supporting one expansion factor [2],[15].[2] uses
Omega network, which is less complex than Benes
network[15]. However both [12] and [15] will support only
base H matrix. Note that this memory for providing control

signals to this network is equal to ()1)(2log2
2

−MM
 bits

for every shift value that needs to be supported. This will be a
very huge requirement for supporting all the WiMax codes.
Note that, the memory needed for storing control signals for
Omega network is around 1.22 mm2 in out of the decoder chip
area of 14.1 mm2.[2]. This is equivalent to storing the control
signals for one expansion factor and one base H matrix. So if
the same kind of scheme is used to support 19 different
expansion factors and 6 types of base H matrices in run time,
the control signal memory needs approximately 139.08 mm2.

So this approach clearly will not work. We propose a simpler
approach to generate the control signals using a Master-Slave
Benes router (Fig. 4). Assume that we need to perform a cyclic
shift of 2 on a message vector of length 4 using a 8 x 8 Slave
Benes network. Supply the integers(2,3,0,1,4,5,6,7) to the
Master Benes network which is always configured to sort the
inputs and output (0,1,2,…7). During the sorting process, the
Master Benes network can generate the control signals on by
virtue of comparators. These signals can be used in the Master
network to accomplish sorting. Also these signals can be used
in the Slave network to achieve the desired shift of 2 Note that

the complexity of this approach adds additional logic
requirements of a decoder that is optimized for supporting one
or limited number of base H matrices, i.e., when we replace
the logarithmic cyclic shifter with the Master-Slave Benes
cyclic shifter. For more implementation details, please refer to
[16-17].

B. Decoder Operation
All the check-node processing and variable-node processing

is done in a time division multiplexed fashion for each sub-
vector of length as shown in Fig. 3. To process a block in a
block row (layer), it takes s clock cycles. A check-node
process unit (CNU) is the serial CNU based on OMS
described in the previous section. The CNU array is composed
of M serial CNUs described in section 3. As shown in the
pipeline (Fig. 3), the CNU array operates on the R messages
and partial states of two adjacent block rows. While the final
state has dependency on partial states, P and Q messages are
dependent on the final states. Since final state of previous
block rows, in which the compact information for CNU
messages is stored, is needed for TDMP, it is stored in the FS
memory. There is one memory bank of depth j , which is 12
in this case, connected with each CNU. The FS memory for
the entire CNU array is implemented as M banks of
memory with depth js and word length 20 bits, constituted of
{M1, -M1, +/-M2} with offset correction, and M1 index. In
addition, we need another memory with M banks with depth
equal to s to store the partial state, with the word length 16
bits as we need to store and retrieve (M1, M2, M1 index and
cumulative sign). Note that we need to store partial state for
only one block row at any time. In the decoding process, a
block row of check nodes are processed in serial fashion using
M CNUs as in (8), the output of the CNU is also in serial
form. The CNU array will start the partial state computation
for next block row as soon as the partial state processing for
the previous block row is done. The Q messages that are fed in
the present block row/layer are dependant on R messages of
the current layer as well as the R messages belonging to the
different blocks of different layers. perform the R selection.
This can be accomplished with out-of-order processing of Rnew
message generation. An R select unit generates the R
messages for k edges of a check node from three possible
values stored in final state memory word associated with that
particular check node in a serial fashion. Its functionality and
structure is the same as the block denoted as R select in CNU.
This unit can be treated as a de-compressor of the check-node
edge information, which is stored in compact form in FS
memory.It is possible to do the decoding using a different
sequence of layers instead of processing the layers from 1 to j
which is typically used to increase the parallelism such that it
is possible to process two block rows simultaneously [4]. In
this work, we use the concept of re-ordering of layers for
increased parallelism as well as for low complexity memory
implementation and also for inserting additional pipeline
stages without incurring overhead.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

4545

Fig. 2: Multi-rate LDPC decoder architecture for Block

LDPC codes

 Fig. 3. Pipeline for the layered decoding for irregular QC-
LDPC codes(Block LDPC codes of IEEE 802.16e)

Fig.4. Proposed Master-slave router to support different
cyclic shifts that arise due to the a wide range of expansion
factors z(=24,28,..,96) and shift coefficients(0,1,..,z-1).

V DISCUSSION AND FPGA IMPLEMENTATION RESULTS
Table I gives the FPGA implementation results. The

proposed TDMP architecture features large memory savings,
up to 2x throughput advantage, as well as 50% less
interconnection complexity. The TDMP permits us to use a
running sum, which is initialized to channel log-likelihood
ratio (LLR) values in the first iteration. So there is no memory
needed to store the channel LLR values as these values are
implicitly stored in the Q messages. Since the maximum
number of Q messages that need to be stored are equal to

5×× ob zN , as opposed to storing 5×× onz zN messages in

TPMP architectures where bN is the maximum number of

block columns of all the codes that need to be supported, oz

is the maximum expansion factor of the base matrix, nzN is
the number of non-zero blocks by considering the base H
matrix, which has the maximum number of non-zero blocks
among all the base H matrices that need to be supported. For
WiMax LDPC codes, these parameters
are 24=bN , 96oz = , and 76nzN = . So, the total savings
in Q memory are 68% as a direct result of employing TDMP
proposed in [2].

Instead of storing all the R messages, the compressed
information cumulative sign, M1, -M1, +/-M2, and index of
M1 is stored. R select unit can generate the R message by the
use of an index comparator and the XOR of the cumulative
sign and the sign bit of the corresponding Q message which
comes from the sign FIFO. The total savings in R memory is

25 [5 3 (log ()) 1] 100%
5

l o l o

l

kN z k ceil k N z
kN

− + × + + × , where

lN is the number of layers or block rows by considering the
base H matrix, which has the maximum number of non-zero
blocks among all the base H matrices that need to be
supported. The factor 5 comes due to the use of 5-bit
quantization for R messages. Among the different base LDPC
codes in WiMax, rate 5/6 code has the maximum check-node
degree, 19=k and the maximum number of block rows in
the H matrix is 12. So the savings of R memory is 57%.

Also note that, due to the nature of block serial scheduling
and the scheduling of layered processing in the architecture,
there is only need to store the P messages for only two blocks.
The total savings of memory bits
is () () %1006626 ×××××−×× oboob zNzzN . Note
that the factor 6 comes due to the number of bits used to
represent the P message. So the savings are around 91% as

19max =k and, z0=96 for block LDPC codes in 802.16e.
The total savings in memory accounting for R memory, Q

memory, and P memory, when compared to TPMP
architectures based on SP [13] and min-sum [7], [8],[14] is
63%.When compared to TDMP architecture based on BCJR
[2], the total memory savings is 55% since both architectures
have the same savings in Q memory.

TABLE I

FPGA IMPLEMENTATION RESULTS OF THE MULTI-
RATE DECODER (supports z=24,48 and 96 and all the code

rates) (Device, Xilinx 2V8000ff152-5, frequency 110MHz)
Used

M=24 M=48 M=96
Available

Slices 1640 3239 6568 46592
LUT 2982 5664 11028 93184
SFF 1582 3165 6330 93184

BRAM 38 73 100 168
Memory (bits) 65760 65760 60288

Through-put (Mbps) 41~70 57~139 61~278
In terms of throughput and interconnect advantage, to

achieve the same BER as that of TPMP schedule on OMS,

R selection for Rnew operates out-of-order to feed the data for PS
processing of next layer

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

4546

TDMP schedule on OMS needs half the number of iterations.
This essentially doubles the throughput when compared to the
TDMP architecture. Moreover, this architecture requires only
one cyclic shifter instead of two cyclic shifters [2], [4]. Note
that the architecture features a partial state memory when
compared to other architectures. However, this is small as it
must contain the partial state for only one block row at any
time, is equal to 1536 bits. In the case of parallelization equal
to M= z0, then there is no need for P buffer. Also, FS memory
bank need to store only R messages belonging to 11 layers.
The P buffer is not needed as the shifter employed is

oo zz × and it can perform the shift without the need of a buffer
since the input messages are available in the chunks of z0.
There is no need for PS memory bank, since there are z0 CNU
to handle the maximum number of rows in a block row (z0),
and consequently there is no time folding. The data throughput
results are presented in Fig. 5. The implementation has a
performance penalty of less than 0.15 dB in SNR when
compared to floating point TDMP decoding. User data
throughput ut is given by du tratet ×= , where dt is

decoded throughput and is given by ()CCIitNftd max/= ,
where N is the number of iterations, f is the decoder chip
frequency and CCI stands for number of clock cycles required
to complete one iteration. CCI is given by

bnz N
M
zNCCI 2+



= . The distinction of this

architecture is that a near optimal minimal number of clock
cycles are achieved when the expansion factor is a multiple of
parallelization of the decoder- Note that some codes support
processing of two layers in parallel and the decoder can
accommodate this if sufficient parallelism is available as can
be seen from Fig. 5. It is also possible to exploit the
parallelism completely for other expansion factors also when
more than one frame can be processed simultaneously-
however this requires additional buffering, so this scheme is
not incorporated in the present design.

30 40 50 60 70 80 90

50

100

150

200

250

300

z factor of code

U
se

r D
at

a
th

ro
ug

hp
ut

 (M
bp

s)

rate 1/2
rate 2/3 A
rate 2/3 B
rate 3/4 A
rate 3/4 B
rate 5/6

M=24

M=96

Fig. 5. User data throughput of the proposed decoder vs. the
expansion factor of the code,z, for different numbers of
decoder parallelization, M..

VI CONCLUSION
We present a memory efficient multi-rate decoder

architecture for turbo decoding message passing of block
LDPC codes of IEEE 802.16e using the OMS algorithm for
check-node update. Our work offers several advantages when
compared to the other-state-of -the-art LDPC decoders in
terms of significant reduction in logic, memory, and
interconnect. This work retains the key advantages offered by
the original TDMP work – however, our contribution is in
using the value-reuse properties of offset MS algorithm and
devising a new TDMP decoder architecture to offer significant
additional benefits.

VII REFERENCES
[1] D.J.C. MacKay and R.M. Neal. “Near Shannon Limit Performance of Low
Density Parity Check codes” Electronics Letters, volume 32, pages 1645-
1646, Aug 1996.
[2] M. Mansour and N. Shanbhag, "A 640-Mb/s 2048-bit programmable
LDPC decoder chip," IEEE Journal of Solid-State Circuits, vol. 41, no.3, pp.
684- 698, March 2006.
[3] H. Sankar and K.R. Narayanan, "Memory-efficient sum-product decoding
of LDPC codes," Communications, IEEE Transactions on, vol.52, no.8pp.
1225- 1230, Aug. 2004
[4] Hocevar, D.E., "A reduced complexity decoder architecture via layered
decoding of LDPC codes," Signal Processing Systems, 2004. SIPS 2004.
IEEE Workshop on , .pp. 107- 112, 13-15 Oct. 2004
[5] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier and X. Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. on
Communications, vol. 53, pp. 1288-1299, Aug. 2005.
[6] Blanksby, A.J.; Howland ,C.J, A 690-mW 1-Gb/s 1024-b, rate-1/2 low-
density parity-check code decoder”, IEEE J. Solid-State Circuits, Vol.37,
Iss.3, Mar 2002 Pages:404-412
[7] K. Gunnam, G. Choi and M. B. Yeary, “An LDPC decoding schedule for
memory access reduction,” IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, pp- 173-6 vol. 5, May 2004.
[8] M. Karkooti and J. Cavallaro, “Semi-parallel reconfigurable architectures
for real-time LDPC decoding,” Proceedings of International Conference on
Information Technology, Coding and Computing, vol. 1, pp. 579-585, 2004.
[9] T. Brack, F. Kienle and N. Wehn. “Disclosing the LDPC Code Decoder
Design Space”, Design Automation and Test in Europe (DATE) Conference,
pp. 200-205, March 2006.
[10] “Part 16: air interface for fixed and mobile broadband wireless access
systems amendment for physical and medium access control layers for
combined fixed and mobile operation in licensed bands”, IEEE P802.16e-
2005, October 2005
[11] K. Gunnam, W. Wang, E. Kim, G. Choi and M.B. Yeary, “Decoding of
Quasi-cyclic LDPC Codes using On-The-Fly Computation,” Accepted for
40th Asilomar Conf. on Signals, Systems and Computers, October 2006.
[12] K. Gunnam and G. Choi, “A Low Power Architecture for Min-Sum
Decoding of LDPC Codes,” TAMU, ECE Technical Report, May, 2006,
TAMU-ECE-2006-02. [Online]. Available: http://dropzone.tamu.edu/te
hpubs.
[13] L. Yang; M. Shen; H. Liu, and C. Shi, "An FPGA implementation of
low-density parity-check code decoder with multi-rate capability,"
Proceedings of the Asia and South Pacific Design Automation Conference,
.pp. 760- 763 Vol. 2, 18-21 Jan. 2005
[14] H. Zhong and T. Zhang, "Block-LDPC: A practical LDPC coding system
design approach", IEEE Trans. on Circuits and Systems I,vol. 52, no. 4, pp.
766-775, April, 2005
[15] G. Malema and M. Liebelt, "Interconnection Network for Structured
Low-Density Parity-Check Decoders," Asia-Pacific Conference on
,Communications, vol., no.pp. 537- 540, 03-05 Oct. 2005
[16] K. Gunnam, G. Choi, M. B. Yeary and M.Atiquzzaman, “VLSI
architectures for layered decoding for irregular LDPC codes of WiMax”,
TAMU, ECE Technical Report, July 2006, TAMU-ECE-2006-08.
[17] K. Gunnam, “Area and energy efficient VLSI architectures for low-
density parity-check decoders using an on-the-fly computation,” PhD
Dissertation, Texas A&M University, October 2006.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

4547

