
  
Abstract— We present a new multi-rate architecture for 

decoding irregular LDPC codes in IEEE 802.16e WiMax 
standard. The proposed architecture utilizes the value–reuse 
property of offset min-sum, block-serial scheduling of 
computations and turbo decoding message passing algorithm. 
The decoder has the following advantages: 55% savings in 
memory, reduction of routers by 50%, and increase of 
throughput by 2x when compared to the recent state-of-the-art 
decoder architectures.  

 
Index Terms— low-density parity-check (LDPC) codes, offset 

min-sum, on-the-fly computation, decoder architecture, layered 
decoding, turbo-decoding message passing, irregular 
LDPC,IEEE 802.16e. 
 

I. INTRODUCTION 
Low-Density Parity-Check (LDPC) codes and turbo codes 

are among the known near Shannon limit codes that can 
achieve very low bit error rates for low signal-to-noise ratio 
(SNR) applications [1]. When compared to the decoding 
algorithm of Turbo codes, LDPC decoding algorithm has more 
parallelization, low implementation complexity, low decoding 
latency, as well as no error-floors at high SNRs. LDPC codes 
are considered for virtually all the next generation 
communication standards.  

LDPC codes can be decoded by Gallager’s iterative two-
phase message passing algorithm (TPMP), which involves 
check-node update and variable-node update as a two phase 
schedule. Various algorithms are available for check-node 
updates and widely used algorithms are sum of products (SP), 
min-sum (MS), and Jacobian-based BCJR (named after its 
discoverers Bahl, Cocke, Jelinik, and Raviv). The authors in 
[2] introduced the concept of turbo decoding message passing 
(TDMP, sometimes also called  layered decoding) using BCJR 
for their architecture-aware LDPC (AA-LDPC) codes. TDMP 
offers 2x throughput and significant memory advantages when 
compared to TPMP. TDMP is later studied and applied for 
different LDPC codes using sum of products algorithm and its 
variations in [3]-[4]. TDMP is able to reduce the number of 
iterations required by up to 50% without performance 
degradation when compared to the standard message passing 
algorithm. A quantitative performance comparison for 
different check updates was given by Chen and Fossorier et al. 
 

 

[5].  Their research showed that the offset min-sum (OMS) 
decoding algorithm with 5-bit quantization could achieve the 
same bit-error rate (BER) performance as that of floating point 
SP and BCJR with less than 0.1 dB penalty in SNR.  

While fully-parallel LDPC decoder designs [6] suffered 
from complex interconnect issues, various semi-parallel 
implementations based on structured LDPC codes [2],[7]-
[9],[13]-[14] alleviate the interconnect complexity. All the 
structured LDPC codes share the property that the H  matrix 
is constructed out of cyclic shifted version of identity matrix 
and null matrices. In this work, we propose to apply TDMP 
for the offset MS for block LDPC codes used in IEEE 802.16e 
(Mobile WiMax). WiMax technology involves microwaves 
for the transfer of data wirelessly. It can be used for high-
speed, mobile wireless networking at distances up to a few 
miles. The main contribution of this work is an efficient 
architecture, that utilizes the value–reuse property of OMS, 
cyclic shift property of structured LDPC codes and 
enhancement of our previous work of block serial scheduling 
[7]. The resulting decoder architecture has, to our best 
knowledge, the lowest requirements of logic, interconnection, 
and memory.  

The rest of the paper is organized as follows. Section II 
introduces structured block LDPC codes, OMS decoding 
algorithm, and TDMP. Section III presents the value-reuse 
property and new micro-architecture structure for check-node 
units (CNU). The data flow graph and architecture for TDMP 
using offset MS is shown in Section IV. Section V presents 
the FPGA implementation results and discussion. Section VI 
concludes the paper. 

II. LDPC CODES AND DECODING 

A. Block LDPC Codes of WiMax 
The block irregular LDPC codes have competitive 

performance and provide flexibility and low 
encoding/decoding complexity [10]. The entire H matrix is 
composed of the same style of blocks with different cyclic 
shifts, which allows structured decoding and reduces decoder 
implementation complexity. Each base H matrix in block 
LDPC codes has 24 columns, simplifying the implementation. 
Having the same number of columns between code rates 
minimizes the number of different expansion factors that have 
to be supported. There are four rates supported: 1/2,2/3,3/4, 
and 5/6, and the base H matrix for these code rates are  
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defined by  systematic fundamental LDPC code of bM -by-

bN  where bM  is the number of rows in the base matrix and 

bN is the number of columns in the base matrix. The 
following base matrices are specified: 12 x 24, 8 x 24, 6 x 24, 
and 4 x 24. The base model matrix is defined for the largest 
code length (N = 2304) of each code rate. The set of shifts in 
the base model matrix are used to determine the shift sizes for 
all other code lengths of the same code rate. Each base model 
matrix has 24 (= bN ) block columns and bM  block rows. 
The expansion factor z is equal to N/24 for code length N. The 
expansion factor varies from 24 to 96 in the increments of 4, 
yielding codes of different length. For instance, the code with 
length N = 2304 has the expansion factor z=96 [10]. Thus, 
each LDPC code in the set of WiMax LDPC codes is defined 
by a matrix H as  
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where jiP ,  is one of a set of z-by-z  cyclically right shifted 
identity matrices or a  z-by-z zero matrix. Each 1 in the base 
matrix bH  is replaced by a permuted identity matrix while 

each 0 in  bH is replaced by a negative value to denote a z-by-
z zero matrix. 

B.  Offset min-sum decoding algorithm 
Assume binary phase shift keying (BPSK) modulation (a 1 is 
mapped to -1 and a 0 is mapped to 1) over an additive white 
Gaussian noise (AWGN) channel.  The received values ny are 

Gaussian with mean 1±=nx  and variance 2σ . The 
reliability messages used in belief propagation (BP)-based 
offset min-sum algorithm can be computed in two phases: 1. 
check-node processing and 2. variable-node processing. The 
two operations are repeated iteratively until the decoding 
criterion is satisfied. This is also referred to as standard 
message passing or two-phase message passing (TPMP). For 

the ith iteration, ( )i
nmQ  is the message from variable node n  to 

check node m , ( )i
mnR  is the message from check node m  to 

variable node n , )(nΜ is the set of the neighboring check 
nodes for variable node n , and )(mΝ is the set of the 
neighboring variable nodes for check node m .  The message 
passing for TPMP based on OMS is described in the following 
three steps as given in [11] to facilitate the discussion on 
TDMP in the next section: 
Step 1. Check-node processing: for each m and )(mn Ν∈ , 

( ) ( ) ( )( )0,max βκδ −= i
mn

i
mn

i
mnR  ,                                    (2) 

( )

( )
( )( ) 1min

\
i i

mn mn
iR Qn mn m n

κ −= = ′′∈ Ν
,                                        (3)      

where β  is a positive constant and depends on the code 
parameters [5]. In general, for the irregular codes, we will also 
apply the correction on variable node messages. The sign of 
check-node message ( )i

mnR  is defined as  
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Step 2. Variable-node processing: for each n and )(nm Ν∈ , 
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where the log-likelihood ratio of bit n  is ( )
nn yL =0 . 

Step 3. Decision:  for final decoding 
( ) ( )

( )
∑
∈

+=
nMm

i
mnnn RLP 0 .                (5) 

A hard decision is taken by setting  ˆ 0nx =  if ( ) 0n nP x ≥ , 

and  ˆ 1nx =  if ( ) 0n nP x < . If 0=THx , the decoding 

process is finished with ˆnx  as the decoder output; otherwise, 
repeat steps (1-3). If the decoding process doesn’t end within 
predefined maximum number of iterations, maxit , stop and 
output an error message flag and proceed to the decoding of 
the next data frame. 

In TDMP, the block LDPC with j  block rows can be 
viewed as concatenation of j  layers or constituent sub-codes 
similar to observations made for AA-LDPC codes in [2]. In 
TDMP, after the check-node processing is finished for one 
block row, the messages are immediately used to update the 
variable nodes (2), whose results are then provided for 
processing the next block row of check nodes (1). This differs 
from TPMP, where all check nodes are processed first and 
then the variable-node messages will be computed. Each 
decoding iteration in the TDMP is composed of j  number of 
sub-iterations. In the beginning of the decoding process, 
variable messages are initialized as channel values and are 
used to process the check nodes of the first block row. After 
completion of that block row, variable messages are updated 
with the new check- node messages. This concludes the first 
sub-iteration. In similar fashion, the result of check-node 
processing of the second block row is immediately used in the 
same iteration to update the variable-node messages for third 
block row. The completion of check-node processing and 
associated variable-node processing of all block rows 
constitutes one iteration.  
The TDMP can be described with (6-9): 

)0()0(
, ,0 nnnl LPR ==  [Initialization for each new received 

data frame],                            (6) 

max,,2,1 iti =∀ , [Iteration loop] 

1,2, ,l j∀ = , [Sub-iteration loop] 
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where the vectors ( )i
nlR ,
 and ( )i

nlQ ,
 represent all the R and Q 

messages in each non-zero block of H matrix, ( , )s l n  denotes 
the shift coefficient for the lth block row and nth non-zero block 
of  the H matrix (note that null blocks in the H matrix need 
not be processed); [ ] ),(1

,
nlSi

nlR − denotes that the vector 1
,
−i
nlR  is 

cyclically shifted up by the amount ( , )s l n , k is the check-
node degree of the block row. A negative sign on ( , )s l n  
indicates that it is cyclic down shift (equivalent cyclic left 
shift). )(⋅f denotes the check-node processing, which can be 
done using BCJR, SP or MS. For the proposed work we use 
MS as defined in  (1-3).  

III. VALUE-REUSE PROPERTIES OF CHECK-NODE PROCESSING 

Fig 1.  Serial CNU for OMS using value-reuse property. 
This section presents the micro-architecture of serial CNU for 
OMS, which was used in our recent work on TPMP 
architecture [11]-[12]. The same CNU can be used in TDMP 
architecture presented in the next section. For each check node 
m , ( )i

mnR  ( )mn Ν∈∀ takes only 2 values. The least 

minimum and the second least minimum of the entire set of 
the messages can be defined from various variable-nodes to 
the check-node m as, 

( )

( )
( )11 min .i

m
iM Qmnn m
−= ′′∈ Ν

,              (10) 
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m
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Now  (3) becomes  
( )i
mnR = ( )1 i

mM , ( ) indexMmn _1\Ν∈∀               (13)              

       ( )2 i
mM= , indexMn _1= .                                               

Since ( )mn Ν∈∀ , ( )i
mnδ takes a value of either 1+  or 1−  and 

( )i
mnR takes only two values. Equation (2) gives rise to only 

three possible values for the whole set ( )i
mnR  ( )mn Ν∈∀ . In a 

VLSI implementation, this property greatly simplifies the 
logic and reduces the memory. Since only the two least 
minimum numbers need to be identified, the number of 
comparisons can be reduced, while in the CNU proposed in 
[8], 2k comparators are used to compute  (3) associated with 
that check node. We present efficient serial implementations 
for CNU. Fig. 1(a) shows the CNU micro-architecture for (3, 
19) code. In the first 19 clock cycles of the check-node 
processing, incoming variable messages are compared with 
the two up-to-date least minimum numbers (partial state, PS) 
to generate the new partial state, M1, which is the least 
minimum value, M2, which is the second minimum value and 
index of M1. The final state (FS) is then computed by 
offsetting the partial state. It should be noted that the final 

state includes only ( )1 i
mM , ( )1 i

mM− , ( )2 i
mM± with offset 

correction. Figure 1(b) is the block diagram of the same 
architecture. M1_M2 finder computes the two least numbers 
and stores them in partial state. The offset module applies the 
offset correction, and stores the results in the final state 
module. R Selector then selects the output R  messages. In 
operation, the final state and partial state will operate on 
different check nodes simultaneously. Normally CNU (check-
node unit) processing is done using the signed magnitude 
arithmetic for (1-2) and VNU (variable-node unit processing)  
(4-5) is done in 2’s  
complement arithmetic. This requires 2’s complement to 
signed conversion at the inputs of CNU and signed to 2’s 
complement at the output of CNU. In the proposed scheme, 
2’s complement is applied to only 2 values instead of k  
values at the output of CNU. The value re-use property also 
reduces the memory requirement significantly. 
Conventionally, the number of messages each CNU stores is 
equal to the number of edges it has, that is k . Now only four 
units of information are needed: the three values that ( )i

mnR  

may take and the location of ( )1 i
mM The memory savings due 

to this value re-use property of OMS [11]-[12] for WiMax 
LDPC codes is quantified in section V.   

IV  MULTI-RATE DECODER ARCHITECTURE USING TDMP 
AND OMS  

A. Architecture Description 
  A new data flow graph is designed based on the TDMP and 
on the value-reuse property of the OMS algorithm described 
above(see Fig. 2). For ease of discussion, we will illustrate the 
architecture for the specific structured code denoted as rate ¾ 
code A. Note that all the codes have the same number of block 
columns. By changing the parameter k supplied to the CNU 
and by varying the parameter j, the number of block rows to 
be processed, this architecture supports all the codes in the 
802.16e standard.  For rate 3/4 code A of length 1152 has j =6 
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block rows and check-node degree of the 6 block rows is 
given by  k_v= [13 12 12 12 12 13] and the block size is z 
= 48. Assume that the desired parallelization is M=24. The 
cyclic shifter needed is MM × . The zz ×  cyclic shift is 
achieved with cyclic shifts of MM × in combination with 
the appropriate address generation and this works for only 
z=24,48 and 96.  The complete P vector of size z is available 
in M memory banks of depth 2)/( == Mzceils . The 
shifter is constructed as a cyclic down logarithmic shifter to 
achieve the cyclic shifts specified by the binary encoded value 
of the shift. The logarithmic shifter is composed of 

)(2log M stages of M 2-in-1 multiplexers. Cyclic up shift by 
u  can be simply achieved by doing cyclic down shift with 

uz − on the vector of size. Say now if we want to change the 
parallelization M to 48.  If we construct a single 48 x 48 cyclic 
shifter, it can only handle z=48. So, we use  two 24 x 24 cyclic 
logarithmic shifters to construct the 48 x 48 shifter while 
being able to work as two independent 24 x24 shifters to 
support the expansion factor z=24. We need to introduce some 
additional multiplexers to achieve this. This way the decoder 
can support the expansion factors of 24, 48 and 96. Similarly, 
the cyclic shifter implementation for M=96, is constructed out 
of 4 24 x 24 cyclic logarithmic shifters. One should note that it 
is not possible to achieve cyclic shifts specified by 

( , )s l n ,(=0,1,..z-1)on a vector of length z with a cyclic shifter 
of size MM ×  if M is not a integer multiple of z.  

So to be able to accommodate different shifts needed, we 
can use a Benes network as in [15], which is of complexity 

1)(2log2 −M stages of M 2-in-1 multiplexers. A memory 
can be used to store control inputs needed for different shifts 
in case of supporting one expansion factor [2],[15].[2] uses 
Omega network, which is less complex than Benes 
network[15]. However both [12] and [15] will support only 
base H matrix. Note that this memory for providing control 

signals to this network is equal to ( )1)(2log2
2

−MM
 bits 

for every shift value that needs to be supported. This will be a 
very huge requirement for supporting all the WiMax codes. 
Note that, the memory needed for storing control signals for 
Omega network is around 1.22 mm2  in out of the decoder chip 
area of 14.1 mm2.[2]. This is equivalent to storing the control 
signals for one expansion factor and one base H matrix. So if 
the same kind of scheme is used to support 19 different 
expansion factors and 6 types of base H matrices in run time, 
the control signal memory needs approximately 139.08 mm2. 

So this approach clearly will not work. We propose a simpler 
approach to generate the control signals using a Master-Slave 
Benes router (Fig. 4). Assume that we need to perform a cyclic 
shift of 2 on a message vector of length 4 using a 8 x 8 Slave 
Benes network. Supply the integers(2,3,0,1,4,5,6,7) to the 
Master Benes network which is always configured to sort the 
inputs and output (0,1,2,…7). During the sorting process, the 
Master Benes network  can generate the control signals on by 
virtue of comparators. These signals can be used in the Master 
network to accomplish sorting. Also these signals can be used 
in the Slave network to achieve the desired shift of 2 Note that 

the complexity of this approach adds additional logic 
requirements of a decoder that is optimized for supporting one 
or limited number of base H matrices, i.e., when we replace 
the logarithmic cyclic shifter with the Master-Slave Benes 
cyclic shifter. For more implementation details, please refer to 
[16-17]. 

B. Decoder Operation 
All the check-node processing and variable-node processing 

is done in a time division multiplexed fashion for each sub-
vector of length as shown in Fig. 3. To process a block in a 
block row (layer), it takes s clock cycles. A check-node 
process unit (CNU) is the serial CNU based on OMS 
described in the previous section. The CNU array is composed 
of M  serial CNUs described in section 3. As shown in the 
pipeline (Fig. 3), the CNU array operates on the R messages 
and partial states of two adjacent block rows. While the final 
state has dependency on partial states, P and Q messages are 
dependent on the final states. Since final state of previous 
block rows, in which the compact information for CNU 
messages is stored, is needed for TDMP, it is stored in the FS 
memory. There is one memory bank of depth j , which is 12 
in this case, connected with each CNU. The FS memory for 
the entire CNU array is implemented as M  banks of 
memory with depth js  and word length 20 bits, constituted of 
{M1, -M1, +/-M2} with offset correction, and M1 index. In 
addition, we need another memory with M banks with depth 
equal to s   to store the partial state, with the word length 16 
bits as we need to store and retrieve (M1, M2, M1 index and 
cumulative sign). Note that we need to store partial state for 
only one block row at any time. In the decoding process, a 
block row of check nodes are processed in serial fashion using 
M CNUs as in  (8), the output of the CNU is also in serial 
form. The CNU array will start the partial state computation 
for next block row as soon as the partial state processing for 
the previous block row is done. The Q messages that are fed in 
the present block row/layer are dependant on R messages of 
the current layer as well as the R messages belonging to the 
different blocks of different layers. perform the R selection. 
This can be accomplished with out-of-order processing of Rnew 
message generation. An R select unit generates the R 
messages for k  edges of a check node from three possible 
values stored in final state memory word associated with that 
particular check node in a serial fashion. Its functionality and 
structure is the same as the block denoted as R select in CNU. 
This unit can be treated as a de-compressor of the check-node 
edge information, which is stored in compact form in FS 
memory.It is possible to do the decoding using a different 
sequence of layers instead of processing the layers from 1 to j 
which is typically used to increase the parallelism such that it 
is possible to process two block rows simultaneously [4]. In 
this work, we use the concept of re-ordering of layers for 
increased parallelism as well as for low complexity memory 
implementation and also for inserting additional pipeline 
stages without incurring overhead. 
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Fig. 2: Multi-rate LDPC decoder architecture for Block 

LDPC codes 

 Fig. 3. Pipeline for the layered decoding for irregular QC-
LDPC codes(Block LDPC codes of IEEE 802.16e) 

 
Fig.4.  Proposed Master-slave router to support different 
cyclic shifts that arise due to the a wide range of expansion 
factors z(=24,28,..,96) and shift coefficients(0,1,..,z-1). 

V  DISCUSSION AND FPGA IMPLEMENTATION RESULTS 
Table I gives the FPGA implementation results. The 

proposed TDMP architecture features large memory savings, 
up to 2x throughput advantage, as well as 50% less 
interconnection complexity. The TDMP permits us to use a 
running sum, which is initialized to channel log-likelihood 
ratio (LLR) values in the first iteration. So there is no memory 
needed to store the channel LLR values as these values are 
implicitly stored in the Q messages. Since the maximum 
number of Q messages that need to be stored are equal to 

5×× ob zN , as opposed to storing 5×× onz zN  messages in 

TPMP architectures where bN  is the maximum number of 

block columns of all the codes that need to be supported, oz  

is the maximum expansion factor of the base matrix, nzN  is 
the number of non-zero blocks by considering the base H 
matrix, which has the maximum number of non-zero blocks 
among all the base H matrices that need to be supported. For 
WiMax LDPC codes, these parameters 
are 24=bN , 96oz = , and 76nzN = . So, the total savings 
in Q memory are 68% as a direct result of employing TDMP 
proposed in [2]. 

Instead of storing all the R messages, the compressed 
information cumulative sign, M1, -M1, +/-M2, and index of 
M1 is stored. R select unit can generate the R message by the 
use of an index comparator and the XOR of the cumulative 
sign and the sign bit of the corresponding Q message which 
comes from the sign FIFO. The total savings in R memory is 

25 [ 5 3 (log ( )) 1] 100%
5

l o l o

l

kN z k ceil k N z
kN

− + × + + × ,  where 

lN  is the number of layers or block rows by considering the 
base H matrix, which has the maximum number of non-zero 
blocks among all the base H matrices that need to be 
supported. The factor 5 comes due to the use of 5-bit 
quantization for R messages. Among the different base LDPC 
codes in WiMax, rate 5/6 code has the maximum check-node 
degree, 19=k and the maximum number of block rows in 
the H matrix is 12.  So the savings of R memory is 57%.  

Also note that, due to the nature of block serial scheduling 
and the scheduling of layered processing in the architecture, 
there is only need to store the P messages for only two blocks. 
The total savings of memory bits 
is ( ) ( ) %1006626 ×××××−×× oboob zNzzN . Note 
that the factor 6 comes due to the number of bits used to 
represent the P message. So the savings are around 91% as 

19max =k and, z0=96 for block LDPC codes in 802.16e. 
The total savings in memory accounting for R memory, Q 

memory, and P memory, when compared to TPMP 
architectures based on SP [13] and min-sum [7], [8],[14] is 
63%.When compared to TDMP architecture based on BCJR 
[2], the total memory savings is 55% since both architectures 
have the same savings in Q memory.   

TABLE I 

FPGA IMPLEMENTATION RESULTS OF THE MULTI-
RATE DECODER (supports z=24,48 and 96 and all the code 

rates) (Device, Xilinx 2V8000ff152-5, frequency 110MHz) 
Used  

M=24 M=48 M=96 
Available 

Slices 1640 3239 6568 46592 
LUT 2982 5664 11028 93184 
SFF 1582 3165 6330 93184 

BRAM 38 73 100 168 
Memory (bits) 65760 65760 60288  

Through-put (Mbps) 41~70 57~139 61~278  
In terms of throughput and interconnect advantage, to 

achieve the same BER as that of TPMP schedule on OMS, 

R selection for Rnew operates out-of-order to feed the data for PS 
processing of next layer
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TDMP schedule on OMS needs half the number of iterations. 
This essentially doubles the throughput when compared to the 
TDMP architecture. Moreover, this architecture requires only 
one cyclic shifter instead of two cyclic shifters [2], [4]. Note 
that the architecture features a partial state memory when 
compared to other architectures.  However, this is small as it 
must contain the partial state for only one block row at any 
time, is equal to 1536 bits. In the case of parallelization equal 
to M= z0, then there is no need for P buffer. Also, FS memory 
bank need to store only R messages belonging to 11 layers. 
The P buffer is not needed as the shifter employed is 

oo zz × and it can perform the shift without the need of a buffer 
since the input messages are available in the chunks of z0. 
There is no need for PS memory bank, since there are z0 CNU 
to handle the maximum number of rows in a block row (z0), 
and consequently there is no time folding. The data throughput 
results are presented in Fig. 5. The implementation has a 
performance penalty of less than 0.15 dB in SNR when 
compared to floating point TDMP decoding. User data 
throughput ut  is given by du tratet ×= , where dt  is 

decoded throughput and is given by ( )CCIitNftd max/= ,                  
where N is the number of iterations, f is the decoder chip 
frequency and CCI stands for number of clock cycles required 
to complete one iteration. CCI is given by 

bnz N
M
zNCCI 2+



= . The distinction of this 

architecture is that a near optimal minimal number of clock 
cycles are achieved when the expansion factor is a multiple of 
parallelization of the decoder- Note that some codes support 
processing of two layers in parallel and the decoder can 
accommodate this if sufficient parallelism is available as can 
be seen from Fig. 5. It is also possible to exploit the 
parallelism completely for other expansion factors also when 
more than one frame can be processed simultaneously- 
however this requires additional buffering, so this scheme is 
not incorporated in the present design. 
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Fig. 5.  User data throughput of the proposed decoder vs. the 
expansion factor of the code,z, for different numbers of 
decoder parallelization, M.. 

VI CONCLUSION 
We present a memory efficient multi-rate decoder 

architecture for turbo decoding message passing of block 
LDPC codes of IEEE 802.16e using the OMS algorithm for 
check-node update. Our work offers several advantages when 
compared to the other-state-of -the-art LDPC decoders in 
terms of significant reduction in logic, memory, and 
interconnect. This work retains the key advantages offered by 
the original TDMP work – however, our contribution is in 
using the value-reuse properties of offset MS algorithm and 
devising a new TDMP decoder architecture to offer significant 
additional benefits.   

VII REFERENCES 
[1] D.J.C. MacKay and R.M. Neal. “Near Shannon Limit Performance of Low 
Density Parity Check codes” Electronics Letters, volume 32, pages 1645-
1646, Aug 1996. 
[2] M. Mansour and N. Shanbhag, "A 640-Mb/s 2048-bit programmable 
LDPC decoder chip," IEEE Journal of Solid-State Circuits, vol. 41, no.3, pp. 
684- 698, March 2006. 
[3] H. Sankar and K.R. Narayanan, "Memory-efficient sum-product decoding 
of LDPC codes," Communications, IEEE Transactions on, vol.52, no.8pp. 
1225- 1230, Aug. 2004 
[4] Hocevar, D.E., "A reduced complexity decoder architecture via layered 
decoding of LDPC codes," Signal Processing Systems, 2004. SIPS 2004. 
IEEE Workshop on , .pp. 107- 112, 13-15 Oct. 2004 
[5] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier and X. Y. Hu, 
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. on 
Communications, vol. 53, pp. 1288-1299, Aug. 2005. 
[6] Blanksby, A.J.; Howland ,C.J, A 690-mW 1-Gb/s 1024-b, rate-1/2 low-
density parity-check code decoder”, IEEE J. Solid-State Circuits, Vol.37, 
Iss.3, Mar 2002 Pages:404-412 
[7] K. Gunnam, G. Choi and M. B. Yeary, “An LDPC decoding schedule for 
memory access reduction,” IEEE Int. Conf. on Acoustics, Speech, and Signal 
Processing, pp- 173-6 vol. 5, May 2004. 
[8] M. Karkooti and J. Cavallaro, “Semi-parallel reconfigurable architectures 
for real-time LDPC decoding,”  Proceedings of International Conference on 
Information Technology, Coding and Computing, vol. 1, pp. 579-585,  2004. 
[9] T. Brack, F. Kienle and N. Wehn. “Disclosing the LDPC Code Decoder 
Design Space”, Design Automation and Test in Europe (DATE) Conference, 
pp. 200-205, March 2006. 
[10] “Part 16: air interface for fixed and mobile broadband wireless access 
systems amendment for physical and medium access control layers for 
combined fixed and mobile operation in licensed bands”, IEEE P802.16e-
2005, October 2005  
[11] K. Gunnam, W. Wang, E. Kim, G. Choi and  M.B. Yeary, “Decoding of 
Quasi-cyclic LDPC Codes using On-The-Fly Computation,”  Accepted for 
40th Asilomar Conf. on Signals, Systems and Computers, October 2006.   
[12] K. Gunnam and G. Choi, “A Low Power Architecture for Min-Sum 
Decoding of LDPC Codes,” TAMU, ECE Technical Report, May, 2006, 
TAMU-ECE-2006-02. [Online]. Available: http://dropzone.tamu.edu/te 
hpubs. 
[13] L. Yang; M. Shen; H. Liu, and C. Shi, "An FPGA implementation of 
low-density parity-check code decoder with multi-rate capability,"  
Proceedings of the Asia and South Pacific Design Automation Conference, 
.pp. 760- 763 Vol. 2, 18-21 Jan. 2005 
[14] H. Zhong and T. Zhang, "Block-LDPC: A practical LDPC coding system 
design approach", IEEE Trans. on Circuits and Systems I,vol. 52, no. 4, pp. 
766-775, April, 2005 
[15] G. Malema and M. Liebelt, "Interconnection Network for Structured 
Low-Density Parity-Check Decoders," Asia-Pacific Conference on 
,Communications, vol., no.pp. 537- 540, 03-05 Oct. 2005 
[16] K. Gunnam, G. Choi, M. B. Yeary and M.Atiquzzaman, “VLSI 
architectures for layered decoding for irregular LDPC codes of WiMax”, 
TAMU, ECE Technical Report, July 2006, TAMU-ECE-2006-08.  
[17] K. Gunnam, “Area and energy efficient VLSI architectures for low-
density parity-check decoders using an on-the-fly computation,” PhD 
Dissertation, Texas A&M University, October 2006. 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

4547


