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Abstract— In this paper, we present an analytic model and
methodology to determine optimal scheduling policy that involves
two dimension space allocation: time and code, in High Speed
Downlink Packet Access (HSDPA) system. A discrete stochastic
dynamic programming model for the HSDPA downlink scheduler
is presented. Value iteration is then used to solve for optimal
policy. This framework is used to find the optimal scheduling
policy for the case of two users sharing the same cell. Simula-
tion is used to study the performance of the resulted optimal
policy using Round Robin (RR) scheduler as a baseline. The
policy granularity is introduced to reduce the computational
complexity by reducing the action space. The results showed that
finer granularity (down to 5 codes) enhances the performance
significantly. However, the enhancement gained when using even
finer granularity was marginal and does not justify the added
complexity. The behaviour of the value function was observed to
characterize the optimal scheduling policy. These observations is
then used to develop a heuristic scheduling policy. The devised
heuristic policy has much less computational complexity which
makes it easy to deploy and with only slight reduction in
performance compared to the optimal policy according to the
simulation results.

I. INTRODUCTION

The rapid development of wireless technology resulting
in the third generation (3G) wireless networks enables the
implementation of services which are so far available only
on IP based networks. Each service has its own requirements,
in terms of bandwidth (Web browsing service for instance),
or Quality of Service (QoS) for real-time applications such as
Voice over IP.

To deal with these new challenges, third generation wire-
less networks evolved toward an IP based Packet-switched
networks and exploited new technologies to increase spectral
efficiency. The new systems were designed to have an IP-
based infrastructure in order to benefit from the available IP
resources and technologies and in order to reduce the cost.
Nevertheless, the added packet switching capability introduced
new challenges. This trend is obvious in HSDPA (3GPP R’5)
that succeeded UMTS (R’99) [1].

Providing QoS is one of the challenges that have to be
addressed in order to make the deployment of these systems
efficient. Wireless links in general have different channel
characteristics than that of wireline links. They are subject
to time- and location-dependent signal attenuation, fading and
interference. This results in bursty errors and time varying
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channel capacities. Therefore, the direct application of the
available wireline QoS techniques is impractical. Furthermore,
it is extremely difficult to provide hard (absolute) QoS guar-
antees and only soft QoS (Differentiated services) can be
provided [2]. Packet scheduling is one of the most important
QoS control approaches for wireless communications [3]. The
scheduling algorithms in wireless systems should take into
consideration the variation in channel characteristics, make
use of the user diversity to maximize throughput, and aim
at providing all users with a fair access to the network.

Most of the available work in scheduler design (e.g. [2], [5]
and [6]) is based on intuition and creativity of the designers.
The designer usually selects an optimization criterion that
represents some important performance measure (in his/her
opinion) and builds an algorithm based on that criteria, and
then tries to establish confidence in it using backward analysis
or simulation. This approach can be described as a procedural
approach. This, most likely, will result in a suboptimal algo-
rithm at the best, that performs well in some scenarios and
poor in the others. This happens especially in systems such
as HSDPA, since it uses a very complex set of features such
as Hybrid Automatic Repeat reQuest (H-ARQ) and Adaptive
Modulation and Coding (AMC). These features introduced
many new and interrelated tuning parameters which cannot
be grasped by one selected criterion. Another observation is
the lack of work on schedulers that dynamically allocate codes
as well as Transmission Time Intervals (TTI) for the users in
the system.

This work presents a novel approach for scheduling. An
analytic model, using stochastic dynamic programming is built
to represent the HSDPA scheduler with some realistic assump-
tions to the rest of the system components. This model is a
simplifying abstraction of the real scheduler which estimates
system behaviour under different conditions and describes
the role of various system components in these behaviours.
This model can be solved numerically to obtain the optimal
scheduling policy for some given objective function in a
straight forward manner.

This approach can be considered as a unified approach
since the same model can be used when solving for different
objective function by simply changing the reward associated
with the model to reflect the new objective. Different objective
functions may result in different optimal policies. For example,
if the objective is to maximize the cell throughput, then greedy



C/I scheduler can achieve this goal by favouring the user with
the best channel conditions. However, using this policy will
starve the users with poor channel quality. On the other side
of spectrum, Round Robin (RR) scheduler will divide the
resources fairly between all the users in the cell to achieve
fairness on the expense of cell throughput. The optimal policy
lies somewhere in the middle and depends on what degree
of fairness is required. The proposed approach produces an
optimal policy in the sense that it maximize cell throughput for
a given fairness criteria. It provides an elegant and presentable
analytic foundation for scheduling problems and may be used
as a benchmarking tool to the other schedulers.

The rest of the paper is organized as follows; section 2
describes the problem. In section 3 we introduce the model.
Section 4 presents a two user case study. In section 5 we
propose a heuristic scheduling policy for the two user case. In
section 6, the performance of the heuristic policy is presented
in comparison to the optimal and RR scheduling policies.
Conclusions are given in section 7.

II. PROBLEM DEFINITION AND CONCEPTUALIZATION

Third generation release R’5 [1][4], also called High-Speed
Downlink Packet Access (HSDPA), is an IP-based network
that can offer users a high speed asymmetric radio link with
downlink peak bit rate up to 10 Mbps (theoretically, 10.2
Mbps When using Soft Combining and 14.4 Mbps when using
Incremental Redundancy) [7]. The HSDPA uses a single time
shared channel (HS-DSCH) per cell/sector. This channel is
divided into 2 ms Transmission Time Intervals (TTI). Each
TTI may be used to transfer packets to one or more users at
a rate that depends on their User Equipment (UE) capabilities
and needs. The UE can use up to 15 codes simultaneously to
achieve higher rate. More than one user can share the same slot
by dividing the available 15 codes between them. In such case,
the scheduler need not only to choose the next user/users to
be served, but also the number of codes each user will receive.

The problem in hand is to obtain an optimal scheduling
regime that controls the allocation of the time-code resources
fairly between all the active sessions while maximizing the
overall cell throughput. The scheduling algorithm should pro-
vide channel aware, high speed and fair resource allocation.

A. HSDPA Scheduler Abstraction

The HSDPA downlink channel uses a mix of Time Division
Multiplexing and Code Division Multiplexing:

• Time is slotted into fixed length 2 ms Transmission Time
Intervals.

• During each TTI, there are 15 available codes that may
be allocated to one or more users.

During one TTI, the channel capacity associated to one
single user depends on the number of allocated codes and
on the channel condition. This is mainly due to the fact
that HSDPA uses AMC to adapt the transmission rate to the
current channel conditions. A mobile user with good channel
conditions will experience higher data rate than the other users.

The diagram in Figure 1 depicts a conceptual realization
of the HSDPA downlink scheduler. Different users have
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Fig. 1. HSDPA scheduler model (downlink).

separate buffers in the base station (Node-B according to
3GPP), and they are competing for the system resources.
Channel state monitor/predictor is necessary to monitor current
channel conditions of each user and predict his channel state
during the next TTI. This information will then be used to
adapt the transmission rate to the expected channel conditions.
The arrived Service Data Units (SDU) are assumed to be
segmented by the Radio Link Control (RLC) into ui fixed size
Protocol Data Units (PDU) before delivering them to Node-B.
The PDUs then will be classified and inserted into the proper
buffers awaiting transmission to the intended user. RNC is the
Radio Network Controller unit which implements the RLC
protocol.

B. Wireless Channel Model

The system is assumed to have Rayleigh fading channel
which is modelled by a Finite-State Markov Channel (FSMC)
[9]. This is done by partitioning the signal to noise ratio
(SNR) into finite number of intervals, each representing a
state in a Markov Chain. Assuming that the fading is slow
enough that the channel states for consecutive time epochs
are neighbouring states, then the model will be reduced into a
discrete time birth and death process, as shown in Figure 2.
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Fig. 2. FSMC model for HSDPA downlink channel.

Depending on the expected SNR state, different modulation
and error-correcting coding rates can be dynamically selected
from a set of Modulation and Coding Schemes (MCS) [8].
The higher the order of the MCS selected the higher the
transmission rate. The SNR is mapped directly into MCS and
hence into data rates. In light of this, the states in our channel
model will equivalently represent data rate levels rather than
SNR.

III. OPTIMAL CODE ALLOCATION POLICY

In this section, we investigate a code allocation policy for
the HSDPA downlink scheduler. The objective is to maximize
throughput for a given fairness level. We propose an approach
based on Markov Decision Process (MDP). We present a



general model for this system and suggest a reward function
that achieve the objective function.

To describe a system as a MDP model, the states, actions,
rewards and transition probabilities have to be defined first.
In our proposed model, time is slotted in constant intervals
of size ∆t. Let T denote the set of decision epochs of the
system, and T = {1, 2, . . .}. At time t ∈ T , we define s(t)
and a(s) as the system state and the action taken at that
state. HSDPA downlink scheduler is modelled by the 5-tuple
(T, S, A, Pss′(a), R(s, a)), where S and A are the state and
action spaces, Pss′(a) = Pr(s(t + 1) = s′|s(t) = s, a(s) = a) is
the state transition probability, and R(s, a) is the immediate
reward when at state s and taking action a.

A. Basic Assumptions

There are L active users in the cell. A user i ∈ I =
{1, 2, . . . , L} is allocated a buffer of size Bi. For the sake
of simplicity, we will assume that Bi = B for all i ∈ I .
Error free transmission is assumed for eliminating the need
for retransmission queue. SDUs arrive at the RNC during the
current TTI will be segmented by RLC into a fixed number of
PDUs (ui) and delivered to Node-B to be inserted into their
respected buffer at the beginning of the next TTI.
For each user i ∈ I and slot t ∈ T , we define:

• yi(t) the number of scheduled PDUs,
• xi(t) ∈ X = {0, 1, 2, ..., B} the queue size,
• zi(t) ∈ {0, ui} the number of arriving PDUs.
The SDUs destined to user i arrives at the RNC during one

TTI according to the Bernoulli distribution with parameter qi.
Arrivals are assumed to be independent of the system state and
of each other. PDU size is chosen to be equal to the minimum
Transport Format and Resource Combination (TFRC) for one
code (i.e., one code is needed to transmit one PDU when the
channel is in state 1). The scheduler can assign the available
15 codes as chunks of c codes at a time to active users in
the system. The chunk size c must divide the total number of
codes (15); therefore, c ∈ {1, 3, 5, 15}. For example, choosing
c = 5 means that the policy can assign 0, 5, 10, or 15 of the
available 15 codes to any user at any given TTI.

B. FSMC State Space

The channel state of user i during slot t is denoted by
γi(t); and its associated channel state space is the set M =
{0, 1, . . . ,M − 1}, where M is the total number of available
channel states. M constitutes a subset of the available MCS
set recommended by 3GPP. The elements of M were ordered
in a way such that γi(t) is directly proportional to the number
of PDUs that can be transmitted by user i in one TTI. This
ordering is necessary to reduce computational complexity.
Furthermore, we assume that user i channel can handle up
to γi(t) PDUs per code, i.e., a γi(t) = 2 means that at time
t, user i can transmit two PDUs using one code and up to 30
PDUs when using all the 15 codes. The Markov transition
probability Pγiγ′

i
is known and can be calculated for any

mobile environment with Rayleigh fading channel [9].

C. State and Action Sets

The system state s(t) ∈ S is a vector comprised of multiple
state variables representing the queue sizes and the channel
states for the L users. In other word,

s(t) = (x1(t), x2(t), . . . , xL(t), γ1(t), γ2(t), . . . , γL(t)) (1)

and, S = {X ×M}L is finite, due to the assumption of finite
buffers size and channel states.

The action space A is the set of all possible actions. The
action a(s) ∈ A is taken when in state s. The action taken
at each slot corresponds to the number of codes allocated to
each user. Let D = {0, 1, . . . , 15/c} be the action space for
a single user, where c is the code chunk size (the minimum
number of codes that can be allocated at any given time). Let
ai(s) ∈ D be the number of code chunks allocated to user i
when in state s. Then the number of codes allocated to user
i is ai(t)c. In this case, a(s) will be the collection of code
allocation to all users, that is

a(s) = (a1(s), a2(s), . . . , aL(s)) (2)

subject to

L∑
i=1

ai(s) ≤
15
c

, and ai(s) ≤
⌈

xi(t)
γi(t)c

⌉
The first constraint means that the policy can not allocate more
than the available 15 codes at each time slot. The second
makes the policy conserving by allocating no more codes to
user i than that required to empty its buffer.

D. Reward Function

In this subsection, we describe the reward function used to
determine the optimal allocation policy. As stated previously,
the objective is to maximize the throughput while maintaining
fairness between active users. Let the fairness factor, denoted
by σ, be a parameter that reflects the significance of fairness in
the optimal policy. Define x̄ as the average instantaneous size
of the L queues in the system at time t, i.e., x̄ = 1

L

∑L
i=1 xi,

(we suppressed the time index to simplify notation). The
reward function R(s, a) will have two components correspond-
ing to the two objectives and it is given by

R(s, a) =
L∑

i=1

yi − σ
L∑

i=1

(xi − x̄) 1{xi=B}

=
L∑

i=1

aiγic− σ
L∑

i=1

(B − x̄) 1{xi=B} (3)

where 1{·} is the indicator function. The positive term of the
reward maximizes the cell throughput which is given by

Throughput =
L∑

i=1

yi =
L∑

i=1

aiγic (4)

If the reward is composed of the first part only, then
the policy will always favour the users with good channel
conditions. Therefore the users with less favourable channels



will starve. That is why we introduced the second term,
which guarantees some level of fairness and reduces dropping
probability. Lower σ will result in a policy that favours cell
throughput over fairness, while higher σ has the opposite
effect. Overall, R(s, a) will produce a policy that maximizes
cell throughput for a given σ.

E. Transition Probability function

Pss′(a) denotes the probability that choosing an action a at
time t when in state s will lead to state s′ at time t+1. Using
(1) and (2), Pss′(a) can be stated as follows

Pss′(a) = Pr(s(t + 1)=s′|s(t)=s, a(t)=a)
= Pr(x′1, . . . , x

′
L, γ′1, . . . , γ

′
L|x1, . . . , xL,

γ1, . . . , γL, a1, . . . , aL) (5)

The evolution of the queue size (xi) is given by

x′i = min
(
[xi − yi]

+ + z′i , B
)

= min
(
[xi − aiγic]

+ + z′i , B
)

(6)

where, z′i is the arrival to queue i at t+1, [e]+ equals e if e ≥ 0
and 0 otherwise. The channel state γi depends only on the
previous channel state, that is Pr(γ′i|s) = Pr(γ′i|γi) = Pγiγ′

i
.

Accordingly, we can write (5) as follows

Pss′(a) =
L∏

i =1

(
Pxix′

i
(γi, ai) Pγiγ′

i

)
(7)

where Pγiγ′
i

is the Markov transition probability of the FSMC.
Define W1 and W2 as follows

W1 = [xi − aiγic]
+ + ui

W2 = [xi − aiγic]
+

We derived Pxix′
i
(γi, ai) using (6) and the law of total

probability, and arrived at the following expression (refer to
[10] for complete derivation)

Pxix′
i
(γi, ai)=



1 if x′i =xi =B & aiγi = 0,
qi if x′i =xi =B & 0 < aiγic ≤ ui,
qi if x′i =B & xi < B & W1 ≥ B,
qi if x′i <B & x′i = W1,
1−qi if x′i <B & x′i = W2,
0 otherwise.

(8)
The first three cases in (8) corresponds to the boundary state,

while the remaining cases correspond to the non-boundary
states.

F. Value Function

In this paper, we investigate an infinite-horizon MDP. We
use the total expected discounted reward optimality criterion
with discount factor λ, where 0 < λ < 1, in attempt to
find the policy π among all policies, that maximize the value

function V π(s). The following optimality equation is used to
characterize the optimal policy

V ∗(s) = max
a∈A

[
R(s, a) + λ

∑
s′∈S

Pss′(a)V ∗(s′)

]
(9)

where V ∗(s) is the maximal discounted value function (i.e.,
V ∗(s) = supπ V π(s)), attained when applying the optimal
policy π∗.

Value iteration (also known as successive approximation)
is used to solve this model numerically. The first step is to
define V0(s) to be any arbitrary bounded function. Then run
the following recursive equation for n > 0

Vn(s) = max
a∈A

[
R(s, a) + λ

∑
s′∈S

Pss′(a)Vn−1(s′)

]
Vn converges to V ∗ as n → ∞ [13]. For a given ε > 0,
the algorithm can be stopped after n iteration, providing the
following

‖Vn+1 − Vn‖ < ε(1− λ)/2λ (10)

where ‖v‖ = sups∈S |v(s)|. If (10) holds, then
‖Vn+1 − V ∗‖ < ε/2, according to [11].

Using results from the discounted case we can generalize
for the infinite horizon average reward using results from [11]
and [13].

IV. CASE STUDY: TWO USERS WITH TWO STATES
CHANNEL

The approach presented earlier was used to model the case
when there are two users (i.e., L = 2) sharing the same cell.
The channel is modelled as a two-state FSMC with transition
probability matrix [

1− αi αi

βi 1− βi

]
(11)

The two user case will simplify the resultant policy and
makes it easy to visualize, evaluate, and to deduct conclusions
for the optimal policy. It also serves as a verification for the
proposed approach, since it may be possible to verify the
results for such a case intuitively. The obtained results can
then be generalized to more complex cases.

User i is said to be connected when γi =1 with probability
P (γi = 1) = αi/(αi + βi), and not connected (γi = 0) with
probability P (γi =0)=βi/(αi + βi).

The remaining parameters were chosen as follows: B1 =
B2 =25, σ=0.5, λ=0.95, ε=0.1, and c=5. Hence, there are
four possible actions for each user (i.e., D ={0, 1, 2, 3}) and
A = {(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (2,0), (2,1),
(3,0)}, where a = (a1, a2) corresponds to a1c codes assigned
to user1 and a2c codes assigned to user 2.

The model is solved using value iteration to determine the
optimal scheduling policy. The effect of the channel quality
and arrival probability on the behaviour of the optimal policy
was studied. Figures 3-5 provide general structure of the
optimal policy.
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Fig. 3. The Optimal policy, a(s) = (a1, a2), for two symmetrical users
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Fig. 4. The optimal policy when P (γ1 = 1) = 0.8 and P (γ2 = 1) = 0.5

The optimal policy for two symmetrical users with the same
channel characteristics (αi = βi = p) for all 0 ≤ p ≤ 1 and
with P (zi =5)=0.5 for all i ∈ {1, 2} is shown in Figure 3.
Only the case when the two users have γi =1 is shown here,
since the two users are competing for the system resources.
The other three cases when one or both of them has γ =
0 resulted in a policy that assigns all the codes (required)
to the connected user and nothing to the other. The optimal
policy in this case can be described as follows: divide the
codes between the connected users in proportion to their queue
length. When c = 15, the action space will be reduced to
A = {(0, 0), (0, 1), (1, 0)} and the policy will be equivalent
to serve the longest queue first (LQF), which makes intuitive
sense and matches with the findings in [14] for a case similar
to the c=15 case.

The effect of the channel quality on the optimal policy
structure when γ1 = γ2 = 1 is shown in Figure 4. When
P (γ1 = 1) > P (γ2 = 1) this policy favours user 2 since it
is less probable for user 2 to have γ2 =1 compared to user 1.
The bias in favour of user 2 is depicted in Figure 4 as a larger
dark area, which corresponds to action (0,3), compared to the
other areas in the graph. We noticed that this bias increases as
the difference between P (γ1 =1) and P (γ2 =1) increases. The
reason for this behaviour is that using an LQF in this situation
will result in uncontrollable growth in user 2 queue. User 2 will
start experiencing unfairness in the sense of higher delay and
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Fig. 5. The optimal policy when P (z1 = 5) = 0.8 and P (z2 = 5) = 0.5

more drops. Hence, more resources have to be assigned to the
user with the worst channel to avoid that result. The resource
sharing in this case will be governed by the difference between
users channel quality ∆Pγ = P (γ1 =1) − P (γ2 =1) as well
as their relative queue length.

The arrival probability has similar effect on the optimal
policy structure. The relative increase in one of the users
arrival probability will result in more traffic inserted in that
users’ buffer and it will require more resources to keep the
queue length stable and achieve fairness between the two users.

Figure 5 shows the optimal policy for the two users case
when P (z1 =5)=0.8 and P (z2 =5)=0.5 and both users have
the same channel quality. The policy shifts in favour of the user
with higher arrival probability (user 1 in this case). The shift is
proportional to the difference ∆Pz = P (z1 =u)−P (z2 =u).

V. NEAR-OPTIMAL HEURISTIC SCHEDULING POLICY

The optimal policy can be described as share the codes
in proportion to the weighted queue length of the connected
users. The suggested heuristic policy tries to mimic the
behaviour of the optimal policy studied in IV. It works as
follows

• when there is only one connected user then assign all the
needed codes to that user,

• obviously when both users are not connected (i.e., γ1 =
γ2 =0), then no codes will be allocated to any user,

• when the two users are connected, if x1 + x2 < 15
then allocate codes to the two users in proportion to their
queue length, else allocate the code chunks as follows

a(t)=


(3, 0) if w1x1 > w2x2 + 10,
(2, 1) if w2x2 < w1x1 ≤ w2x2 + 10,
(1, 2) if w2x2 − 10 ≤ w1x1 ≤ w2x2,
(0, 3) if w1x1 < w2x2 − 10,

(12)

The weight (wi) is a function of the differences in the two
channel qualities and arrival probabilities, that is

w1 = f([−∆Pγ ]+, [−∆Pz]+) (13)
w2 = f([∆Pγ ]+, [∆Pz]+) (14)

We observed the behaviour of the optimal policy by running
a range of scenarios. We noticed that the areas (1,2) and (2,1)
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(b) ∆Pγ = 0.3, ∆Pz = 0
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Fig. 6. Heuristic policy in comparison to the optimal policy

has a constant width that equals 10 in all the scenarios that
have been studied. This trend can be seen in Figures 3-5.
Accordingly, we divided the policy into the four areas depicted
in (12). We noticed that the optimal policy is monotonic and a1

(respectively a2) is increasing in x1 (respectively x2). It is also
apparent from the studied scenarios that f() is increasing in
|∆Pγ | and decreasing in |∆Pz|. Following these observations,
we estimated w1 and w2 as follows

ŵ1 = 1 + 1.5[−∆Pγ ]+ − 0.7[−∆Pz]+ (15)
ŵ2 = 1 + 1.5[∆Pγ ]+ − 0.7[∆Pz]+ (16)

The ratio w1/w2 represents the slop of the switchover line
between the different areas in the policy. When ∆Pγ =0 and
∆Pz = 0 then ŵ1/ŵ2 = 1 and the policy will look exactly
like the one in Figure 3. The suggested heuristic policy can
be modified to accommodate classes. This is done by adding
a multiplicative parameter to the weight in (15) to implement
differentiated services. Figure 6 shows the heuristic policy (the
dotted line) superimposed on the optimal policy from section
IV. For the interested reader, the optimal policy structure and
the heuristic policy for the cases when c = 15 and c = 3 is
presented in [15].

We also noticed that the effect of σ is minimal in this case.
This is mainly due to the two-states channel model (connected
or not connected). When connected, both users will have the
same data rate and serving either one will result in the same
reward. However, it is expected that σ will have a prominent
role when using FSMC model with more than two states.

VI. PERFORMANCE EVALUATION: RESULTS AND
DISCUSSION

The performance of the optimal policy and the devised
heuristic policy was studied using simulation. The Round
Robin fair queueing is used as a baseline. All the assumptions
made before is also used in the simulation for consistency.
The buffers sizes used in this part is B1 = B2 = 50.

A. The Effect of Policy Granularity

The number of available codes to be allocated at one TTI
is 15 codes according to 3GPP [1]. We define the policy
granularity to be a measure of how fine/coarse is the code
allocation during one TTI. It has a direct relation to the chunk

size c. It ranges from finest (c = 1), then the policy can assign
as little as 1 code to a user at a time , to the coarsest (c = 15),
then all the 15 codes can be assigned to one user only at a time.
Figures 7–10 show the effect of policy granularity on system
performance for different ρ. Where ρ =

∑
i Pzi

ui/rπ is the
offered load and rπ is the measured system capacity under the
applied policy π. We selected the channel state probabilities
to be P (γ1 = 1) = 0.84 and P (γ2 = 1) = 0.5 and then
using (11), The channel model parameters (αi and βi) were
calculated.
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Fig. 7. The effect of policy granularity on queue length
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Fig. 8. The effect of policy granularity on the average queueing delay
experienced by the two users

The results shows that in light and moderate load conditions
(ρ << 1), the average queue length is shorter when using
finer granularity. However, when ρ → 1 the difference start
diminishing and eventually reversed when ρ becomes greater
or equal to 1. It is known that shorter queue length means
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Fig. 9. The effect of policy granularity on scheduler throughput
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Fig. 10. The effect of policy granularity on scheduler dropping probability

shorter delay and better QoS and scheduler performance.
Another valuable observation is that the performance gain

when moving from c = 5 to c = 3 is only marginal and
does not justify the added implementation and computational
complexity. It is noteworthy that in heavy load and overload
conditions, a coarse policy (c = 15) performs better than a
finer one. This is true for the 2 state FSMC model case and
we do not expect it to hold for higher number of states.

It is interesting to see that the optimal policy under all of the
three values of c achieved approximately the same throughput
(see Figure 9), where the throughput is given by (4). The slight
throughput loss when c = 15 in moderate to high load is due
to the increased drops at these particular conditions as it is
shown in Figure 10. The drop probability is measured as the
average number of dropped PDUs as a result of buffer overflow
divided by the average overall PDUs entering the system. The
reason for the increased dropping probability in this case can
be explained by the fact that serving only one user at a time,
which is the case when c = 15, will increase the probability
that the other user will have a buffer overflow. While in the
other two cases both users can be served at the same time by
dividing the code chunks between them. Such behaviour will
reduce the chance of buffer overflow.

B. Performance Evaluation of The Suggested Heuristic Policy

The system throughput when applying the heuristic policy
is shown in Figure 11. The cases when using Round Robin and
the optimal policy are also shown for comparison. The channel
model parameters was chosen such that P (γ1 = 1) = 0.84 and
P (γ2 = 1) = 0.5. Figure 11 shows that the suggested heuristic
policy performs very close to the optimal policy. It also shows
that RR performance converges to that of the optimal policy
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18

20

Time slots

D
el

ay
 (

m
se

c)

alpha=0.63, beta=0.12, Pz1=0.8, Pz2=0.5, u=10

 
Round Robin 
User1 
User2 
 
Heuristic 
User1 
User2
 
Optimal (MDP) 
User1 (c=5)
User2 (c=5)

Fig. 12. Queueing delay performance, P (γ1 = 1) = 0.84, P (γ2 = 1) =
0.5, q1 = 0.8, q2 = 0.5 and u = 10.

in case of light loading. However, it performs 30% worse than
the optimal policy in heavy load conditions.

Queueing delay performance is shown in Figure 12. Figures
13 and 14 show the average queue lengths of both users
for the suggested heuristic policy in comparison with that of
RR and the optimal policy. From those graphs, the following
conclusions were deducted:

• The proposed heuristic policy performance is very close
to that of the optimal policy.

• The optimal policy provides the smallest difference in
queueing delay between the two users, which means
higher fairness level. The heuristic policy provides a
comparable performance to that of the optimal policy,
while the round robin has the worst fairness and delay
performance.

• The performance of the RR policy is highly dependent on
the loading conditions. The results obtained proved that
RR has poor performance in wireless channel.

The reason why RR performs so poorly in wireless environ-
ment is that it does not take into account the channel quality
variation, while the optimal policy tracks this variation very
closely.

C. Computational Complexity

The approach used is to run the value iteration for a system
with small B, to reduce the computation time, then use this
model to study the structure of the optimal policy for differ-
ent channel conditions and loading scenarios. The obtained
information is then used to build a heuristic policy that can
be expanded to larger buffers sizes. The same approach can
be used in the case when more than two users are involved.
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The suggested heuristic approach trades performance for
simplicity. However, the small performance loss is acceptable
price to pay for the huge reduction in computation time.
The policy determination using the heuristic approach can
be calculated instantly. On the other hand, it took the value
iteration about 6 hours to converge when c = 5 and B = 50.

The heuristic policy has deterministic polynomial complex-
ity with constant time complexity, i.e., O(1). On the other
hand, the calculation of the optimal policy has an exponential
time complexity in B with O(BL) per one iteration, where L
is the number of active users in the system, and is intractable
for very large B. The number of iteration required depends
on how fast the policy converges, which in turn depends on
many other parameters, such as ε, λ, and c. Studying the exact
complexity for this problem is out of the scope of this paper.

VII. CONCLUSION

In this work we presented an MDP model for the scheduling
problem in 3G-HSDPA wireless system. The suggested model
takes into account time slots (TTI) as well as codes allocation
to active users in a cell. Then we used value iteration to
solve for the optimal scheduling policy for a system with
two users and two-states Finite State Markov Channel model.
The study showed that the optimal policy can be described as
share the codes in proportion to the weighted queue length of
the connected users. It also showed that a policy with finer
granularity will perform better in light to moderate loading
conditions, while a coarse policy is more desirable in heavy
loading conditions. However, the performance gain when using
c < 5 is marginal and does not justify the added complexity.
A heuristic approach to obtain a near-optimal policy was
presented. It has a reduced constant time complexity (O(1))
as compared to the exponential time complexity needed in the
determination of the optimal policy. The suggested approach
involves studying the behavioural characteristics of the optimal
policy using the MDP model for small buffer size. Then use
this data to determine a generalized near-optimal heuristic
scheduling policy. The resulted heuristic policy performance
was studied using simulation and compared to the optimal
policy and round robin (RR) scheduler. The results showed
that the heuristic policy performance match very closely to the
optimal policy. It also proved that RR is undesirable in HSDPA
system due to the poor performance and lack of fairness if
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deployed in such environment. The suggested heuristic policy
can be extended to the case with more than two active users.
It also can be easily adapted to accommodate more than one
class of service. This is part of an ongoing work and is left
for future publication.
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