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Abstract—Finding the distribution of the sum of lognormal 

random variables is an important mathematical problem in 

wireless communications, as well as in many other fields. While 

several methods exist to approximate this distribution, their 

performance tends to deteriorate in both tail areas. Finding a 

good overall fit remains an open problem. Other disadvantages of 

these methods are their complexity and, in some cases, their 

limitation to particular scenarios.  

In this paper we examine the sum of independent lognormal 

random variables with arbitrary parameters. We define the 

concept of best lognormal fit to a tail and show what it means in 

terms of convergence. We restate a known result about 

asymptotes to the higher tail of the distribution. To our 

knowledge, the lower tail has not yet been studied. We give a 

simple closed-form expression for an asymptote to the lower tail.  

We also show that known methods for finding the sum of 

lognormals use distribution functions that do not have this 

asymptotic behaviour in the tails. Our results are complementary 

to the existing knowledge, which together can combine to solve 

the problem of the sum of lognormals simply and exactly. We 

support our results by simulations. 

Index Terms—interference statistics, sum of lognormals, tail 

distribution. 

I. INTRODUCTION 

HE problem of the sum of lognormals (SLN) arises in 

wireless communications when the distribution of the total 

interference power coming from several shadowed sources is 

required. It is of significant interest, as it has been explored for 

some 50 years [1]–[3], and has received renewed interest in 

the wireless community in the past few years [4]–[12]. It also 

arises in economics [13], physics [14], electronics [15], and is 

of interest to the statistical community [16]. In general, the 

lognormal summands need not be independent and identically 

distributed (i.i.d.). Indeed, the total interference power in a 

cellular system is composed of both near and far-away 

interferers, and the shadowing paths may be correlated 

according to the angle of arrival. Thus, summands of different 

marginal distributions and with possible correlation among 
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them should be considered. 

The problem can be mathematically stated as follows: Let 
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We assume in this paper that the summands Yi are 

independent. The probability density function (pdf) of each 

summand is lognormal: 

            ( ) 0,
2

1
~

2

2
1

ln

>=







 −
−

xe
x

xfY i

ix

i

ii

σ

µ

σπ
.         (2) 

The cumulative distribution function (cdf) is: 
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where Φ(x) is the standard normal cdf. Then 
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follows the SLN distribution, with no known closed form. 

When the summands Yi are independent, f(x) is the convolution 

of all fi(x).  

There exist various approximate solutions to this 

distribution, which generally consist of two distinct parts: 

choosing a general form for the SLN distribution, and 

obtaining its parameters for particular cases. One approach has 

been to approximate the SLN distribution by a lognormal, and 

various methods were used to find the best-fitting lognormal 

parameters [1],[3]–[6]. However, it has become clear that as 

the number of summands increases, the SLN distribution 

appears less and less lognormal [7]. Indeed, by virtue of the 

Central Limit Theorem, the SLN approaches a normal 

distribution, but this convergence is very slow [14]. There also 

exist other methods, which use more complex distribution 

functions with three or more free parameters [7]–[10]. 

Nonparametric solutions have also been proposed: piecewise-

lognormal [11], or product-of-lognormal [12]. Each of these 

methods has its drawbacks: the first class of methods, where a 

lognormal approximation is used, cannot possibly be accurate 

over the entire range of x. Many methods require numerical 

integration to find the required parameters [3]–[5], [8], [10], 

[11]. While the behaviour of the upper tail, i.e. as ∞→x is 

known [2], [16], that of the lower tail, i.e. as 0→x  has no 

simple expression. Some methods have only been verified for 

the case of i.i.d. summands [7], [9]. Also, we will show that 

methods that match the body of the distribution well [7]–[10], 
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are not necessarily accurate in the far tails. On the other hand, 

the piecewise-lognormal method proposed in [11] does give a 

good behaviour at the tails, but again requires numerical 

integration and does not perform as well in the body. Hence, 

there is no single method that really gives a complete solution 

to the problem, and there is no closed form for the lower tail.  

This paper intends to cover both tails of the SLN 

distribution. We first define what we mean for a distribution to 

have a best lognormal fit at a given tail. We use this definition 

throughout the paper to compare tail behaviours. We then 

restate known results on the upper tail. Our main contribution 

is to give a simple approximation for the lower tail. We then 

show that while both tails of the SLN have a best lognormal 

fit, those of all the recently proposed distributions [7]–[10] do 

not and thus cannot possibly give good fits in either tail. We 

support our results by simulations, showing that methods [7]-

[9] diverge and our approximations converge at both tails. We 

conclude that there exist simple expressions for the tails of the 

SLN, and that it would be interesting to search for SLN 

distributions that have tails of the same form.  

II. TAIL PROPERTIES OF THE SUM OF LOGNORMALS 

A. Tail Properties on Lognormal Paper 

It is convenient to look at the cdf of the SLN on lognormal 

probability paper [4], where lognormal distributions are 

mapped onto straight lines by the following transformation T: 

                    ( ) ( ) ( )( )xeGxGxGT 1~
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which is a straight line of strictly positive slope. Conversely, 

each line of strictly positive slope corresponds to a unique 

lognormal distribution.  

It is therefore useful to work in this domain: we plot our 

simulated curves, the proposed asymptotes, and the cdf curves 

obtained by other methods on lognormal paper. Before 

proceeding, we show how convergence in the transformed 

domain relates to convergence in the linear domain.  

Definition: 
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We say that ( )xF  has a best lognormal fit 

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Theorem 1:  

For any supports I, J, such that JeIx x ∈⇔∈ we have: 
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Since ( ) ( ) 0ln,0, >∈∀⇔>∈∀ xgJxxgIx and ( )xΦ is 

strictly increasing, we have 
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which proves (8). The proof is analogous for (9).  
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Applying our Theorem 1:  
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(11) is analogous. This proves Theorem 2. 

Conclusion:  

The first theorem says that inequalities are conserved under 

the lognormal transformation T. The second theorem implies 

that if, on lognormal paper, a line L is not the best lognormal 

fit to a curve C at the limit l, then the corresponding 

distributions have tails in the corresponding limit e
l
 that are not 

comparable, i.e. their ratio will diverge. In other words, a 

necessary (but not sufficient) condition for approximating a 

distribution by a lognormal at a given tail is that the two 

distributions be asymptotes to each other on lognormal paper. 

B. The Upper Tail Asymptote 

The behaviour of the SLN distribution ( )xF as +∞→x  has 

been previously studied [2], [16]. It was shown in [2] that the 

moments { }nXE of a SLN are dominated by the heaviest 

summand(s) as n increases. In [11], it is suggested that 

matching higher and higher moments of the sum to those of a 

lognormal distribution gives a better and better lognormal 

asymptote to the upper tail behaviour. In [17], it is argued that 

moments of positive random variables (as is our case) 

determine the upper tail. All this information suggests that 

looking at the heaviest summand(s) alone will give us a good 

approximation of the tail. Reference [16] gives a simple 

procedure to find the upper tail asymptote: 

1. Choose the summands with the highest logarithmic 

standard deviation: 
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2. Among these summands, chose those with the highest 

logarithmic mean: 
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3. Count the number of these “heaviest” summands: 
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where #{S} is the cardinality of set S.   

The tail distribution is then that of the heaviest summand(s), 

multiplied by the number of these heaviest summands: 
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Since the distribution is a finite constant multiple of a 

lognormal, our Theorem 2 says that the SLN distribution will 

have a best lognormal fit 
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Note that [16] proves that this result is also valid when the 

summands with the same marginal distributions are correlated.  

It is argued in [16] that if a summand is not heaviest, but 

nearly so, it also contributes significantly to the tail for large 

but bounded x. Thus, a better asymptote is the distribution of 

the maximum of the summands: 
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This formula is an upper bound, which corresponds to the 

lower bound (in the complementary domain) given in [12], 

which is tight for high values of x. 

C. The Lower Tail Asymptote 

To our knowledge, there is no work dealing directly with the 

lower tail behaviour of the SLN. There is some literature on 

the lower tail of the distribution of the sum of positive random 

variables, but it does not readily apply to the sum of 

lognormals. The polynomial conditions required in [18] are 

not fulfilled by the lognormal distribution.  

We present here a new result, which is the main contribution 

of this paper: what we believe to be the best lognormal fit (as 

defined in section II – A) to the lower tail of the SLN.  
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We give an argument for this result in the Appendix. We 

verify this asymptote by simulation. 

III. TAILS OF SOME PROPOSED DISTRIBUTIONS THAT 

APPROXIMATE SLN 

We examine four distributions that have recently been 

proposed as approximations to the SLN. For each of these we 

show that they cannot possibly give a good approximation at 

the tails. We do this formally by showing for all four methods 

that for the proposed cdf ( ) 0, ≥xxFXX , for any µσ ,0> , the 
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result of the transformation ( ) ( )xFxFT XXXX

~
: a  cannot 

have 
σ

µ−x
as an asymptote at ±∞=l , except in some trivial 

cases when ( )xFXX is lognormal.  

We also show that only some of the proposed functions 

have the lognormal distribution as a special case, which should 

be a characteristic of an SLN approximation.  

We use the constant
10

10ln
=λ to convert from decibel units. 

A. Beaulieu – Rajwani (BR) Method [7] 

This approximating cdf has three parameters ( )210 ,, aaa : 
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Hence, the BR distribution does not have a best lognormal 

fit at either tail. 

In [9], it is mentioned that this form does not include the 

lognormal distribution as a special case. We can, however, 
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Using an alternative definition of the natural logarithm:         
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the BR distribution is lognormal. 

B. Le-Ngoc – Lam (LL) Method [8] 

This approximating cdf has three parameters ( )δβα ,, : 
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function, and ( )αΓ is the gamma function. 
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The function is not even defined for arbitrarily low values. 

In the upper tail, we use an approximation of the incomplete 

gamma function [19]: 
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and an approximation to the inverse standard normal cdf [20]: 

               ( ) ( )( )xxx
x

2ln2ln2~
0

1 −−−Φ
→

− π .           (34)   

Then:  

     
( )

.2lim

1
lim

)(
~

lim

11

−∞=
−

+−=

−








Γ
Φ−

−
=

−
−

+∞→

−−−

+∞→

+∞→

σ

λδµ

σ

λβ

σ

λβ

ασ

λδµ

σ

µ

α

xx

xex

x
xF

x

x

x

LL
x

       (35) 

Hence, the LL distribution does not have a best lognormal 

fit at either tail. 

C. Zhao – Ding (ZD) Method [9] 

This approximating cdf has three parameters ( )210 ,, ccc : 
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Hence, the ZD distribution does not have a best lognormal fit 

at either tail, except in the lognormal case 02 =c . 

D. Zhang – Song (ZS) Method [10] 

The proposed distribution for the SLN in dB is Pearson type 

IV, which has four parameters ( )ν,,, dmu . Consequently, the 

pdf of the SLN in linear scale has distribution: 
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and k is the constant chosen so that the pdf be valid and is 

found by numerical integration for each particular case. It 

would seem that the cdf is not readily available in closed form. 

However, we can still study its tail behaviour: 
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Again, using the result (34) from [20]: 
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    (42) 

A similar analysis applies for the upper tail. Hence, the ZS 

distribution does not have a best lognormal fit at either tail.  

E. Conclusion about the four methods 

We have seen that none of the proposed functions can have 

linear asymptotes in the transformed domain. However, since 

at least the upper tail of the SLN has been proven to have a 

linear asymptote in the lognormal domain (and we conjecture 

that the lower tail has the same property), all of the proposed 

functions will have unbounded relative error in the tails. 

IV. SIMULATIONS AND COMPARISONS 

We present Monte-Carlo simulation cdf curves of the SLN, 

which we use as the standard of comparison, and reproduce the 

curves from methods [7]-[9]. We plot all these on lognormal 

probability paper, along with the lower asymptotes proposed in 

this paper.  

We use the values from [7, Table I] to obtain curves for the 

BR method for several i.i.d. cases. For the LL curves, we used 

the values from [8, Table I]. Note that in the fifth row of that 

table, the log-variance should be 12dB, not 6dB. For the ZD 

curves, we used [9, eq.(18)-(20)], where σ is in dB, which are 

applicable to i.i.d. cases only. We were not able to reproduce 

the ZS curves, because the cdf is not known.  

We also plot the theoretical asymptotes: one straight 

asymptote, the best lognormal fit, from (22), and one 

lognormal-times-constant asymptote for each tail, from (45), 

(46). We see that the simulated curve tends to be sandwiched 

between these two curves. By virtue of our theorems, this 

would imply that the lower SLN tail is indeed well 

approximated by the lognormal with parameters given by (22).  

We see that in all cases the BR and LL methods, and for 

most cases, the ZD method, give accurate results in the body 

of the distribution. However, it is evident from the figures that 

each method gives a curve that tends to diverge from the best 

lognormal fit of the SLN at either tail, the SLN converging 

instead to the proposed asymptotes. 

In [8] it could already be seen that with the LL method one 

obtains this divergence on lognormal paper in the tails.   

V. CONCLUSION 

There does not exist at this moment any closed form 

(without numerical integration) method to obtain a good 

approximation to the SLN distribution. The LL [8] and [ZS] 

methods approximate the body well and are suited to the 

general, non i.i.d. case. Since their complexity resides 

essentially in the numerical computation of the moments of the 

logarithm of a sum of lognormals, they are essentially 

improvements on the lognormal fitting method proposed by 

Schwartz and Yeh [3]. We propose that the much-used method 

[3] be put aside in favour of [8] or possibly [10].   

Our suggestion for continuing work would be to combine 

the methods for finding the body of the distribution with our 

results on the tails to obtain an overall closed-form solution.  

APPENDIX 

In order to find the lower tail of the SLN distribution, we 

need to find the convolution near 0 of two lognormal 

functions. We proceed as follows: let us sample the lognormal 

function at 0, x, 2x, …, where x is small. Then, we perform a 

discrete convolution and look at the first non-zero sample: 

                        ( ) ( ) ( )xfxxfxf
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Proceeding likewise for N functions:  
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Consequently: 

                      ( )

2

2
1 ln

0

2








 −
−→

≈ L

Lx

L

L
x

e
x

xf
σ

µ

σπ

κ
 ,            (45) 

where:  
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and µL, σL are given by (22). 

Thus, assuming the approximation in (43) is good, by 

Theorem 2, we can conclude that the SLN has best lognormal 

fit 






 −
Φ

L

Lx

σ

µln
at 0. It is important to note that, because the 

lognormal distribution is very flat near zero, in 

fact, ,...2,10
ln

=∀=






 −
Φ

∂

∂
n

x

xn

n

σ

µ
, the convolution is 

difficult to analyse, as it does not fit in the framework of [18], 

nor is there a guarantee that the discrete convolution 

performed here is very good. Indeed, we find by simulations 

that the value of Lκ does not improve the approximation much.  
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Figure 1.   The cdf of the sum of two identical lognormals with  

A: σ = 6dB and B: σ = 12dB. 

 

 
Figure 2.   The cdf of the sum of lognormals with different variances.  

 

 

 
Figure 3.   The cdf of the sum of lognormals with different means. 

 

 

 

 

 

TABLE II 

FIGURE PARAMETERS 

Figure N µ (dB) σ (dB) 

1-A 2 0 6  

1-B 2 0 12 

2 6 0 6, 8, 9, 10, 11, 12 

3 6  -25, -15, -5, 5, 15, 25 12 

 

TABLE I 

COMPARISON OF THE FOUR METHODS 

Form 
Includes 

lognormal 

Number of 

parameters 

Applies to 

non-i.i.d. 

Lognormal 

tails 

BR Limit case 3 No 

LL No 3 Yes 

ZD Yes 3 No  

ZS No 4 Yes 

No 

 


