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Abstract—In this paper, we examine the effects of imperfect
channel estimation at the receiver and no channel knowledgeat
the transmitter on the capacity of the fading Costa’s channel with
channel state information non-causally known at the transmitter.
We derive the optimal Dirty-paper coding (DPC) scheme and its
corresponding achievable rates with the assumption of Gaussian
inputs. Our results, for uncorrelated Rayleigh fading, provide
intuitive insights on the impact of the channel estimate and
the channel characteristics (e.g. SNR, fading process, channel
training) on the achievable rates. These are useful in practical
scenarios of multiuser wireless communications (e.g. Broadcast
Channels) and information embedding applications (e.g. robust
watermarking). We also studied optimal training design adapted
to each application. We provide numerical results for a single-
user fading Costa’s channel with maximum-likehood (ML) chan-
nel estimation. These illustrate an interesting practicaltrade-off
between the amount of training and its impact to the interference
cancellation performance using DPC scheme.

I. I NTRODUCTION

Consider the problem of communicating over a Gaussian

channel corrupted by an additive Gaussian interfering signal

that is non-causally known at the transmitter. This variation

of the conventional additive white Gaussian noise (AWGN)

channel is commonly known aschannel with state information

at the transmitter. The stateS is a random Gaussian variable

with powerQ and independent of the Gaussian noiseZ. The

channel input is the messagem ∈ {1, . . . , ⌊2nR⌋} and its

output is Y = X + S + Z, whereR is the rate in bit per

transmission. The capacity expression of single-user channels

with random parameters has been derived by Gel’fand and

Pinsker in [1]. The authors show that the capacity of such a

channel{W (y|x, s), x ∈ X, s ∈ S} with state informationS

non-causally available at the transmitter is

C = sup
p(u,x|s)

{
I(U ;Y )− I(U ;S)

}
, (1)

U is an auxiliary random variable chosen so thatU
(X,S)


Y form a Markov Chain andp(u, x|s) = δ
(
x−f(u, s)

)
p(u|s).

In “Writing on Dirty Paper” [2], Costa applied this result to

an AWGN channel corrupted by an additive white Gaussian

interfering signalS. He showed that choosingU = X + αS,

with an appropriate value forα (α∗ = P̄ /(P̄ + σ2
Z), σ

2
Z

being the AWGN variance). This coding scheme, referred as

Dirty-paper coding (DPC), allows one to achieve the same

capacity as if the interfering signalS was not present, i.e.

C = 1
2 log2

(
1 + P̄

σ2

Z

)
. This result has gained considerable

attention during the last years, mainly because of its potential

use in communication scenarios where interference cancel-

lation at the transmitter is needed. In particular, multiuser

interference cancellation for Broadcast Channels (BC) and

information embedding (digital watermarking for multime-

dia security applications) are instances of such scenarios.

In the recent years, the Gaussian Multiple-Input-Multiple-

Output Broadcast Channel (MIMO-BC) has been extensively

studied. In [3], the authors based on DPC have established

an achievable rate region, referred to asDirty-paper coding

region. Recently in [4], the DPC region was proved to be

equal to the capacity.

Most of the literature focuses on the information-theoretic

performances of DPC under the assumption on the availability

of perfect channel information at both transmitter and receiver.

However, it is well-known that the performances of wireless

systems are severely affected if only a noisy estimate that

differs from the true channel is available (cf. [5], [6] and [7]).

Of particular interest is the issue of the effect of this imperfect

channel knowledge if interference cancellation or Dirty-paper

coding is used. The problem may even be more serious in the

practical situations where no channel information is available

at the transmitter, i.e., no feedback information from the

receiver back to the transmitter with the channel estimates.

Throughout this paper, we consider a wireless or water-

marked channel modeled asY = H(X + S) + Z, where
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H is the random channel, which neither the transmitter nor

the receiver know. We assume that the receiver estimatesH

during a phase of independent training, by using maximum-

likelihood (ML) channel estimation (Section III). Whereas, the

transmitter does not know this estimate. Then, we observe that

depending on the targeted application, e.g. Broadcast Channel

or robust watermarking, two different training scenarios are

relevant. In this work, we determine the tradeoff between the

amount of training required for channel estimation and the

corresponding achievable rates using DPC (Section IV). We

address this problem through the notion of reliable communi-

cation based on the average of the error probability over all

channel estimation errors. This allows to make an equivalence

with the capacity of a composite (more noisy) channel. Our

proposed framework is sufficiently general to involve the most

important information embedding and multiuser communi-

cation scenarios. Finally, Section V uses a Rayleigh-fading

Costa’s channel to illustrate average rates over all estimates,

for different amount of training.

II. CHANNEL MODEL

First consider a general model for communication un-

der channel uncertainty over discrete memoryless channels

(DMCs) with input alphabetX , output alphabetY and

channel statesS (cf. [1] and [8]). A specific instance of the

unknown channel is characterized by a transition probability

mass (PM)W (·|x, s, θ) ∈ WΘ with a random states ∈ S

perfect known by the transmitter and a fixed but unknown

channelθ ∈ Θ ⊆ Cd. Here, WΘ =
{
W (·|x, s, θ) : x ∈

X , s ∈ S , θ ∈ Θ
}

is a family of conditional transition PMs

on Y , parameterized by a vectorθ ∈ Θ, which follows i.i.d.

θ ∼ ψ(θ). It is assumed that the receiver only knows an esti-

mate θ̂ of the channel and a characterization of the estimator

performance in terms of the conditional probability density

function (pdf)ψ(θ|θ̂) (this can be obtained usingWΘ and the

a priori distribution ofθ). On another side, the transmitter does

not know the estimatêθ, it only knows its statisticψ(θ̂). The

extension of the DMCW (·|x, s, θ) to n channel uses within

a block is given byWn(y|x, s, θ) =
∏n

i=1W (yi|xi, si, θ)

wherex = (x1, . . . , xn), s = (s1, . . . , sn) and si is an i.i.d.

realization ofPS(s) and y = (y1, . . . , yn). It is assumed

that the state sequences is perfectly known at the transmitter

before sendingx and unknown at the receiver.

Throughout this paper we consider a memoryless fading

Costa channel. The discrete-time channel at timet is

Y (t) = H(t)
(
X(t) + S(t)

)
+ Z(t), (2)

whereX(t) ∈ C is the transmitter symbol andY (t) ∈ C is

the received symbol. Here,H(t) ∈ C is the complex random

channel (θ = H) whose entries are independent identically

distributed (i.i.d.) zero-mean circularly symmetric complex

Gaussian (ZMCSCG) random variablesCN(0, σ2
h). The noise

Z(t) ∈ C consists of i.i.d. ZMCSCG random variables with

varianceσ2
Z . The channel stateS(t) ∈ C consists of i.i.d.

ZMCSCG random variables with varianceQ. The quantities

H(t), Z(t), S(t) are assumed ergodic and stationary random

processes, and the channel matrixH(t) is independent ofS(t),

X(t) andZ(t). This leads to a stationary and discreet-time

memoryless channelW
(
y|x, s,H

)
with pdf

W (y|x, s,H) = CN
(
H(x+ s), σ2

Z

)
. (3)

The average symbol energy at the transmitter is constrained

to satisfyEX{X(t)X(t)†} ≤ P̄ and (·)† denotes Hermitian

transposition. In practical situations, only a noisy estimate

θ̂ = Ĥ that differs from the true channel is available at

the receiver. We next focus on training sequence design for

channel estimation.

III. O PTIMAL DESIGN OF CHANNEL TRAINING

A standard technique to allow the receiver to estimate the

channel matrix consists of transmitting training sequences, i.e.,

a set of symbols whose location and values are known to the

receiver. We assume that the channel is constant during the

transmission of an entire codeword so that the transmitter,

before sending the datax, sends a training sequence ofN

symbols xT = (xT,1, . . . , xT,N ). The average energy per

training symbol isPT = 1
N tr

(
xTx

†
T

)
. Thus, two different

scenarios are relevant:

(i) The channel affects the training sequence only, i.e. the

decoder observesyT = HxT + zT , wherezT is the noise

affecting the transmission of training symbols. This scenario

arises, e.g., in Broadcast Channels where the transmitter does

not send the sequencesT during the training phase. In that

case, an optimal training is obtained by sending an arbitrary

constant symbol,xT,i = x0 for all i = 1, . . . , N . So that a

maximum-likehood (ML) estimatêθ = ĤML is obtained at the

decoder from the observed output. The ML estimate ofH is

given [7] by

ĤML =
(
x
†
TxT

)−1
x
†
TyT = H + E, (4)

whereE =
(
x
†
TxT

)−1
x
†
T zT is the estimation error with

σ2
E = SNR−1

T and SNRT =
NPT

σ2
Z

. (5)



(ii) The channel affects both the training sequence and the

state sequence, which is unknown at the receiver, i.e. the

decoder observesyT = H(xT + sT ) + zT , wheresT is the

state sequence affecting the channel as multiplicative noise.

This scenario arises in robust digital watermarking where the

channel means an unknown multiplicative attack on the host

signalsT that is used for training. Here, because the presence

of sT with average energy per symbolQ≫ PT , the scenario

is much complicated than (i). In other words, as a consequence

of this a different method for channel estimation is needed.

We note that the transmitter, before sending the training

sequence, perfectly knows the state sequencesT . Therefore,

it can be used for adapting the training sequence to reduce

the multiplicative noise at the transmitter. Consider the mean

estimatorĤ∆ = 〈yT 〉 = Hν̄ + 〈zT 〉, where ν̄ = 〈xT 〉 +

〈sT 〉 and〈·〉 denotes the mean operator. Obviously, if for some

lengthN the transmitter disposes of enough powerPT to get

ν̄ = 1 the interference could completely be removed fromyT .

Of course, this is not possible for all sequencessT , and only

part of these sequences can be removed. We can state this

more formally as the following optimization problem. Given

some arbitrary pair(∆, γ) with 0 ≤ (∆, γ) < 1, we find the

optimal training sequencex∗
T and its required lengthN∗ such

that {
Minimize ‖xT ‖

2/N,

Subjet to PrsT
(
ν̄2 < (1−∆)PT

)
≤ γ,

(6)

where (1 − ∆)PT is the remainder power after removing

sT . This means that for100 × (1 − γ)% of estimations the

interference can be removed, elsewhere the training fails.We

call γ the failure tolerance level. Then, the solution of (6) is

easily found to bex∗
T (sT ) = (x∗0, . . . , x

∗
0) with

x∗0(sT ) =

{ √
(1−∆)PT − 〈sT 〉 if ‖x∗

T (sT )‖
2 ≤ NPT ,

0 elsewise,
(7)

andN∗ is chosen such thatPrsT
(
‖x∗

T (sT )‖
2 > N∗PT

)
≤ γ.

It follows thatN∗ can be computed by using the cumulative

function of a non-central chi-square of two degrees of freedom

cdf
(
r; 2, 2N∗PT (1 − ∆)Q−1

)
= 1 − γ with r = 2N∗

Q PT .

Actually, the channel estimate can be written as:

Ĥ∆ = H + Ẽ, (8)

whereẼ =
(
(1−∆)PT

)−1/2
〈zT 〉 is the estimation error with

σ2
Ẽ
= SNR−1

T,∆ and SNRT,∆ =
N(1−∆)PT

σ2
Z

. (9)

Note thatσ2
Ẽ

= (1 − ∆)−1σ2
E, whereσ2

E is the estimation

error in (i). To compare both estimation scenarios, we define

the noise reduction factorη =
(
N(1−∆)

)−1
.
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Fig. 1. Noise reduction factorη vs the training sequence lengthsN , for
various probabilitiesγ.

Fig. 1 shows the noise reduction factorη versus the training

sequence lengthN , for various failure tolerance levelsγ ∈

{10−1, 10−2, 10−3}. The power of the state sequenceQ is

20 dB larger than that corresponding to the training sequence

PT . Let us suppose that, e.g., we want to get an estimation

error10 times less than the channel noise (i.e.η = 10−1), with

a failure tolerance levelγ = 10−2. From Fig. 1 we can observe

that the required training length isN = 500. Whereas in (i),

where the state sequence is not present during the training,to

get equal performances we would only requireN = 10.

Finally, we characterize both channel estimation perfor-

mances in terms of thea posteriori pdf of H given ĤML

and the pdf ofH given Ĥ∆. These pdfs will be needed in

the next section to derive a composite channel model and its

achievable rates. Using the fading pdf, the expression (4) and

(8) and some algebra, we obtain
{
ψH| bHML

(H |ĤML ) = CN(δĤML , δσ
2
E),

ψH| bH∆
(H |Ĥ∆) = CN(δ̃Ĥ∆, δ̃σ

2
Ẽ
),

(10)

whereδ = (σ2
h + σ2

E)
−1σ2

h and δ̃ = (σ2
h + σ2

Ẽ
)−1σ2

h.

IV. M AIN RESULTS

In this section, we first introduce the notion of reliable

communication based on the average of the error probability

over all channel estimation errors. This notion, for DMCs

with state information non-causally known at the transmitter,

allows us to consider the capacity of a composite (more noisy)

channel. Then, we find the optimal DPC scheme and its

achievable rates for the channel descripted in Section II with

imperfect channel estimation (see Section III).

A. Problem Definition and Coding Theorem

A messagem from the setM = {1, . . . , ⌊2nR⌋} is trans-

mitted using a length-n block code defined as a pair(ϕ, φ)



of mappings, whereϕ : M × S
n 7→ X

n is the encoder,

andφ : Y n × Θ 7→ M ∪ {0} is the decoder (that utilizeŝθ).

Note that the encoder uses the realization of the state sequence

s. This knowledge is exploited for encoding the information

messagesm ∈ M. The rate, which depends on the channel

estimateθ̂ through its decoder, is given byn−1 log2Mθ̂. The

maximum (over all messages) of the average of the error

probability over all channel estimation errors

ēmax(ϕ, φ, θ̂) = max
m∈M

Eθs|θ̂

[ ∑

y∈Y n:φ(y,θ̂) 6=m

Wn
(
y|ϕ(m, s), s, θ

)]
.

For a given channel estimatêθ, and0 < ǫ < 1, a rateR ≥ 0

is ǫ-achievable on an estimated channel, if for everyδ > 0 and

every sufficiently largen there exists a sequence of length-n

block codes such that the rate satisfiesn−1 logMθ̂ ≥ R − δ

and ēmax(ϕ, φ, θ̂) ≤ ǫ. This definition requires that maximum

of the averaged error probability occurs with probability less

thanǫ. For a more robust notion of reliability over single-user

channels we refer the reader to [9]. Then, a rateR ≥ 0 is

achievable if it isǫ-achievable for every0 < ǫ < 1. Let Cǫ(θ̂)

be the largestǫ-achievable rate for a given estimatedθ̂. The

mean capacity over all channel estimates is then defined as

the mean of largest achievable rate, i.e.,

C̄ = lim
ǫ↓0

Eθ̂

[
Cǫ(θ̂)

]
.

We next state a theorem quantifying this capacity.

Theorem 4.1:Given an estimatêθ known at the receiver

and no channel information at the transmitter. The capacity

of a channelW (·|x, s, θ) with channel state information non-

causally known at the transmitter is given by

C̄ = max
P (u,x|s)∈P(U×X )

Eθ̂

[
C
(
P (u, x|s), θ̂

)]
, (11)

where

C
(
P (u, x|s), θ̂

)
= I
(
PU ; W̃ (·|u, θ̂)

)
− I
(
PS ;PU|S

)
. (12)

In this theoremP(U ×X ) denotes the set of PMs on

(U ×X ) so thatU 
 (X,S) 
 Y form a Markov Chain.

We emphasize that the supremum in (11) is taken over all

input distributions not depending on the channel estimatesθ̂.

The composite channel

W̃ (y|u, θ̂) =
∑

(x,s)∈U×X

P (x|u, s)PS(s)W̃ (y|x, s, θ̂), (13)

andW̃ (y|x, s, θ̂) = Eθ|θ̂

[
W (y|x, s, θ)

]
, whereEθ|θ̂

[
·
]

denotes

the expectation with the conditional pdfψθ|θ̂ characterizing the

channel estimation. We also used the mutual information

I
(
PU ; W̃ (·|u, θ̂)

)
=
∑

u∈U

∑

y∈Y

P (u)W̃ (y|u, θ̂) log2
W̃ (y|u, θ̂)

Q(y|θ̂)
,

with Q(y|θ̂) =
∑

u∈U
P (u)W̃ (y|u, θ̂). The capacity can be

attained by using the maximum-likelihood (ML) decoding

metric based on the composite channel model (13) (cf. [10]).

The proof of this coding theorem is straightforward from [1]

and basic information properties.

B. Achievable rates and optimal DPC scheme

We derive achievable rates for the channel (3) by as-

suming Gaussian inputs and both estimation scenarios (4)

and (8). To evaluate (11) in (3) requires solving an opti-

mization problem where we have to determine the optimum

distributionP (u, x|s) maximizing the capacity. We begin by

computing the composite channel model for both estimation

scenarios, i.e.̃W (y|x, s, ĤML ) = EH| bHML

[
W (y|x, s,H)

]
and

W̃ (y|x, s, Ĥ∆) = EH| bH∆

[
W (y|x, s,H)

]
. From (10) it is not

difficult to show that

W̃
(
y|x, s, ĤML

)
= CN

(
δĤML (x+s), σ

2
Z +δσ2

E(|x|
2+ |s|2)

)
,

(14)

W̃
(
y|x, s, Ĥ∆

)
= CN

(
δ̃Ĥ∆(x+ s), σ2

Z + δ̃σ2
Ẽ
(|x|2 + |s|2)

)
.

(15)

Actually, we only need to consider the capacity associated

to (14) corresponding to the scenario (i), since the pdf (15)

differences in constant quantities.

Channel estimates known at the transmitter:Obviously, if

the channel estimateŝHML are known at the transmitter, the

optimal input distribution is shown to be given by

P bHML

(
u, x|s

)
=

{
P (x) if u = x+ α∗(ĤML )s,

0 elsewhere,
(16)

whereP (x) = CN
(
0, P̄

)
, andP̄ is the power constraint and

α∗(ĤML ) =
δ2|ĤML |

2P̄

δ2|ĤML |2P̄ + σ2
Z + δσ2

E
(P̄ +Q)

. (17)

The capacity denoted̄CTxRx is then

C̄TxRx = E bHML

{
log2

(
1 +

δ2|ĤML |
2

σ2
Z + δσ2

E
(P̄ +Q)

)}
. (18)

This easily follows from the fact that in this case it is possible

to swap expectation and maximization in (11).

Channel estimates unknown at the transmitter:Here we

cannot use the optimal DPC scheme (16), because the channel

estimatesĤML are not available at the transmitter to compute

the parameter (17). However, assuming Gaussian inputs, which

means thatP
(
u, x|s

)
is a conditional joint Gaussian pdf. The

optimal DPC scheme can be shown to be given by

P
(
u, x|s

)
=

{
P (x) if u = x+ αs,

0 elsewhere,
(19)



whereα ∈ [0, 1] is the parameter maximizing (11). Hence,

given α the achievable rates can be computed by replacing

(14) and (19) in (12). Thus, using some algebra we obtain

Iα
(
PU ; W̃ (·|u, θ̂)

)
= log2

(
(P+Q+ N)(P+ α2Q)

PQ(1− α)2 + N(P+ α2Q)

)
,

(20)

Iα
(
PS ;PU|S

)
= log2

(
P+ α2Q

P

)
, (21)

where P = δ2|ĤML |
2P̄ , Q = δ2|ĤML |

2Q and N = σ2
Z +

δσ2
E(P̄ + Q). Given 0 ≤ α ≤ 1, by using (20) and (21), the

capacityC̄Rx(α) writes

C̄Rx(α) = E bHML

{
log2

(
P(P+Q+ N)

PQ(1− α)2 + N(P+ α2Q)

)}
.

(22)

We remark that our Gaussian assumption only leads to a lower

bound (22) of the capacity (13). However, in the next section

we shall observe that this bound is tight for realistic SNR

values. Actually, it remains to find the optimal parameter

α maximizing (22). Let us first consider the more intuitive

suboptimal choice given by the mean of the optimalα∗(ĤML )

in (17), i.e.ᾱ = E bHML

{
α∗(ĤML )

}
. To compute this mean, we

note thatĤML has a Gaussian pdfCN
(
0, σ2

h + σ2
E

)
. Hence,

we can show that

ᾱ = 1− ρ exp(ρ)E1(ρ), with ρ =
N

δ2P̄ (σ2
h + σ2

E
)
,

(23)

where E1(z) =
∞∫
z

t−1 exp(−t)dt denotes the exponential

integral function. Therefore, all rates smaller thanC̄Rx(ᾱ) are

achievable by using DPC scheme (19) and the meanᾱ (23).

Another possibility is to find directly the optimal parameter

α∗ maximizing (22). To this end, we observe that

α∗ = arg min
0≤α≤1

E bHML

{
log2

(
PQ(1− α)2 + N(P+ α2Q)

)}
.

(24)

Using some algebra, from (24), we can obtain

α∗ = arg min
0≤α≤1

{
log2(P̄ /Q+ α2)+

1

log(2)
exp

(
ρ(P̄ /Q+ α2)

(1− α)2

)
E1

(
ρ(P̄ /Q+ α2)

(1− α)2

)}
.

(25)

Unfortunately, there is not exists an explicit solution forα∗ in

(25). However, this maximization can be numerically solved

to then computēCRx(α
∗).

All derived results through this section are also valid for the

channel model (15), corresponding to the estimation scenario

(ii). We replaceδ with δ̃ andσ2
E with σ2

Ẽ
in all expressions.
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Fig. 2. Optimal parameterα∗ (solid lines) vs the SNR, for various training
sequence lengthsN . Dashed lines show mean alphaᾱ.

V. SIMULATION RESULTS AND DISCUSSIONS

In this subsection, numerical results are presented based

on Monte Carlo simulations. Fig. 2 shows both the mean

parameterᾱ (23) and the optimal parameterα∗ (25) versus

the signal-to-noise ratio, for various training sequence lengths

N . The state sequence powerQ is +20 dB larger than that of

the channel input̄P , and the training power isPT = P̄ . We

can observe that both parameters are relatively close for many

SNR values. Furthermore, even in the SNR ranges where the

values seem to be quite different, we have observed that the

achievable rates with̄α are very close to those provided by the

optimal solutionα∗. Therefore, we can conclude that the mean

parameter can be used to design the optimal DPC scheme.

Fig. 3 shows achievable rates (22) (in bits per channel use)

with channel estimates unknown at the transmitter versus the

SNR, for various training sequence lengthsN ∈ {1, 10, 20}

(dashed line). For comparison we also show achievable rates

(18) with channel estimates known at the transmitter (danshed-

dot line) and with perfect channel knowledge at both transmit-

ter and receiver (solid line). It is seen that the average rates

tend to increase rather fast with the amount of training. For

example, to achieve2 bits with channel estimates unknown at

the transmitter. Observe that a scheme with estimated channel

and N = 10 requires 18 dB, i.e., 11 dB more than with

perfect channel information. Whereas, if the training length

is further reduced toN = 1, this gap increases to27dB. On

the other hand, when the channel estimates are known at the

transmitter, the SNR requeried for2 bits is only 1 dB less

than the case with channel estimates unknown. This rate gain

is slightly smaller, and consequently we can conclude that the

knowledge of the channel estimates at the transmitter is not



really necessary with the proposed DPC scheme.

Finally, we study the impact of the power state sequence on

the achievable rates. Fig. 4 shows similar plots for different

values of+Q ∈ {+20,+30,+40}, i.e.,Q is times larger (in

dB) than the channel input powerP , and training sequence

length isN = 10. We can observe that the performance are

very sensitive to the powerQ. This is because with imperfect

channel estimation the capacity still depends onQ (cf. (22)),

while with perfect channel information the state sequence is

cancelled at the transmitter independent of the powerQ.
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Fig. 3. Achievable rates with channel estimates known at thetransmitter
(dashed-dot lines) vs the SNR, for various training sequence lengthsN .
Dashed lines suppose channel estimates unknown at the transmitter. Solid
line shows the capacity with the channel known at both transmitter/receiver.
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Fig. 4. Similar plots for different power values of the statesequenceQ.

VI. CONCLUSION

In this paper we studied the problem of communicating

reliably over unknown channels with channel states non-

causally known at the transmitter. We assumed that no channel

information is available at the transmitter and imperfect chan-

nel information is available at the receiver, i.e., the receiver

only has access to a noisy estimate of the channel. In this

scenario, we proposed to characterize the information-theoretic

limits through the notion of reliable communication based on

the average of the error probability over all channel estimation

errors. We presented an explicit expression, for general DMCs,

of its maximal achievable rate averaged over all channel

estimates. Then, we computed mean achievable rates for the

fading Costa’s channel with ML channel estimation and Gaus-

sian inputs. We also studied optimal training design adapted

to each application, e.g. Broadcast Channels or watermarking.

The somewhat unexpected result is that, while it is well-

known that DPC requires perfect channel knowledge at both

transmitter and receiver, without channel information at the

transmitter, significant gains can be still achieved by the DPC

strategy, using the proposed DPC scheme. Further numerical

results show that, under the assumption of imperfect channel

information at the receiver, the benefit of channel estimates

known at the transmitter does not lead to large rate increases.

Codes achieving capacity do not need to be long to exploit

the long-term ergodic properties though the estimated fading

process, and can be applied when the real transmission time

is not large compared to the coherence time of the channel.
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