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Abstract— Performance analysis of Multiple-input Multiple-
output (MIMO) Orthogonal Frequency-Division Multiplexing
(OFDM) systems with carrier frequency offset and channel
estimation errors is considered in this paper. Based on the anal-
ysis of the Inter-Carrier-Interference (ICI) and Inter-Antenna-
Interference (IAI) due to the residual frequency offsets, the
average Signal-to-Interference-and-Noise Ratio (SINR) is derived.
The bit error rate of equal gain combining (EGC) and maximal
ratio combining (MRC) with MIMO-OFDM is analyzed, and an
infinite-series approximation for the bit error rate is derived.
Simulation results illustrate the accuracy of the theoretical
analysis.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology can sig-
nificantly increase the wireless system capacity [1]. By trans-
forming the frequency-selective MIMO channel to a set of
flat-fading MIMO channels, MIMO-OFDM can achieve a high
capacity at a low cost of equalization and demodulation.
However, just as single-input single-output (SISO)-OFDM
systems are highly sensitive to frequency offset, so too are
the MIMO-OFDM systems.

Many frequency offset estimators have already been de-
veloped for SISO-OFDM systems [2]–[6]. A synchronization
algorithm for MIMO-OFDM is proposed in [7], where iden-
tical timing offset and frequency offset are assumed to each
transmit-receive antenna pair. Parameter estimation for MIMO
flat-fading channels with the frequency offsets is discussed
in [8], where the frequency offsets for different transmit and
receive antennas are assumed to be different.

Another channel impairment is the channel estimation error,
which can impact the bit error rate of an OFDM system.
Robust channel estimation for OFDM is discussed in [9], and
the mean-square error (MSE) of channel estimation can be
significantly reduced by exploiting the channel delay profile.
An iterative joint frequency offset and channel estimator is
proposed in [11], where a reliable estimation is performed
based on the maximum likelihood principle by using pilots.
Optimal training signal design for a frequency-selective block
fading channel estimation in MIMO-OFDM is discussed in
[10], which is based on the minimization of the MSE. The bit
error rate of SISO-OFDM impaired by the frequency offset is
analyzed in [12].

In this paper, we give a generalized bit-error-rate’s analy-
sis of MIMO-OFDM, taking into consideration of both the
frequency offset and channel estimation errors. We exploit

the fact that for an unbiased estimator, either the channel
estimation error or frequency offset estimation error is a zero-
mean random variable (RV). The degradation in either the
receive SINR or bit error rate will be analyzed by studying
the statistical characters of the residual frequency offset and
channel estimation errors. As discussed in [8], the frequency
offset of each transmit-receive antenna pair is assumed to be
an Independent and Identically Distributed (IID) RV.

The remainder of this paper is organized as follows. MIMO-
OFDM system model is given in Section II, and the SINR
degradation due to the frequency offset and channel estimation
errors is analyzed in Section III. The bit error rate of MIMO-
OFDM with the frequency offset and channel estimation errors
is derived in Section IV. Numerical results are given in Section
V, followed by conclusions in Section VI.

Notation: (·)T and (·)H are the transpose and complex
conjugate transpose of a matrix. The imaginary unit is  =√−1. A circularly symmetric complex Gaussian RV with
mean m and variance σ2 is denoted by w ∼ CN (m,σ2). IN
is an N × N identity matrix, and ON is an N × N all-zero
matrix. 0N is an N × 1 all-zero vector. a[i] is the i-th entry
of vector a, and [B]mn is the mn-th entry of matrix B. E{x}
and Var{x} are the mean and variance of x.

II. MIMO-OFDM SIGNAL MODEL

Input data bits of the MIMO-OFDM systems are mapped
to complex symbols drawn from a typical signal constellation,
e.g., phase-shift keying (PSK) or quadrature amplitude mod-
ulation (QAM). An OFDM symbol is generated by taking the
Inverse Discrete Fourier Transform (IDFT) of N input sub-
symbols, where N is the size of IDFT. Each OFDM symbol
has a useful part of duration Ts seconds and a cyclic prefix
of length Tg seconds to mitigate the Inter-Symbol-Interference
(ISI), where Tg is longer than the channel-response duration.
For a MIMO-OFDM system with Nt transmit antennas and Nr
receive antennas, a N×1 vector xi(z) is used to represent the
z-th block of the frequency-domain symbols sent by the i-th
transmit antenna, where i ∈ {1, 2, · · · , Nt}. In the following
sections, when the discussion is concentrated on a single
block, the temporal index z will be omitted for brevity. The
time-domain vector for the i-th transmit antenna is given by

mi =
√

Es

Nt
Fxi, where Es is the total transmit power and F is

the N ×N IDFT matrix with entries [F]nk =
1√
N
e

2πnk
N for
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0 ≤ n, k ≤ N−1. Without loss of generality, each entry of xi
is assumed to be an IID RV with mean zero and variance 1; i.e.,
σ2
x = E

{|xi[n]|2} = 1 for 1 ≤ i ≤ Nt and 0 ≤ n ≤ N − 1.
By using hk,i(n) to represent the discrete-time impulse

response of the n-th tap channel between the i-th transmit
and the k-th receive antennas, the channel response vector
can be represented as hk,i = [hk,i(0), hk,i(1), · · · , hk,i(Lk,i−
1),0TLmax−Lk,i

]T , where Lk,i is the maximum delay between
the i-th transmit and the k-th receive antennas, and Lmax =
max{Lk,i : 1 ≤ i ≤ Nt, 1 ≤ k ≤ Nr}. Uncorrelated taps are
assumed for each (k, i); i.e., E{h∗k,i(m)hk,i(n �= m)} = 0.
The corresponding frequency-domain channel attenuation ma-
trix is given by Hk,i = diag

{
H

(0)
k,i ,H

(1)
k,i , · · · ,H(N−1)

k,i

}
with

H
(n)
k,i =

Lk,i−1∑
d=0

hk,i(d)e−
2πnd

N representing the channel atten-

uation at the n-th subcarrier. Normalized channel attenuation is

assumed; i.e.,
Lk,i−1∑
d=0

|hk,i(d)|2 = 1 for each (k, i). The covari-

ance of the frequency-domain channel attenuation can be de-

rived as C
H

(n)
k,i H

(l)
p,q

=
Lmax−1∑
d=0

E

{
h∗k,i(d)hp,q(d)

}
e−

2πd(l−n)
N .

We use ψk,i and εk,i to represent the initial phase and
normalized frequency offset (frequency offset normalized to
a subcarrier spacing of OFDM symbols) between the i-th
transmit and the k-th receive antennas. In this paper, εk,i for
each transmit-receive antenna pair is formulated as an IID
RV with zero-mean. By considering the channel attenuations
and frequency offsets, the discrete-time received vector can be
represented as

y = [yT1 ,y
T
2 , · · · ,yTNr

]T , (1)

where yk =
√

Es

Nt

Nt∑
i=1

Ek,iFHk,ixi + wk with Ek,i =

diag

{
eψk,i , e


( 2πεk,i

N +ψk,i

)
, · · · , e

( 2πεk,i(N−1)
N +ψk,i

)}
, and

wk is a vector of additive white Gaussian noise (AWGN)
where wk[n] ∼ CN (0, σ2

w). Note that the channel state
information is unavailable at the transmitter, but available
at the receiver. Consequently, the transmit power is equally
allocated at all the transmit antennas.

III. SINR ANALYSIS IN MIMO-OFDM SYSTEMS

In this paper, space-time coding is not considered at the
transmitter; instead, IID data sub-streams are mapped to the
OFDM symbols and are transmitted from the transmit an-
tennas. Each received vector yk is thus a superposition of
the transmit signals from all the Nt transmit antennas. In
order to demodulate xi, signal from the transmit antennas
other than the i-th transmit antenna should be eliminated (IAI
cancellation).

Here we first assume that εk,j and Hk,j for each (1 ≤ j ≤
Nt, j �= i) have been estimated; i.e., ε̂k,j = εk,j + ∆εk,j
and Ĥk,j = Hk,j + ∆Hk,j , where ∆εk,j and ∆Hk,j =
diag

{
∆H(0)

k,j ,∆H
(1)
k,j , · · · ,∆H(N−1)

k,j

}
are estimation errors

of εk,j and Hk,j (∆H(n)
k,j = Ĥ

(n)
k,j − H

(n)
k,j represents the

estimation error of H(n)
k,j ). We also assume that the demodulate

error for each xj �=i is negligible. After estimating εk,i, i.e.,
ε̂k,i = εk,i + ∆εk,i, εk,i can be compensated for and xi can
be demodulated as

rk,i = FHÊHk,i


yk −

√
Es
Nt

Nt∑
j=1,j �=i

Êk,jFĤk,jxj




=
√
Es
Nt

FHÊHk,iEk,iFHk,ixi︸ ︷︷ ︸
sk,i

+Υk,i + w̃k,i,

(2)

where Êk,j is derived from Ek,j by replacing εk,j with ε̂k,j ,
Υk,i and w̃k,i are the residual IAI and AWGN components
of rk,i, respectively.

A. SINR Analysis without Combining at the Receive Antennas

In this subsection, we analyze the SINR for the i-th transmit
signal at the k-th receive antenna. Signals transmitted by the
antennas other than the i-th antenna are interference, which
should be eliminated before demodulating the desired signal
of the i-th transmit antenna.

Based on (2), the n-th subcarrier (0 ≤ n ≤ N − 1) for the
i-th transmit antenna can be demodulated as

rk,i[n] =
√
Es
Nt

sk,i[n] + Υk,i[n] + w̃k,i[n]

=
√
Es
Nt
m

(n)
k,iH

(n)
k,i xi[n] + η

(n)
k,i

+ λ
(n)
k,i − λ̂

(n)
k,i︸ ︷︷ ︸

∆λ
(n)
k,i

+ ξ
(n)
k,i − ξ̂

(n)
k,i︸ ︷︷ ︸

∆ξ
(n)
k,i

+w̃k,i[n],

(3)

where m
(n)
k,i =

sin[π(∆εk,i)]

N sin
[
π(∆εk,i)

N

] . η(n)
k,i is decomposed as

η
(n)
k,i = H

(n)
k,i α

(n)
k,i + β

(n)
k,i , which is the ICI contributed by the

subcarriers other than the n-th subcarrier of transmit antenna
i. α(n)

k,i and β(n)
k,i are zero-mean RVs with variances

Var
{
α

(n)
k,i

} ∼= π2σ2
resEs
Nt

∑
l �=n

∣∣∣CH(n)
k,i H

(l)
k,i

∣∣∣2
N2 sin2

[
π(l−n)
N

] (4)

and

Var
{
β

(n)
k,i

} ∼= π2σ2
resEs

3Nt
− Var

{
α

(n)
k,i

}
. (5)

∆λ(n)
k,i = λ

(n)
k,i − λ̂

(n)
k,i is the interference contributed by the

n-th subcarrier of the interfering transmit antennas, i.e., Co-
Subcarrier Inter-Antenna-Interference (CSIAI), and ∆ξ(n)

k,i =
ξ
(n)
k,i − ξ̂(n)

k,i is the ICI contributed by subcarriers other than the
n-th subcarrier of the interfering transmit antennas, i.e., Inter-
Carrier-Inter-Antenna-Interference (ICIAI). It is easy to prove
that ∆λ(n)

k,i and ∆ξ(n)
k,i are zero-mean RVs, and their variances
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are given by

E

{∣∣∣∆λ(n)
k,i

∣∣∣2}

∼= (Nt − 1)π4Es
9Nt


2σ2

εσ
2
res + σ4

res +
E

{
∆ε4k,j

}
4




+
(Nt − 1)Es · σ2

∆H

Nt

·

1 +

π4
(
E

{
ε4k,j

}
+ 8σ2

εσ
2
res + 2σ4

ε + 2σ4
res

)
18




− 2π2
(
σ2
ε + σ2

res

)
(Nt − 1)Es · σ2

∆H

3Nt
(6)

and

E

{∣∣∣∆ξ(n)
k,i

∣∣∣2}
∼= π2σ2

res(Nt − 1)Es
3Nt

− (Nt − 1)Es
3Nt


π4


2σ2

εσ
2
res + σ4

res +
E

{
∆ε4k,j

}
4






+
2π2(Nt − 1)

(
σ2
ε + σ2

res

)
Es · σ2

∆H

3Nt
.

(7)

After averaging out εk,i, ∆εk,i and ∆H(n)
k,i for each (k, i),

the average SINR of rk,i[n] (parameterized by only H(n)
k,i ) is

γ̄k,i

(
n
∣∣H(n)

k,i

) ∼=
Es

Nt
· σ2

m ·
∣∣∣H(n)

k,i

∣∣∣2∣∣∣H(n)
k,i

∣∣∣2 · Var
{
α

(n)
k,i

}
+ ν

, (8)

where ν = Var
{
β

(n)
k,i

}
+E

{∣∣∣∆λ(n)
k,i

∣∣∣2}+E

{∣∣∣∆ξ(n)
k,i

∣∣∣2}+σ2
w

and σ2
m = E

{∣∣∣m(n)
k,i

∣∣∣2} = 1 − π2σ2
res

3
+
π4

E

{
∆ε4k,j

}
36

.

Note that when demodulating the signal transmitted by the
i-th transmit antenna in MIMO-OFDM, the diversity reception
can be exploited to improve the receive SINR. In the following,
we mainly consider two receiver combining methods: equal
gain combining (EGC) and maximal ratio combining (MRC).

B. SINR Analysis with EGC at Receive Antennas

In order to demodulate the signal transmitted by the i-th
transmit antenna in MIMO-OFDM, the received signals at all
the Nr receive antennas can be co-phased by using EGC to
improve the receiving diversity, and, therefore, we have

rEGC
i [n] =

Nr∑
k=1

e−θ
(n)
k,i rk,i[n], (9)

where θ(n)
k,i = arg

{
m

(n)
k,iH

(n)
k,i

}
. The average SINR of rEGC

i [n]
is given by

γ̄EGC
i

(
n
∣∣H(n)

1,i , · · · ,H(n)
Nr,i

)

∼=
Es

Nt
· σ2

m ·
(
Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2 +
∑
k �=l

∣∣∣H(n)
k,i

∣∣∣ · ∣∣∣H(n)
l,i

∣∣∣
)

Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2 · Var
{
α

(n)
k,i

}
+Nrν

.

(10)

C. SINR Analysis with MRC at Receive Antennas

In a MIMO-OFDM system with Nr receive antennas, based
on the channel estimation Ĥ

(n)
k,i = H

(n)
k,i + ∆H(n)

k,i for each
(k, i, n), the received signal at all the Nr receive antennas can
be combined by using MRC, so that

rMRC
i [n] =

Nr∑
k=1

ωk,irk,i[n]

Nr∑
k=1

|ωk,i|2
, (11)

where ωk,i =
(
Ĥ

(n)
k,i m

(n)
k,i

)∗
. The average SINR of rMi [n] is

γ̄MRC
i

(
n
∣∣H(n)

1,i , · · · ,H(n)
Nr,i

)

∼=
Es

Nt
· σ2

m ·
(
Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2)2

Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣4 · Var
{
α

(n)
k,i

}
+

Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2 ν′ +Nrν · σ2
∆H

,

(12)

where ν′ =
[
ν +

(
Es
Nt

+ Var
{
α

(n)
k,i

})
σ2

∆H

]
.

IV. BER PERFORMANCE

The bit error rate as a function of SINR in MIMO-OFDM is
derived in this section. Each subcarrier is modulated by using
the M -ary square QAM with Gray bit mapping. In Rugini
and Banelli [12], the bit error rate of SISO-OFDM with the
frequency offset is developed. Their bit error rate analysis is
now extended to the MIMO-OFDM.

As discussed in [12], the bit error rate for the i-th transmit
antenna with the input constellation being M -ary square QAM
(Gray bit mapping) can be represented as

P̄BER (γi) =

√
M−1∑
j=1

aMj

∫
γi

erfc
(√

bMj γi

)
f (γi) dγi, (13)

where aMj and bMj are specified by the signal constellation, γi
is the average SINR of the i-th transmit antenna, erfc(x) =
2√
π

∫ ∞

x

e−u
2
du is the error function, and f (γi) represents

the probability density function of γi. Since it appears impos-
sible to obtain a close-form solution of (13), an infinite series
approximation of P̄BER is developed. In [12], the average
is expressed an infinite series of generalized hypergeometric
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functions. Our solution is different and perhaps a less compli-
cated solution.

From [13, page 939], (13) can be rewritten as an infinite
series

P̄BER (γi) =
2√
π

√
M−1∑
j=1

aMj

∞∑
m=1

(−1)(m+1)(bMj )(m− 1
2 )

(2m− 1)(m− 1)!
Di;m,

(14)

where Di;m is a factor that accounts for the type of reception.
Detailed derivation of Di;m is impossible due to the page limit
and will be provided in a journal submission. We next give a

recursive definition for Di;m. We first define � =
Es
Nt

· σ2
m

and µ = Var
{
α

(n)
k,i

}
, which will be used in the following

subsections. Three reception methods are considered next: (1)
demodulation without combining, (2) EGC, and (3) MRC.

A. BER without Receiving Combining

The bit error rate measured at the k-th receive antenna for
the i-th transmit antenna can be approximated by (14) with
Dk
i;m instead of Di;m being used here. When m > 2, we have

Dk
i;m =

� [(2m− 3)µ+ ν]
µ2(m− 3

2 )
· Dk

i;m−1 − �2

µ2
· Dk

i;m−2. The

initial condition is given by

Dk
i;1 =

∫ ∞

0

�
1
2h

1
2

(µh+ ν)
1
2
e−hdh. (15)

B. BER with EGC

For a MIMO-OFDM system with EGC at the receiver,
the average bit error rate can be approximated by (14)
with DEGC

i;m instead of Di;m being used here. Defining

νE = Nrν, σ2
H =

(Nr!)2

8
[(
Nr − 1

2

) · · · 1
2

]2 , ν̃E = νE −
µNr(Nr − 1)π

4
and µ̃ = 2σ2

H · µ, when m > 2,

DEGC
i;m =

2σ2
H�

[
(2m+Nr − 4)µ̃(Nr − 1)! + ν̃E

]
µ̃2(m− 3

2 )(Nr − 1)!
·DEGC

i;m−1−
(2σ2

H�)2(m+Nr − 5
2 )

µ̃2(m− 3
2 )

· DEGC
i;m−2. The initial condition is

given by

DEGC
i;1 =

(2σ2
H�)

1
2

(Nr − 1)!

∫ ∞

0

h(Nr− 1
2 )

(µ̃h+ ν̃E)
1
2
e−hdh. (16)

C. BER with MRC

For a MIMO-OFDM system with channel knowledge at
the receiver, the receiving diversity can be optimized by
using MRC, and the average bit error rate can be approx-
imated by (14) with DMRC

i;m instead of Di;m being used

here. Defining ν′ =
[
ν +

(
Es

Nt
+ µ

)
σ2

∆H

]
and νM =

ν′ + ν · σ2
∆H , DMRC

i;m with m > 2 being given by

DMRC
i;m =

�
[
(2m+Nr − 4)µ(Nr − 1)! + ν̃M

]
µ2(m− 3

2 )(Nr − 1)!
· DMRC

i;m−1 −

�2(m+Nr − 5
2 )e−(Nr−1)

µ2(m− 3
2 )

·DMRC
i;m−2. The initial condition is

given by

DMRC
i;1 =

e−(Nr−1)�
1
2

(Nr − 1)!

∫ ∞

0

h(Nr− 1
2 )

(µh+ ν̃M )
1
2
e−hdh. (17)

V. NUMERICAL RESULTS

In this section, the quasi-static MIMO-OFDM wireless
channels are assumed, i.e., the channel impulse response is
fixed over one OFDM symbol period but changes across the
symbols.

In Fig. 1 to Fig. 4, we compare the bit error rates of QPSK
and 16QAM with different combining methods in MIMO-
OFDM. Note that IAI cannot be totally eliminated due to the
non-zero frequency offset and channel estimation errors, which
makes a bit-error-rate floor appearing at a high SNR. IAI can
be reduced considerably by exploiting the receiving diversity
using either EGC or MRC.

Without the receiving combining, the bit error rate at each
receive antenna will be much worse than that in SISO-OFDM,
simply because of the average SINR degradation due to the
IAI. For example, when Nt = Nr = 2 and σ2

∆H = 10−4, the
bit error rate with QPSK is about 5.5 × 10−3 when σ2

res =
10−4, and this error is much higher than that in SISO-OFDM
(the bit error rate of SISO-OFDM is 1.8 × 10−3), as shown
in Fig. 1. For a given number of receive antennas, MRC can
achieve a lower bit error rate than that with EGC, provided
that an accurate channel estimation is assumed at the receiver.
For example, in Fig. 2, when σ2

∆H = 10−4 with Nt = Nr = 2
and 16QAM, the performance improvement of EGC (MRC)
over that without combining is about 5.5 dB (6 dB), and that
performance improvement will increase to 7.5 dB (8.5 dB) if
σ2
res is increased to 10−3. By increasing the number of receive

antennas to 4, this performance improvement will be about
8.2 dB (9 dB) for EGC (MRC) with σ2

∆H = 10−4, or 11 dB
(13.9 dB) for EGC (MRC) with σ2

∆H = 10−3, as shown in
Fig. 4. If accurate frequency offset and channel estimation is
performed at the receiver, the proposed theoretical analysis can
also be accurate.

VI. CONCLUSIONS

The bit error rate impaired by the Frequency offset and
channel estimation errors in MIMO-OFDM is discussed. IAI
due to the residual Frequency offsets will degrade the bit
error rate of MIMO-OFDM, which is analyzed in this paper.
The bit error rates with different receiving combiners, i.e.,
EGC and MRC, for MIMO-OFDM are also analyzed. In a
quasi-static MIMO-OFDM wireless channel, an infinite-series
approximation of the bit error rate that is derived in this paper
is accurate, as shown by the simulation results.
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