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Abstract— 1 In this paper, pilot-assisted transmission over
Gauss-Markov Rayleigh fading channels is considered. A simple
scenario, where a single pilot signal is transmitted everyT
symbols and T − 1 data symbols are transmitted in between
the pilots, is studied. First, it is assumed that binary phase-shift
keying (BPSK) modulation is employed at the transmitter. With
this assumption, the training period, and data and trainingpower
allocation are jointly optimized by maximizing an achievable rate
expression. Achievable rates and energy-per-bit requirements are
computed using the optimal training parameters. Secondly,a
capacity lower bound is obtained by considering the error in
the estimate as another source of additive Gaussian noise, and
the training parameters are optimized by maximizing this lower
bound.

I. I NTRODUCTION

One of the key characteristics of wireless communications
that most greatly impact system design and performance is
the time-varying nature of the channel conditions, experienced
due to mobility and changing physical environment. This has
led mainly to three lines of work in the performance analysis
of wireless systems. A considerable amount of effort has
been expended in the study of cases in which the perfect
channel state information (CSI) is assumed to be available
at either the receiver or the transmitter or both. With the
perfect CSI available at the receiver, the authors in [14] and
[15] studied the capacity of fading channels. The capacity of
fading channels is also studied in [16] and [17] with perfect
CSI at both the receiver and the transmitter. A second line
of work has considered fast fading conditions, and assumed
that neither the receiver nor the transmitter is aware of the
channel conditions (see e.g., [5], [7], [8]). On the other hand,
most practical wireless systems attempt to learn the channel
conditions but can only do so imperfectly. Hence, it is of great
interest to study the performance when only imperfect CSI is
available at the transmitter or the receiver. When the channel
is not known a priori, one technique that provides imperfect
receiver CSI is to employ pilot signals in the transmission to
estimate the channel.

Pilot-Assisted Transmission (PAT) multiplexes known train-
ing signals with the data signals. These transmission strategies
and pilot symbols known at the receiver can be used for
channel estimation, receiver adaptation, and optimal decoding
[1]. One of the early studies has been conducted by Cavers

1This work was supported in part by the NSF CAREER Grant CCF-
0546384.

in [12], [13] where an analytical approach to the design of
PATs is presented. [6] has shown that the data rates are
maximized by periodically embedding pilot symbols into the
data stream. The amount, placement, and fraction of pilot
symbols in the data stream have considerable impact on the
data rate. The more pilot symbols are transmitted and the more
power is allocated to the pilot symbols, the better estimation
quality we have, but the more time for transmission of data is
missed and the less power we have for data symbols. Hassibi
and Hochwald [10] has optimized the power and duration
of training signals by maximizing a capacity lower bound in
multiple-antenna Rayleigh block fading channels. An overview
of pilot-assisted wireless transmission techniques is presented
in [1].

In [2], considering adaptive coding of data symbols without
requiring feedback to the transmitter, Abou-Faycalet al.
studied the data rates achieved with pilot symbol assisted mod-
ulation (PSAM) over Gauss-Markov Rayleigh fading channels.
In this paper, the training period is optimized by maximizing
the achievable rates. The authors in [4] also considered pilot
symbol-assisted transmission over Gauss-Markov Rayleigh
channels and analyzed the optimal power allocation among
data symbols while the pilot symbol has fixed power. They
have shown that the power distribution has a decreasing
character with respect to the distance to the last sent pilot, and
that data power adaptation improves the rates. The authors in
[9] considered a similar setting and analyzed training power
adaptation but assumed that the power is uniformly distributed
among data symbols.

In this paper, considering that no prior channel knowledge
is available at the transmitter and the receiver, we focus ona
time-varying Rayleigh fading channel. The channel is modeled
by a Gauss-Markov model. Pilot symbols which are known
by both the transmitter and the receiver are transmitted with
a period ofT symbols. In this setting, we seek to jointly
optimize the training period, training power, and data power
allocation by maximizing achievable rates.

II. CHANNEL MODEL

We consider the following model in which a transmitter and
a receiver are connected by a time-varying Rayleigh fading
channel,

yk = hkxk + nk k = 1, 2, 3, . . . (1)
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whereyk is the complex channel output,xk is the complex
channel input,hk andnk are the fading coefficient and additive
noise component, respectively. We assume thathk and nk

are independent zero mean circular complex Gaussian random
variables with variancesσ2

h andσ2
n, respectively. It is further

assumed thatxk is independent ofhk andnk.
While the additive noise samples{nk} are assumed to form

an independent and identically distributed (i.i.d.) sequence,
the fading process is modeled as a first-order Gauss-Markov
process, whose dynamics is described by

hk = αhk−1 + zk 0 ≤ α ≤ 1, k = 1, 2, 3, . . . , (2)

where {zk}’s are i.i.d. circular complex Gaussian variables
with zero mean and variance equal to (1-α2)σ2

h. In the above
formulation, α is a parameter that controls the rate of the
channel variations between consecutive transmissions. For
instance, ifα = 1, fading coefficients stay constant over
the duration of transmission, whereas, whenα = 0, fading
coefficients are independent for each symbol. For bandwidths
in the 10kHz range and Doppler spreads of the order of 100
Hz, typical values forα are between 0.9 and 0.99 [2].

III. P ILOT SYMBOL -ASSISTEDTRANSMISSION

We consider pilot-assisted transmission where periodically
embedded pilot symbols, known by both the sender and the
receiver, are used to estimate the fading coefficients of the
channel thereby enabling us to track the time-varying channel.
We assume the simple scenario where a single pilot symbol
is transmitted everyT symbols whileT − 1 data symbols
are transmitted in between the pilot symbols. The following
average power constraint,

1

T

(l+1)T−1∑

k=lT

E
[
|xk|2

]
≤ P l = 0, 1, 2, . . . , (3)

is imposed on the input. Therefore, the total average power
allocated to pilot and data transmission over a duration ofT

symbols is limited byPT .
Communication takes place in two phases. In the training

phase, the pilot signal is sent and the channel output is given
by

ylT = hlT

√
Pt + nlT l = 0, 1, 2, 3, . . . (4)

where Pt is the power allocated to the pilot symbol. The
fading coefficients are estimated via MMSE estimation, which
provides the following estimate:

ĥlT =

√
Ptσ

2
h

Ptσ
2
h + σ2

n

ylT . (5)

Following the transmission of the training symbol, data trans-
mission phase starts andT − 1 data symbols are sent. Since a
single pilot symbol is transmitted, the estimates of the fading
coefficients in the data transmission phase are obtained as
follows:

ĥk =

√
Ptσ

2
h

Ptσ
2
h + σ2

n

αk−lT ylT lT < k ≤ (l + 1)T − 1. (6)

Now, we can express the fading coefficients as

hk = ĥk + h̃k (7)

where h̃k is the estimation error. Consequently, the input-
output relationship in the data transmission phase can be
written as

yk = ĥkxk + h̃kxk + nk lT < k ≤ (l + 1)T − 1. (8)

Note thatĥk and h̃k for lT < k < (l + 1)T are uncorrelated
zero-mean circularly symmetric complex Gaussian random
variables with variances

σ2
bhk

=
Ptσ

4
h

Ptσ
2
h + σ2

n

(αk−lT )2, (9)

and

σ2
ehk

= σ2
h − Ptσ

4
h

Ptσ
2
h + σ2

n

(αk−lT )2, (10)

respectively.

IV. OPTIMAL POWER DISTRIBUTION AND TRAINING

PERIOD FORBPSK SIGNALS

A. Problem Formulation

In this section, we consider that binary phase-shift keying
(BPSK) is employed at the transmitter to send the information.
Since our main goal is to optimize the training parameters
and identify the optimal power allocation, BPSK signaling
is adopted due to its simplicity. In thekth symbol interval,
the BPSK signal can be represented by two equiprobable
points located atxk,1 =

√
Pd,k andxk,2 = −

√
Pd,k on the

constellation map. Note thatPd,k is the average power of the
BPSK signal in thekth symbol interval. In this interval, the
input-output mutual information conditioned on the valueylT
is given by

Ik(xk; yk|ylT = y∗lT ) =

=
1

2

∫
pyk|xk

(y|xk,1) log
pyk|xk

(y|xk,1))

pyk
(y)

dy

+
1

2

∫
pyk|xk

(y|xk,2) log
pyk|xk

(y|xk,2)

pyk
(y)

dy (11)

where

pYk|Xk
(yk|xk) =

1

π(σ2
h̃k

|xk|2 + σ2
n)

exp

(
−|yk − ĥkxk|2
σ2
h̃k

|xk|2 + σ2
n

)

and

pyk
(yk) =

1

2
pyk|xk

(y|xk,1) +
1

2
pyk|xk

(y|xk,2).

We consider the following achievable rate expression, which
acts as a lower bound to the channel capacity:

IL (T, Pt,Pd) = E


 1

T

(l+1)T−1∑

k=lT+1

Ik(xk; yk|ylT = y∗lT )




(12)

=
1

T

(l+1)T−1∑

k=lT+1

E [Ik(xk; yk|ylT = y∗lT )] (13)
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Fig. 1. Achievable data rates vs. training periodT for α = 0.99,0.90,0.80,
and0.70. SNR =

P

σ2
n

= 0dB

where the expectation is with respect toylT , and y∗lT is a
realization of the random variableylT . Note that the achievable
rate is expressed as a function of the training period,T ; power
of the pilot signal,Pt; and the power allocated toT − 1 data
symbols transmitted in between the pilot symbols, which is
described by the following vector

Pd = [Pd,1, Pd,2, ..., Pd,T−1] . (14)

Our goal is to solve the joint optimization problem

(T ∗, P ∗
t ,P

∗
d) = arg max

T,Pt,Pd

Pt+
PT−1

k=1
Pd,k≤PT

IL(T, Pt,Pd) (15)

and obtain the optimal training period, and optimal data and
pilot power allocations. Since it is unlikely to reach to closed-
form solutions, we have employed numerical tools to solve
(15).

B. Numerical Results

In this section, we summarize the numerical results. Figure
1 plots the data rates achieved with optimal power allocations
as a function of the training period for different values of
α. The power level is kept fixed atP = σ2

n = 1. It is
observed that the optimal values of the training period,T ,
are 23, 7, 4, and 4 forα = 0.99, 0.90, 0.80, and 0.70,
respectively. Note that the optimalT and optimal data rate
are decreasing with the decreasingα. This is expected because
the faster the channel changes, the more frequently the pilot
symbols should be sent. This consequently reduces the data
rates which are already adversely affected by the fast changing
and imperfectly known channel conditions. Figures 2 and 3
are the bar graphs providing the optimal training and data
power allocation when the training period is at its optimal
value. In the graphs, the first bar corresponds to the power
of the training symbol while the remaining bars provide the
power levels of the data symbols. We immediately observe
from both figures that the data symbols, which are farther
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Fig. 2. Optimal power distribution among the pilot and data symbols when
α = 0.99 and SNR=0dB. The optimal period isT = 23.
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Fig. 3. Optimal power distribution among the pilot and data symbols when
α = 0.90 and SNR=0dB. The optimal period isT = 7.

away from the pilot symbol, are allocated less power since
channel gets noisier for these symbols due to poorer channel
estimates. Moreover, comparing Fig. 2 and Fig. 3, we see that
having a longer training period enables us to put more power
on the pilot signal and therefore have better channel estimates.
We also note that ifα is small as in Fig. 3, the power of the
data symbols decreases faster as they move away from the
pilot symbol. From these numerical results, it is evident that
α greatly affects the optimal power allocation and optimal
T . Fig. 4 gives the power distribution whenα = 0.90 and
T = 23. Note this value of the training period is suboptimal.
The inefficiency of this choice is apparent in the graph. Since
the channel is changing relatively fast and the quality of the
channel estimate deteriorates rather quickly, only half ofthe
available time slots are used for data transmission, leading to
a considerable loss in data rates.
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Fig. 4. Optimal power distribution among the pilot and data symbols when
α = 0.90 and SNR=0dB. The optimal period isT = 23.

In systems with scarce energy resources, energy required to
send one information bit, rather than data rates, is a suitable
metric to measure the performance. The least amount of
normalized bit energy required for reliable communications
is given by

Eb

N0
=

SNR
C(SNR)

(16)

whereC(SNR) is the channel capacity in bits/symbol. In our
setting, the bit energy values found from

Eb

N0
=

SNR
IL(T ∗, P ∗

t ,P
∗
d)

(17)

provide an upper bound on the values obtained from (16), and
also gives us indications on the energy efficiency of the system.
Fig. 5 plots the required bit energy values as a function of the
SNR. The bit energy initially decreases as SNR decreases and
achieves its minimum value at approximately SNR= −5.5
dB below which the bit energy requirement starts increasing.
Hence, it is extremely energy inefficient to operate below
SNR= −5.5 dB. In general, one needs to operate at low SNR
levels for improved energy efficiency. From Fig. 6, which plots
the optimal training period,T , as a function of the SNR, we
observe thatT increases as SNR decreases. Hence, training
is performed less frequently in the low SNR regime. Fig. 7
provides the pilot and data power allocation when SNR =
−7dB, α = 0.99, andT = 65. It is interesting to note that
althoughT is large, a considerable portion of the available
time slots are not being used for transmission. This approach
enables the system to put more power on the pilot symbol and
nearby data symbols. Hence, although the system trains and
transmits less frequently, a more accurate channel estimate is
obtained and used in return.
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Fig. 6. Optimal training period T vs. SNR forα = 0.99, 0.90, 0.80, 0.70.

V. L OW COMPLEXITY TRAINING OPTIMIZATION

Recall that the input-output relationship in the data trans-
mission phase is given by2

yk = ĥkxk + h̃kxk + nk k = 1, 2, . . . , T − 1. (18)

In the preceding section, we fixed the modulation format and
computed the input-output mutual information achieved in the
channel (18). In this section, we pursue another approach akin
to that in [10]. We treat the error in the channel estimate as
another source of additive noise and assume that

wk = h̃kxk + nk (19)

is zero-mean Gaussian noise with variance

σ2
wk

= σ2
ehk
Pd,k + σ2

n. (20)

2It is assumed that a single pilot signal is transmitted atk = 0.
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Fig. 7. Optimal power distribution for the pilot and data symbols when
α = 0.99 and SNR=-7dB. The optimal period is T=65.

wherePd,k = E[|xk|2] is the average power of the symbol
xk andσ2

ehk

is given in (10). Since the Gaussian noise is the
worst case noise [10], the capacity of the channel

yk = ĥkxk + wk k = 1, 2, . . . (21)

is a lower bound to the capacity of the channel given in (18).
An achievable rate expression for channel (21) is

Iworst = max
T,Pt

max
x

E[|x|2]≤PT−Pt

1

T

T−1∑

k=1

Ik(xk; yk|ĥk) (22)

= max
T,Pt

max
Pd

Pd,k≥0 ∀k
PT−1

k=1
Pd,k≤PT−Pt

1

T

T−1∑

k=1

max
xk

E[|xk|
2]≤Pd,k

Ik(xk; yk|ĥk)

(23)

= max
T,Pt,Pd

PT−1

k=1
Pt+Pd,k≤PT

1

T

T−1∑

k=1

E

[
log

(
1 +

σ2
bhk

Pd,k

σ2
ehk

Pd,k + σ2
n

|ξ|2
)]

.

(24)

In (22), x = (x1, x2, . . . , xT−1) denotes the vector ofT − 1
input symbols, and the inner maximization is over the space of
joint distribution functions ofx. (23) is obtained by observing
that once the data power distribution is fixed, the maximization
over the joint distribution can be broken down into separate
maximization problems over marginal distributions. (24) fol-
lows from the fact that Gaussian input maximizes the mutual
informationI(xk; yk|ĥk) when the channel in consideration is
(21). Note that in (24),ξ is a zero mean, unit variance, circular
complex Gaussian random variable, and the expectation is
with respect toξ. We can again numerically solve the above
optimization and Fig. 8 plots the achievable data rates with
optimal power allocation as a function ofT for different values
of α when SNR=5dB. An even simpler optimization problem
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Fig. 8. Achievable data rates vs. training period T forα = 0.99, 0.90, 0.80,
and 0.70. SNR=5dB

results if we seek to optimize the upper bound

1

T

T−1∑

k=1

E

[
log

(
1 +

σ2
bhk

Pd,k

σ2
ehk

Pd,k + σ2
n

|ξ|2
)]

(25)

≤ 1

T

T−1∑

k=1

log

(
1 +

σ2
bhk

Pd,k

σ2
ehk

Pd,k + σ2
n

)
, (26)

which is obtained by using the Jensen’s inequality and noting
that E[|ξ|2] = 1. In this case, the optimization problem
becomes

max
T,Pt,Pd

PT−1

k=1
Pt+Pd,k≤PT

1

T

T−1∑

k=1

log

(
1 +

σ2
bhk

Pd,k

σ2
ehk

Pd,k + σ2
n

)
(27)

= max
T,Pt,Pd

PT−1

k=1
Pt+Pd,k≤PT

1

T
log

(
T−1∏

k=1

(
1 +

σ2
bhk

Pd,k

σ2
ehk

Pd,k + σ2
n

))
.

(28)

Since logarithm is a monotonically increasing function, the
optimal training and data power allocation for fixedT can be
found by solving

max
Pt,Pd

PT−1

k=1
Pt+Pd,k≤PT

T−1∏

k=1

(
1 +

σ2
bhk

Pd,k

σ2
ehk

Pd,k + σ2
n

)
. (29)

It is very interesting to note that the optimal power distribution
found by solving (29) is very similar to that obtained from
(15) where BPSK signals are considered. Figure 9 plots the
achievable data rates as a function of training period when
BPSK signals are employed for transmission. Hence, the data
rates are computed using (12). In the figure, the solid line
shows the data rates achieved with power distribution found
from (15) while the dashed line corresponds to rates achieved
with power allocation obtained from (29). Note that both
curves are very close and the training period is maximized
at approximately the same value.
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Fig. 9. Achievable data rates for BPSK signals vs.training period T for
α = 0.90. SNR=0dB.
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Fig. 10. Achievable data rates for BPSK signals vs.α for T = 6 and
10. SNR = 0 dB. ”+ and solid line” and ”+ and dotted line” are plotting
rates achieved with power allocation from (29) and (15), respectively, when
T = 10. ”o and solid line” and ”o and dotted line” are plotting ratesachieved
with power allocation from (29) and (15), respectively, when T = 6.

Fig. 10 plots the achievable rates for BPSK signals as a
function of the parameterα for T = 6 and 10. The power
distribution is again obtained from both (29) and (15). We
again recognize that the loss in data rates is negligible when
(29) is used to find the power allocation.

VI. CONCLUSION

We have studied the problem of training optimization
in pilot-assisted wireless transmissions over Gauss-Markov
Rayleigh fading channels. We have considered a simple sce-
nario where a single pilot is transmitted everyT symbols for
channel estimation andT − 1 data symbols are transmitted
in between the pilot symbols. MMSE estimation is employed
to estimate the channel. We have jointly optimized the train-

ing period,T , and data and training power distributions by
maximizing achievable rate expressions. We have provided
numerical results showing the optimal parameters, power
distributions, and maximized achievable rates. We have also
studied the energy efficiency of pilot-assisted transmissions by
considering the energy-per-bit requirements.
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