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Abstract— In this paper, we apply the Jacobi iterative algo-
rithm to combat intersymbol interference caused by frequency
selective channels. An analytical bound of the proposed equalizer
is analyzed in order to gain an insight into its asymptotic
performance. Due to the error propagation problem, the potential
of this algorithm is not reached in an uncoded system. However,
its extension to a coded system with the application of the
turbo processing principle results in a new turbo equalization
algorithm which demonstrates comparable performance with
reduced complexity compared to some existing filter based turbo
equalization schemes.

I. INTRODUCTION

In a cellular mobile communications environment, multi-
path propagation causes dispersion of transmitted signals. The
time delay spread causes intersymbol interference (ISI) and
degrades system performance. Therefore, equalization methods
which can mitigate the effects of ISI must be employed.
In [1], [2], etc., the MAP-equalizer [3] was replaced by a
linear filter, whose coefficients are adjusted to minimize the
mean-square error. It was shown that the performance of
this approach is similar to that of the MAP-based receiver,
while providing a significant reduction in the computational
complexity. In this paper, we first design an equalizer based
on the Jacobi algorithm, which has previously been used for
multiuser detection in DS-CDMA systems, e.g., in [4]. The
algorithm is then extended to a coded system, leading to a new
approach to turbo equalization, which further reduces receiver
complexity without incurring a performance penalty in most
cases compared to the existing filter based algorithms.

A multipath channel can be modeled by an equivalent base-
band system where the transmit filter, the channel and the re-
ceive filter, are represented by a discrete-time L-tap transversal
filter with finite-length impulse response hn =

∑L−1
l=0 hlδn−l

where hl denotes the complex channel coefficients, which are
normalized such that

∑L−1
l=0 |hl|2 = 1. The received signal can

be formed as

rn =

L−1∑

l=0

sn−lhl + vn, (1)

where sn = xn + jyn denotes the transmitted PSK/QAM
symbol (we use QPSK symbol for the purpose of this study) at
time instant n, and vn is the complex additive white Gaussian
noise (AWGN) with zero mean and variance N0. The task of
the receiver is to detect the transmitted symbols {sn} given the
received observation {rn}. From (1), we see that the desired
symbol is corrupted with ISI and AWGN. An equalizer is
needed to combat ISI. Several equalization algorithms have
been introduced in the literature, e.g., the minimum mean

square error (MMSE) linear equalizer, and the decision feed-
back equalizer (DFE). Various adaptive algorithms have been
proposed for equalizer training, e.g., the least mean square
(LMS), and the recursive least square (RLS) [5], square root
Kalman (SRK) [6], etc.. Here, we introduce a new equalization
algorithm and derive its theoretical performance bound. Our
analysis reveals its good potential for removing the detrimental
effect of ISI. This approach is later extended to coded systems
which leads to a new turbo equalization scheme.

II. EQUALIZATION BASED ON JACOBI ALGORITHM

A. Algorithm derivation

To simplify the algorithm derivation, we use a 3-tap SUI-
3 channel specified in IEEE 802.16 standard [7], [8] as an
example. It has a tap spacing of 500ns, and maximum tap
delay of 1000ns. The algorithm is then extended to address
generic ISI channels. Under the assumption that the transmitted
data rate is 4Mbps, the multipath fading can be modeled
as a tapped-delay line with adjacent taps spaced equally at
the symbol rate. The received signal is formed as rn =
h0sn +h1sn−1 +h2sn−2 + vn, where the channel coefficients
h0, h1, h2 are complex Gaussian random variables and are
assumed to remain constant during the transmission of one
block of data. The received signal can be written in vector
form as
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(2)

The maximum likelihood (ML) estimate of the symbol
vector sn is [9]

ŝn = (H∗H)−1H∗rn = (H∗H)−1H∗(Hsn + vn)

= sn + (H∗H)−1H∗vn, (3)

which is an unbiased estimate of sn since E[ŝn] = sn. This
procedure is computationally complex due to the matrix inverse
operation for each symbol vector. The superscript operator ( )∗

is the conjugate transpose operation when applied to matrices,
and simply the conjugate when applied to scalars. To simplify
the computation, let us reform (3) as

ŝn = sn + (H∗H)−1H∗vn = sn + R−1un

= R−1(Rsn + un) = R−1yn, (4)



where un = H∗vn, yn = Rsn + un = H∗Hsn + H∗vn =
H∗rn, and R = H∗H, which is defined by
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(5)

Apparently, R is a Hermitian matrix satisfying the condition
R = R∗. Let us decomposite the matrix R into 2 matrices
R = D + Roff , where D is a diagonal matrix, and Roff is an
off-diagonal matrix. For the matrix R expressed in (5), D and
Roff are
D = diag{|h2|

2, |h1|
2 + |h2|

2, |h0|
2 + |h1|

2 + |h2|
2, |h0|

2 + |h1|
2, |h0|

2};
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(6)

The matrix inversion in (4) can be solved iteratively by the
Jacobi algorithm [10]

si
n = D−1(yn − Roffsi−1

n ), (7)
where i is the iteration index. Substituting (6) into (7) yields
D

−1 = diag{1/|h2|
2, 1/(|h1|

2 + |h2|
2), . . . 1/|h0|

2};
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The above procedure produces estimates of all the symbols
in the vector si

n. However, since detection of the central symbol
sn relies on all the received samples in the vector yn(rn), it
can be assumed more accurate than the detection of the other
symbols. From the above equation, we derive

si

n = [h∗

0rn + h∗

1rn+1 + h∗

2rn+2 − h∗

0h2s
i−1
n−2 − (h∗

0h1 + h∗

1h2)s
i−1
n−1

− (h∗

1h0 + h∗

2h1)s
i−1
n+1 − h∗

2h0s
i−1
n+2]/P

= [h∗

0(rn − h2s
i−1
n−2 − h1s

i−1
n−1) + h∗

1(rn+1 − h2s
i−1
n−1 − h0s

i−1
n+1)

+ h∗

2(rn+2 − h1s
i−1
n+1 − h0s

i−1
n+2)]/P

= sn + [h∗

0h2(sn−2 − si−1
n−2) + (h∗

0h1 + h∗

1h2)(sn−1 − si−1
n−1)]/P

︸ ︷︷ ︸

cancellation residual

+ [(h∗

1h0 + h∗

2h1)(sn+1 − si−1
n+1) + h∗

2h0(sn+2 − si−1
n+2)]/P

︸ ︷︷ ︸
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+ [h∗

0vn + h∗

1vn+1 + h∗

2vn+2]/P
︸ ︷︷ ︸

noise

, (8)

where P =
∑2

i=0 |hi|2. One can see from (8) that the decision
statistic for the symbol sn at the ith iteration is obtained by
canceling the interference using the symbol estimates at the
(i − 1)th iteration. With the decision statistic si

n, the symbol
estimate can be obtained using the maximum likelihood de-
cision rule ŝn = arg min

sm

|si
n − sm|2. In the case of QPSK

modulation, sm ∈ {s0, s1, s2, s3}. Note that at the beginning
of the iterative process, no symbol estimates are available. We
can use coherent non-cancellation detection to obtain an initial
estimate of the transmitted symbols so that the interference
cancellation can be carried out in the subsequent stage. This
algorithm can be readily extended to a generic L-path channel.
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Fig. 1. Performance of the proposed equalizer and comparison with DFE
and theoretical lower bounds. The curve for the proposed equalizer is plotted
at the 3rd stage.

B. Numerical results for the proposed equalizer

Computer simulations are carried out to demonstrate the
performance of the proposed algorithm. During each Monte-
Carlo run, the block size is set to 10000 bits, which correspond
to 5000 QPSK symbols, 200 of which are used as pilot
symbols for channel estimation. This is conducted using the
modified maximum likelihood algorithm presented in [11]. We
choose the SUI-3 FWA channel introduced in [8]. The channel
coefficients vary from one data block to another, however, they
are assumed to remain constant during the transmission of one
block of data. The simulated results are averaged over 1000
channel realizations.

In Fig. 1, we compare the performance of the proposed
scheme with the conventional DFE equalizer with 5 feed-
forward, 3 feedback taps. It uses 200 pilots for training
the equalizer coefficients (using recursive least square (RLS)
adaptation). At high SNR, the conventional DFE performs
better than the proposed equalizer. However, the proposed
scheme has a much lower performance bound (represented by
the dash-dot curve marked with asterisk computed by (12))
than that of the conventional DFE, thus exhibits a much better
potential.

The performance of the proposed equalization scheme at
different stages is illustrated in Fig. 2. The improvement by
applying the Jacobi iterative algorithm over coherent non-
cancellation detection is significant if we compare the topmost
solid curve with the other solid curves. It takes only 3 stages
for the iterative scheme to converge. In Fig. 2, we also
present the simulation results of the equalizer assuming i)
perfect channel state information (CSI) and ii) the maximum
likelihood channel estimation (CE), the details of which are
presented in [11], and compare the simulation results with
the results from theoretical analysis. In the simulations, the
ISI is assumed to be known, and thus the cancellation is
perfect. The theoretical curve is obtained by evaluating Eq. (12)
numerically. The parameters settings are s2 = 0.36, σ2 =
0.175, γ1 = E[|h1|2] = 0.223, γ2 = E[|h2|2] = 0.07
in (12). Fig. 2 shows that the theoretical analyses are in close
agreement with the simulation results. Comparison between the
simulation results with perfect CSI and the simulation results
with CE indicate that the performance loss due to imperfect
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Fig. 2. Performance bound of the proposed equalizer: simulations vs.
analyses, perfect CSI vs. CE. For proposed equalization, the topmost curve
represents non-cancellation coherent detection stage and the bottommost curve
represents the 4th equalization stage.

channel estimation is very small compared to the genie-aided
case with perfect CSI.

One can see that the performance of the proposed scheme
in uncoded systems is far above its performance bound. The
rationale is that errors in the decision feedback significantly
degrade performance and prevent the algorithm from reaching
its theoretical potential. There are various ways of tackling this
problem, e.g., using channel coding to reduce the feedback
error probability, and/or using soft cancellation rather than
brutal force cancellation to prevent error propagation. As will
become evident in Section II-C, the theoretical potential of the
proposed scheme can be realized by extending the algorithm
to turbo equalization.

C. A new approach to turbo equalization

In order to reduce the error propagation and exploit the
potential offered by the previously described equalization al-
gorithm, we apply channel coding to the system, the base-
band representation of which is depicted in Figure 3. The
information sequence {bn} is convolutionally encoded into
code bits {un}, which are subsequently interleaved and each
block of two coded and interleaved bits u′n[0], u′n[1] is mapped
into one of the four QPSK symbols. The interleaver and
deinterleaver are denoted as Π and Π−1, respectively, in Fig. 3
and Fig. 4. The QPSK symbol at time instant n is denoted
as sn = xn + jyn. The QPSK symbols are transmitted over
the ISI channel, which can be modeled as a L-tap transversal
filter with impulse response hn =

∑L−1
l=0 hlδn−l where hl

denotes the complex channel coefficients. The received signal
is basically the same as (1) except that the symbols {sn−l}
are now formed by coded bits rather than information bits.

The proposed turbo equalization algorithm is illustrated in
Fig. 4. First, we use a training sequence to acquire a channel
estimate ĥ. In the meantime, a simple linear equalizer (LE)
can be used to obtain an initial estimate of the transmitted
symbols {ŝn = x̂n+jŷn}. The channel estimate ĥ and symbol
estimates {ŝn} are passed to the equalizer (the SISO inner
block shown in Fig. 4), which computes the log-likelihood
ratio (LLR) value of sn, denoted by λ(sn) = λ(xn)+ jλ(yn).
We use the equalization algorithm described previously, and

apply the same method as described in [12] to derive LLR
values λ(xn), λ(yn) from the equalizer output. The LLR
values of the symbols are mapped into LLR values of coded
bits {λ(u′n;O)}, which are deinterleaved to yield {λ(un; I)}.
For the QPSK modulated signals, the symbol LLR λ(sn) =
λ(xn)+ jλ(yn) to bits LLRs λ(u′n[0]), λ(u′n[1]) mapping rule
is simply λ(u′n[0];O) = λ(xn), λ(u′n[1];O) = λ(yn). Based
on the soft input λ(un; I), a SISO outer channel decoder com-
putes the LLR of each information bit λ(bn;O) and each coded
bit λ(un;O), where the former is used to make decisions on the
transmitted information bit at the final iteration, and the latter
is interleaved and passed through a bit-to-symbol converter
(BSC) to derive a soft symbol estimate s̄n = x̄n+jȳn, which is
used for equalization at the next iteration. We use the notations
λ(·; I) and λ(·;O) to denote the input and output ports of a
SISO device. Several SISO algorithms can be used to compute
the channel decoder outputs. For the purpose of this study, we
consider the use of the Log-MAP algorithm [13].

The proposed scheme is evaluated and compared numeri-
cally with some existing algorithms in this section. In par-
ticular, we make a comparison with the MMSE filter based
turbo equalization proposed by Tüchler, et. al. in [1]∗, and the
adaptive turbo equalization introduced by Laot, et. al. in [2].
The original algorithms were mostly derived for the BPSK
modulated system or M-QAM system, have to be modified
for the QPSK constellation under question. In the simulations,
we employ a rate 1/3 Maximum Free Distance convolutional
code [5] with constraint length 5 and generator polynomials
(25, 33, 37) in octal form. During each Monte-Carlo run, the
block size is set to 5000 information bits followed by 4 tails
bits to terminate the trellis, which corresponds to 5004 × 3 =
15012 coded bits. They are interleaved by an 108× 139 block
interleaver and transmitted over a ISI channel. For the initial
equalization stage of all the three schemes, we use a 7-tap
linear MMSE equalizer, and 200 pilot symbols are used for
training the equalizer. In the meantime, the modified maximum
likelihood algorithm presented in [11] is used for channel
estimation during the training period. Channel estimates are
needed by the Laot’s adaptive equalizer for the calculation of
LLR values; they are also used for deriving filter coefficients
and for interference cancellation by the other schemes. The
simulation curves are obtained by averaging the simulation
results over a minimum of 200 blocks of data transmitted and
after at least 100 bit errors have occurred.

The performance comparison between the proposed scheme
and some existing schemes is given in Fig. 5 and Fig. 6 for
the SUI-3 channel and a 5-tap static channel, respectively. The
impulse response of the static channel is defined as h[n] =
(2 − 0.4j)δ[n] + (1.5 + 1.8j)δ[n − 1] + δ[n − 2] + (1.2 −
1.3j)δ[n − 3] + (0.8 + 1.6j)δ[n − 4], and the output channel
power is normalized so that P =

∑4
n=0 |h[n]|2 = 1. To study

the behavior of each algorithm, the number of stages is set to
4 since it is observed that no more than 4 stages are needed
for the discussed schemes to converge. For Laot’s adaptive
algorithm [2], the step size µ is set to 0.006 during the training
period (200 pilots) and 0.002 during the tracking period. No
exhaustive search has been performed to optimize the value
of µ, however, the chosen values have been found to perform

∗The simulation results shown in this section are obtained by its original
implementation. We have observed from our experiments that its approximate
implementation with perfect a priori information has very close performance
to the proposed scheme.
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ĥ

{b̂n}
sgn(·)

{λ(u′

n)}
Π

Π
−1

Fig. 4. Block diagram of the proposed turbo equalization scheme.

4 5 6 7 8 9 10 11 12 13

10
−4

10
−3

10
−2

10
−1

Turbo equalization for SUI−3 channel

B
it 

er
ro

r r
at

e

E
b
/N

0
 [dB]

Laot scheme
Tuchler scheme
Proposed scheme

Fig. 5. Comparison of different turbo equalization algorithms after reaching
convergence. All the curves represent the 4th stage turbo equalization.

reasonably well in various channel conditions. Results show
that for the SUI-3/static channel, the proposed algorithm yields
almost the identical/comparable results to the Tüchler’s MMSE
scheme, while achieves a gain of up to 0.5 dB compared to
Laot’s adaptive scheme after the system reaches convergence.
The potential for performance improvement offered by the
proposed scheme as predicted in Fig. 1 and Fig. 2 is realized
by extending the algorithm to coded systems and by applying
the turbo processing principle.

We also observed from our experiments that for channels
with severe frequency-selectivity (e.g., Proakis D channel with
impulse response h[n] = 0.1275δ[n] + 0.450δ[n − 1] +
0.750δ[n − 2] + 0.450δ[n − 3] + 0.1275δ[n − 4]), Tüchler’s
MMSE scheme has noticeable performance gain compared to
the proposed scheme. The rationale is that when the condition
of perfect cancellation is satisfied or approached, the proposed
scheme does not incur a performance penalty compared to
the MMSE scheme. However, when the bit error rate of the
system is not very low, the condition of perfect cancellation
cannot be approached, the performance of the proposed turbo
equalization becomes suboptimum. It might be advantageous
to apply Tüchler’s MMSE scheme under such circumstances.

Table I shows the number of complex multiplications, divi-
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Fig. 6. Comparison of different turbo equalization algorithms for the static
channel. All the curves represent the 4th stage turbo equalization.

TABLE I
COMPARISON OF COMPLEXITY FOR ONE SYMBOL ESTIMATE AT ONE

ITERATION FOR THE ALGORITHMS CONSIDERED.

operations multiplication division addition/subtraction
Proposed L2 + 6 2 L2 + 1
Tüchler 8L3 − 4L2 + 3L + 8 2L2 + 2 8L3 − 3L2 + 4L

Tüchler app. 2L2 + 2L + 6 2 2L2 + 2L + 1
Laot 6L + 4 4 6L + 4

sions, and additions/subtractions required for the estimation
of each QPSK symbol for the turbo equalization schemes
considered, where L is the number of channel taps. The figures
for Tüchler and Laot’s schemes are based on their modified
versions which suit the QPSK modulation considered in this
paper. For the Tüchler’s scheme, both the original and its
approximate implementation [1] are considered. One can see
from the table that Laot’s scheme has the lowest complexity,
which is linear with L. However, it has the worst performance
as one can see from the numerical results presented earlier.
The proposed scheme reduces the complexity from O(L3)
to O(L2) compared to the original Tüchler’s scheme. It also
has lower complexity than the approximate implementation of
Tüchler’s scheme.



III. CONCLUSIONS

In this paper, we first introduced a new approach to equal-
ization based on the Jacobi iterative algorithm. However, the
results show that the performance of this algorithm is far from
its theoretical potential in an uncoded system, due to the fact
that errors in the decision feedback significantly degrade its
performance. This suggests the use of channel coding to reduce
the effect of feedback propagation errors. The idea of jointly
equalizing and decoding of coded data over ISI channels leads
to the proposed turbo equalization scheme, which is compared
with the existing filter based equalization schemes, and is
shown to achieve comparable performance with a reduced
complexity. Numerical comparison indicates that the MMSE
filtering is not necessary unless in severe ISI situation. The
good performance and simplicity of this scheme makes it a
feasible alternative for practical implementations, especially for
the channels with large delay spreads.

APPENDIX

Here, we analyze the performance bound that can be
achieved by the proposed equalization scheme in order to gain
an insight into its asymptotic performance. The derivation is
based on the assumption of perfect channel estimation and
perfect cancellation. In this case, all the cancellation residuals
will vanish, the equalizer output expressed by (8) only contains
the desired signal and the noise, i.e., zn =

∑L−1
l=0 (|hl|2sn +

h∗l vn−l)/P = sn + wn, where P =
∑L−1

l=0 |hl|2, and wn ∼
CN (0, N0/P). The bit error probability for the QPSK system
is computed as [14]

Pb = Q




A
√
∑L−1

l=0 |hl|2
√

N0/2



 = Q

(√

2EbP
N0

)

, (9)

where Q(x) =
∫∞

x
1√
2π

exp(−t2/2)dt is the complementary
Gaussian cumulative distribution function. The above formula
can be used directly for calculating the performance bound
for static channels. Next, we use the SUI-3 channel [8] as an
example to demonstrate how the performance bound for non-
static channels can be calculated. For the 3-tap SUI-3 channel,
P = |h0|2 + |h1|2 + |h2|2. Let us denote x = |h0|2, y =
|h1|2 + |h2|2. The bit error probability is a function of random
variables x and y, i.e.,

Pb(x, y) = Q





√

2Eb(x+ y)

N0



 . (10)

Since |h0|, the amplitude of the first tap is Ricean distributed
due to the existence of line of sight propagation [8], the random
variable x is non-central chi-square distributed with 2 degrees
of freedom and PDF

p(x) =
1

2σ2
exp

(

−x+ s2

2σ2

)

I0

(√
xs

σ2

)

, x ≥ 0,

where I0(x) is the 0th order modified Bessel function of the
first kind [5, p. 44]. The amplitudes of the other two taps
(|h1|, |h2|) are characterized by a Rayleigh distribution [8].
Therefore, each of the random variables |h1|2, |h2|2 has a cen-
tral chi-square distribution with 2 degrees of freedom and char-
acteristic functions ψ|h1|2(jv) = (1−jvγ1)

−1; ψ|h2|2(jv) =
(1 − jvγ2)

−1, where γ1 = E[|h1|2], γ2 = E[|h2|2], and

γ1 6= γ2. As a consequence of the statistical independence
of |h1|2 and |h2|2, the characteristic function of y is

ψy(jv) = (1 − jvγ1)
−1(1 − jvγ2)

−1

=
γ1

γ1 − γ2
(1 − jvγ1)

−1 +
γ2

γ2 − γ1
(1 − jvγ2)

−1.

Taking the inverse Fourier transform, we obtain the PDF of
y as

p(y) =
1

γ1 − γ2

exp

(

−
y

γ1

)

+
1

γ2 − γ1

exp

(

−
y

γ2

)

, y ≥ 0.

(11)

To obtain the error probability when x, y are random, we
must average Pb(x, y) expressed in (10) over the distribution
of x, y, i.e., the average BER is calculated as

P̄b =

∫ ∞

0

∫ ∞

0

Pb(x, y)p(x)p(y)dydx

=
1

2σ2

∫ ∞

0

∫ ∞

0

Q





√

2Eb(x+ y)

N0





· exp

(

−x+ s2

2σ2

)

I0

(√
xs

σ2

)

·
[

1

γ1 − γ2
exp

(

− y

γ1

)

+
1

γ2 − γ1
exp

(

− y

γ2

)]

dydx.

(12)
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