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Abstract— Joint eigenvalue distribution of the noncentral com-
plex Wishart matrix, i.e. HH∗ where H is the nonzero-mean
complex Gaussian random channel matrix of a multiple-input
multiple-output (MIMO) system, is required for the analysis of
Ricean MIMO channels from different aspects, including the
average of mutual information between the transmitter and the
receiver (ergodic capacity), when the channel gains are known
to the receiver only. Previous works rely on the available results
in mathematics for the joint eigenvalue distribution, obtained
by integration over unitary matrices using classic integration
methods. In this paper, we present a powerful integration method
over unitary matrices which exploits the representation theory
and characters of groups. The method was originally proposed for
square matrices. We modify the approach from square matrices
to rectangular matrices to solve a more general integral over
unitary matrices and obtain the joint eigenvalue distribution of
the noncentral Wishart matrix. Our result is the generalization
of the previous classical integral over unitary matrices so that
the result is not restricted to diagonal and/or real matrices,
particularly.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless channels,
which deploy antenna arrays at both the transmitter and
receiver, promise high capacity and high quality wireless
communication links [1], [2]. MIMO systems have been
investigated in terms of the ergodic capacity [1] and the outage
probability [3], by exact or asymptotic analysis [4], [5]. In the
case of exact analysis, several results regarding the distribution
of the channel matrix have been presented in the literature.
These results indicate that in an independent and identically
distributed (i.i.d.) Rayleigh fading environment, the capacity
of a MIMO system with Nt transmit antennas and Nr receive
antennas scales almost linearly with min(Nt, Nr) in the high
signal-to-noise ratio (SNR) regime [1].

The most common method used in the literature for an-
alyzing the capacity of MIMO systems is to calculate the
moment generating function (MGF) of the mutual information
between the transmitter and the receiver. This is done for
various statistical channel models. The differentiation of the
MGF yields the first moment, which will be the capacity.
Moreover, the probability of outage can be derived through a
simple numerical integral [6]. The outage mutual information
for Gaussian uncorrelated channels by using the MGF is
presented in [3], and the mutual information of MIMO systems
can be found in [7] when the channel is Ricean and in [8]-
[10] when the channel is correlated. These works are based on

the available results in the theory of Wishart random matrices
[11], i.e. HH∗ where H is the complex Gaussian random
channel matrix of a MIMO system. In particular, in [7], the
authors use the joint probability density function (pdf) of the
eigenvalues of the non-central Wishart matrix [12] to calculate
the MGF of the mutual information. The used pdf [12] is a
hypergeometric function with two matrix arguments.

Recently, the character expansion method, introduced by
Balantekin [13], has been exploited in [14] to calculate the
joint pdf of the eigenvalues of Wishart matrices. In [13], the
character expansions are used for integration over unitary ma-
trices where the coefficient matrices are nonzero-determinant
square matrices. However, when the channel matrix is not a
square matrix, the integrations are over unitary matrices with
rectangular coefficient matrices. To handle the integrations
with non-square coefficient matrices, a framework is proposed
in [14]. We believe that the integration steps presented in [14]
are inaccurate, which result in incorrect joint eigenvalue distri-
butions. In this paper, after a brief introduction to the character
expansion of groups, we present a modified framework to use
the character expansions for integrations over unitary matrices.
We show that by using the modified framework, one can
easily calculate the integrations involving general rectangular
complex coefficient matrices appearing in the integrand. Our
result is a generalization of previous classical integral over
unitary matrices so that the result is not restricted to diagonal
and/or real matrices. The joint pdf of the eigenvalues of the
Ricean MIMO channel matrix is a special case of our general
integration.

II. SYSTEM MODEL AND CAPACITY

Consider a narrow-band, flat-fading communication system
with Nt transmit and Nr receive antennas ( MIMO(Nt,Nr) ).
The linear transformation between the transmit and receive
antennas can be modeled as

x =
√

ρHs + v (1)

where x ∈ CNr is the complex received vector, s ∈ CNt

is the transmitted vector, v ∈ CNr is the additive noise and
H ∈ CNr×Nt is the channel matrix. To obtain the capacity, we
assume the entries of both vectors s and v are independent
and identically distributed (i.i.d.) complex Gaussian random
variables with zero mean and variance one, CN (0, 1). Thus,
E{ss∗} = I where E{·} and (·)∗ denote the expectation and
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Hermitian (transpose conjugate) and I is the identity matrix,
and ρ will be the average transmitted power at each signaling
interval from each antenna. To model a Ricean MIMO channel,
we assume H = Hµ + Hw where Hµ represents the mean
of H and is constant, and entries of Hw are i.i.d. CN (0, 1).
Note that since there is no constraint on the elements of
Hµ, the entries of H are independent but not identically
distributed. Clearly, the i.i.d. case is a special case of the above
assumption.

Assuming that the channel matrix in known to the receiver
only, the mutual information between the transmitter and the
receiver is obtain by

I = log (det [I + ρHH∗]) nats/s/Hz, (2)

where log(·) denotes the natural logarithm. By defining the
MGF of I as

g(z) = EH{ezI} = EH{det [I + ρHH∗]z}, (3)

the capacity of the system is obtained by direct differentiation:

C = EH{I} = g′(0). (4)

From (3), it is clear that the generating function can be written
very simply in terms of the eigenvalues λi of the matrix HH∗

as

g(z) = Eλ{
M∏
i=1

(1 + ρλi)
z}

=
M∏
i=1

∫ ∞

0

dλi (1 + ρλi)
z
P ({λi}) (5)

where we define M = min{Nt, Nr} and N = max{Nt, Nr},
and P ({λi}) is the joint pdf of the eigenvalues of HH∗.
Assuming the singular value decomposition of H as H =
UΣV∗ where U ∈ U(Nt) (the group of unitary matrices
with dimension Nt), V ∈ U(Nr) and Σ = diag({√λi}) ∈
RNr×Nt

+ , it is shown [15] that

P ({λi}) =KM,N∆(λ)2
M∏
i=1

λN−M
i

×
∫

DV
∫

DUp(H = UΣV∗) (6)

where K−1
M,N =

∏M
j=1 j!(N − M + j − 1)!,

∆(λ) = det[λj−1
i ] =

∏
i>j

(λi − λj)

is the Vandermonde determinant of vector λ ( det[f(i, j)]
denotes the determinant of a matrix with the (i, j)th element
given by f(i, j) ), DU denotes the Haar measure of U(Nt)
[11] and p(H) is the pdf of H defined as

p(H) = etr {−(H − Hµ)(H − Hµ)∗} (7)

where etr{A} = exp(tr{A}).

Hence, for the Ricean MIMO channel

P ({λi}) = KM,N∆(λ)2
Q∏

j=1

e−µj

M∏
i=1

[
e−λiλN−M

i

]×
∫

DV
∫

DU etr
{
UΣV∗H∗

µ + HµVΣ∗U∗} (8)

where µj’s, j = 1, . . . , Q are the Q nonzero eigenvalues of
H∗

µHµ. To find P ({λi}), we define the following integral
which has more general form than (8):

J =
∫

DV
∫

DU etr {UAV∗B + CVDU∗} (9)

where U ∈ U(N), V ∈ U(M), and A,C ∈ CN×M and
B,D ∈ CM×N are general rectangular complex coefficient
matrices. Without loss of generality, we assume N � M and
that all coefficient matrices have full rank of M . To our best
knowledge, this integral was previously known only for the
case of D = A∗ and B = C∗ [12], [16] by using traditional
mathematical methods, and in [14] by using the character
expansion of groups. We show that the attempt in [14] is not
correct and solve (9) in its general form, which is our main
contribution in this paper.

III. CHARACTER EXPANSION OF GROUPS

The group of unitary matrices U(N) is a subgroup of
the group of complex invertible matrices with dimension N
denoted by Gl(N). A d-dimensional representation of the
group Gl(N) is a homomorphism from Gl(N) into the Gl(d).
The irreducible representations of Gl(N) can be labeled by the
N -dimensional ordered sets as rN = {r1, r2, . . . , rN} where
r1 � r2 � · · · � rN � 0 are integers. The dimension drN

of
the irreducible representation rN is given by [17]

drN
=

[
N∏

i=1

(ri + N − i)!
(N − i)!

]
det

[
1

(ri − i + j)!

]
(10)

where the matrix elements inside the determinant with ri −
i + j < 0 are zero.

The character of a group element X ∈ Gl(N) in its
representation rN is defined by Weyl’s character formula as
[18]

χrN
(X) = tr

{
X(rN )

}
=

det
[
x

rj+N−j
i

]
∆(x1, . . . , xN )

(11)

where X(rN ) denotes the drN
dimensional representation

matrix of X and {x1, . . . , xN} are the eigenvalues of X. In
this case, the following equation holds for X [13]:

etr{X} =
∑
rN

αrN
χrN

(X) (12)

where the summation is over all irreducible representations of
Gl(N) and the expansion factor αrN

is defined as

αrN
= det

[
1

(ri − i + j)!

]
=

[
N∏

i=1

(N − i)!
(ri + N − i)!

]
drN

(13)
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Lemma 1: The orthogonality relation between unitary ma-
trix group elements implies that [19]∫

DUU
(rN )
ij U

(r′N )∗
kl =

1
drN

δrNr′N δikδjl (14)

where U
(rN )
ij denotes the (i, j)th element of the representation

matrix of U and drN
is the dimension of the representation.

Lemma 2: Cauchy–Binet formula [20]: Given vectors x and
y with dimension N and a power series expansion f(z) =∑∞

i=0 a(i)zi convergent for |z| < ξ, then if |xiyj | < ξ for all
1 � i, j � N , one can write

det
[
f(xiyj)

]
=

∑
r1>r2>···>rN �0

det
[
x

rj

i

]
det

[
y

rj

i

] N∏
i=1

a(ri) (15)

Proposition 1: Assuming A,B ∈ Gl(N), U ∈ U(N) and
rN and r′N two representations of Gl(N), then∫

DUχrN
(AU)χr′N (BU∗) =

1
drN

χrN
(AB) δrNr′N .

Proof: From (11), we have χrN
(AU) = tr

{
(AU)(rN )

}
.

Since a representation is a homomorphism, i.e. (AU)(rN ) =
A(rN )U(rN ), we obtain

χrN
(AU) = tr

{
A(rN )U(rN )

}
=

N∑
k2=1

N∑
k1=1

A
(rN )
k2k1

U
(rN )
k1k2

Therefore, we have

∫
DUχrN

(AU)χr′N (BU∗)

=
N∑

k4=1

N∑
k3=1

N∑
k2=1

N∑
k1=1

A
(rN )
k2k1

B
(r′N )
k4k3

∫
DUU

(rN )
k1k2

U
(r′N )∗
k4k3

=
δrNr′N
drN

N∑
k2=1

N∑
k1=1

A
(rN )
k2k1

B
(rN )
k1k2

=
1

drN

χrN
(AB) δrNr′N

where the second equality comes from Lemma 1.
Proposition 2: Assuming A,B ∈ Gl(N), U ∈ U(N) and

rN a representation of Gl(N), then∫
DUχrN

(AUBU∗) =
1

drN

χrN
(A)χrN

(B).

Proof: From (11), we have

χrN
(AUBU∗) = tr

{
A(rN )U(rN )B(rN )U(rN )∗

}

=
N∑

k4=1

N∑
k3=1

N∑
k2=1

N∑
k1=1

A
(rN )
k4k3

U
(rN )
k3k2

B
(rN )
k2k1

U
(rN )∗
k4k1

Therefore,∫
DUχrN

(AUBU∗)

=
N∑

k4=1

N∑
k3=1

N∑
k2=1

N∑
k1=1

A
(rN )
k4k3

B
(rN )
k2k1

∫
DUU

(rN )
k3k2

U
(rN )∗
k4k1

=
1

drN

N∑
k3=1

N∑
k1=1

A
(rN )
k3k3

B
(rN )
k1k1

=
1

drN

χrN
(A)χrN

(B)

IV. CALCULATION OF J
Recall that we assumed N � M in (9). Considering the rank

of matrices in (9), if we define E = AV∗B and F = CVD,
both N–dimensional matrices E and F are of the rank M and
are not a member of Gl(N). Thus, we need more assumptions
to use the character expansions. We assume that both E and F
have a full rank of N , to use N–dimensional representations
and the character expansions and obtain:

J1 =
∫

DV
∫

DU etr {EU} etr {FU∗}

=
∑
rN

∑
r′N

αrN
αr′N

∫
DV

∫
DUχrN

(EU)χr′N (FU∗)

=
∑
rN

α2
rN

drN

∫
DV χrN

(EF)

=
∑
rN

α2
rN

drN

∫
DV χrN

(AV∗BCVD) (16)

where the second equality comes from (12) and the third
equality is obtained by using the Proposition 1. Note that
the above assumptions allowed us to take the integration over
U(N). Clearly, we must introduce the following limits to make
sure that the above assumptions hold for J :

J = lim
{η1,...,ηN−M}→0

lim
{rM+1,...,rN}→0

J1 (17)

where the first limit guarantees that the matrices E and F or
equivalently the matrix AV∗BCVD have only M nonzero
eigenvalues; and the second limit is because we used N -
dimensional representations to be able to integrate over U(N)
while we were allowed to use M -dimensional representations
only. For instance, we could use the M -dimensional repre-
sentations for character expansion of etr {UAV∗B} in (9) by
using the substitution of etr {UAV∗B} with etr {BUAV∗}.
Because tr {UAV∗B} = tr {BUAV∗} [21] and despite the
matrix UAV∗B which is not full rank, the matrix BUAV∗

has the full rank M . But in this case, we could not perform the
integration over U(N). We emphasize that the second limit in
(17) is critical. The authors in [14] does not consider this point
and by adding rows and columns to matrices, they practically
take both integrations over U(N) and thus the final result is
not correct.

To calculate (17), we present the following propositions:
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Proposition 3:

lim
{rM+1,...,rN}→0

αrN

drN

= lim
{rM+1,...,rN}→0

[
N∏

i=1

(N − i)!
(ri + N − i)!

]

=
∏N

i=1(N − i)!∏M
i=1(ri + N − i)!

∏N
i=M+1(N − i)!

=
∏N−1

i=N−M i!∏M
i=1(ri + N − i)!

.

Proposition 4:

lim
{rM+1,...,rN}→0

αrN
= αrM

Proof: From the definition of αrN
in (13) and noting that

the matrix elements inside the determinant with ri − i+ j < 0
are zero, we have

lim
{rM+1,...,rN}→0

αrN
= lim

{rM+1,...,rN}→0
det

[
1

(ri − i + j)!

]

= det
[

EM×M FM×(N−M)

0(N−M)×M R(N−M)×(N−M)

]
= det [E] det [R]

where Eij = [(ri − i + j)!]−1 and

R =




1
0!

1
1! · · · 1

(N−M−1)!

0 1
0! · · · 1

(N−M−2)!

...
...

. . .
...

0 0 · · · 1
0!




so that det [R] = 1. Thus,

lim
{rM+1,...,rN}→0

αrN
= det [E] = αrM

Lemma 3: If we define the following ratio

R(x1, . . . , xN ) =
det

[
fi(xj)

]
∆(x1, . . . , xN )

where i, j = 1, . . . , N , then

lim
{x1,...,xp}→0

R(x1, . . . , xN )

=
det [Z]

∆(xp+1, . . . , xN )
∏N

i=p+1 xp
i

∏p−1
j=1 j!

where

Z = [fi(0), f (1)
i (0), . . . , f (p−1)

i (0), fi(xp+1), . . . , fi(xN )]

where i = 1, . . . , N generates all rows of Z and f (k) denotes
the kth derivative of the function f . (See Lemma 6 in [14] for
proof.)

Proposition 5: Assuming AN×M , GM×M and DM×N are
of the rank M (N � M ), and xi’s i = 1, . . . , N are the
eigenvalues of the matrix AGD, then

lim
{x1,...,xN−M}→0

lim
{rM+1,...,rN}→0

χrN
(AGD) = χrM

(DAG)

where {x1, . . . , xN−M} represent the N−M zero eigenvalues
of AGD.

Proof: From (11) and noting that det
[
x

rj+N−j
i

]
=

det
[
xri+N−i

j

]
, we have

lim
{rM+1,...,rN}→0

χrN
(AGD) = lim

{rM+1,...,rN}→0

det
[
x

rj+N−j
i

]
∆(x1, . . . , xN )

=
det [X]

∆(x1, . . . , xN )

where

Xij =

{
xri+N−i

j , i � M

xN−i
j , i > M

Now by taking fi(xj) = Xij as defined above and applying
Lemma 3, it is easy to see that

lim
{x1,...,xN−M}→0

det [X]
∆(x1, . . . , xN )

=
det

[
0M×(N−M) QM×M

P(N−M)×(N−M) T(N−M)×M

]
∆(xN−M+1, . . . , xN )

∏N
i=N−M+1 xN−M

i

∏N−M−1
j=1 j!

where

P =




0 0 0 · · · (N − M − 1)!
...

...
...

. . .
...

0 0 2! · · · 0
0 1! 0 · · · 0
0! 0 0 · · · 0




and

Q =




x
r1+N−1
N−M+1 · · · x

r1+N−1
N

...
. . .

...
x

rM+N−M
N−M+1 · · · x

rM+N−M
N


 .

By column factoring of Q, we obtain

det
[

0 Q
P T

]
=

N−M−1∏
j=0

j! det [Q]

=
N−M−1∏

j=1

j!
N∏

i=N−M+1

xN−M
i det

[
x

ri+M−i
N−M+j

]

Therefore,

lim
{x1,...,xN−M}→0

lim
{rM+1,...,rN}→0

χrN
(AGD)

=
det

[
x

ri+M−i
N−M+j

]
∆(xN−M+1, . . . , xN )

= χrM
(DAG)

where the last equality comes from the fact that the nonzero
eigenvalues of the matrices AGD and DAG are equal [21].
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To continue the calculation of J , from (17) we have

J =
∫

DV lim
{η1,...,ηN−M}→0

lim
{rM+1,...,rN}→0

∑
rN

[
αrN

drN

]
αrN

χrN
(AV∗BCVD)

By applying Propositions 3, 4 and 5, we have

J =
∑
rM

∏N−1
i=N−M i!∏M

i=1(N − i + ri)!
αrM

∫
DVχrM

(DAV∗BCV)

=
∑
rM

∏N−1
i=N−M i!∏M

i=1(N − i + ri)!

αrM

drM

χrM
(DA)χrM

(BC)

(18)

where the second equality comes from Proposition 2. By
applying the Weyl’s formula (11) and (13), we obtain

J =

[
N−1∏

n=N−M

n!

] [
M−1∏
m=1

m!

]
1

∆(x)∆(y)
×

∑
rM

det
[
x

kj

i

]
det

[
y

kj

i

] M∏
i=1

1
ki!(ki + N − M)!

(19)

where ki � M − i + ri and M–dimensional vectors x and y
are the eigenvalues of matrices DA and BC, respectively.

Considering the power series expansion of the modified
Bessel function as

Iz(2x)
xz

=
∞∑

k=0

x2k

k!(k + z)!
(20)

and by applying the Cauchy–Binet formula (15), we obtain

J=

[
N−1∏

n=N−M

n!

][
M−1∏
m=1

m!

]
det

[
(xiyj)

M−N
2 IN−M (2√xiyj)

]
∆(x)∆(y)

=

[
N−1∏

n=N−M

n!

][
M−1∏
m=1

m!

]
det

[
IN−M (2√xiyj)

]
∆(x)∆(y)

∏M
i=1(xiyi)

N−M
2

.

(21)

V. JOINT PDF OF EIGENVALUES OF H

If we assume all M eigenvalues of H∗
µHµ are nonzero, we

can directly apply (21) to (8) to obtain

P ({λi}) = KM,N

[
N−1∏

n=N−M

n!

][
M−1∏
m=1

m!

]
∆(λ)
∆(µ)

M∏
j=1

e−λj−µj

×
M∏
i=1

[√
λi

µi

]N−M

det
[
IN−M (2

√
λiµj )

]
(22)

This result is consistent with the results in [12] and [16]
obtained by using classic mathematical methods. Although the
authors in [14] have applied the character expansion of groups
to find P ({λi}) for Ricean MIMO channels, the final result
is in the form of I0(2

√
λiµj ) and therefore is incorrect.

For the case that some of eigenvalues of H∗
µHµ are equal

to zero, one can use the Lemma 3 to obtain P ({λi}). For
instance, in the case of i.i.d. H where all entries of Hµ are
equal, H∗

µHµ has only one nonzero eigenvalue. Due to the
page limits, we omit the i.i.d part, which will appear in the
journal version of the paper.
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