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Abstract—Firewalls are the mainstay of enterprise security
and the most widely adopted technology for protecting private
networks. The quality of protection provided by a firewall directly
depends on the quality of its policy (i.e., configuration). Due to the
lack of tools for verifying firewall policies, most firewalls on the
Internet have been plagued with policy errors. A firewall policy
error either creates security holes that will allow malicious traffic
to sneak into a private network or blocks legitimate traffic and
disrupts normal business processes, which in turn could lead to
irreparable, if not tragic, consequences.

We propose a firewall verification tool in this paper. Our
tool takes as input a firewall policy and a given property, then
outputs whether the policy satisfies the property. Despite of the
importance of verifying firewall policies, this problem has not
been explored in previous work. Due to the complex nature of
firewall policies, designing algorithms for such a verification tool
is challenging. In this paper, we designed and implemented a
verification algorithm using decision diagrams, and tested it on
both real-life firewall policies and synthetic firewall policies of
large sizes. The experimental results show that our algorithm
is very efficient. In practice, our firewal verification algorithm
can be used in the iterative process of firewall policy design,
verification, and maintenance. Note that the firewall policy
verification algorithm proposed in this paper is not limited to
firewalls. Rather, they can be potentially applied to other rule-
based systems as well.
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I. INTRODUCTION

Serving as the first line of defense against malicious attacks
and unauthorized traffic, firewalls are cornerstones of network
security and have been widely deployed in businesses and
institutions. A firewall is placed at the point of entry between a
private network and the outside Internet such that all incoming
and outgoing packets have to pass through it. The function of
a firewall is to examine every incoming or outgoing packet
and decide whether to accept or discard it. This function is
specified by a sequence (i.e., an ordered list) of rules, which
is called the “policy”, i.e., the configuration, of the firewall.
Each rule in a firewall policy is of the form (predicate) —
(decision). The (predicate) of a rule is a boolean expression
over some packet fields such as source IP address, destination
IP address, source port number, destination port number, and
protocol type. The (decision) of a rule can be accept, discard,
or a combination of these decisions with other options such as
a logging option. The rules in a firewall policy often conflict.
To resolve such conflicts, the decision for each packet is the
decision of the first (i.e., highest priority) rule that the packet

matches. Table I shows an example firewall. Note that we use
“a” to represent “accept” and “d” to represent “discard”.

Rule Src IP Dest. IP Src. Port Dest. Port Protocol Action
r1 * 192.168.0.1 * 25 TCP a
To 1.2.% % * * * ® d
/,«-3 * * * * * a

TABLE 1

AN EXAMPLE FIREWALL

A. Motivations

In this paper, we consider the following problem that is
often raised in practice: given a firewall policy and a property,
how can an administrator verify that the firewall policy satisfies
the property? In this context, a property is a high-level policy
that a firewall needs to enforce. An example property could
be “the people in the development zone should not be able to
access the database server in the accounting zone”. Such a tool
is helpful for firewall administrators to analyze and debug their
firewalls as well as other routine duties such as demonstrating
to their manager that the firewall does satisfy a set of necessary
properties. This tool also can serve as a debugging tool in
designing and analyzing firewall policies.

Due to the subtle and elusive nature of firewall rules,
correctly verifying whether a firewall satisfies a property is by
no means easy. First, the rules in a firewall policy are logically
entangled because of conflicts among rules and the resulting
order sensitivity. Second, a firewall policy may consist of a
large number of rules. A firewall on the Internet may consist of
hundreds or even a few thousand rules in extreme cases. Third,
an enterprise firewall policy often consists of legacy rules that
are written by different administrators, at different times, and
for different reasons, which makes verifying firewall policies
even more difficult. Verifying a large and complex sequence
of logically related rules is certainly beyond human capability.
Last but not least, an administrator can easily be deceived to
believe that a property is satisfied by some rules in the middle
of a firewall policy that seemingly implement the property.

Effective methods and tools for verifying firewall policies,
therefore, are crucial to the success of firewalls. However,
firewall administrators are woefully under-assisted due to the
lack of firewall policy verification tools. Quantitative studies
have shown that most firewalls on the Internet are plagued with
policy errors [31]. Firewall policy errors can be dangerous
and costly. On one hand, if a firewall policy error permits
illegitimate communication, outside attackers may use these
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security holes to launch attacks. On the other hand, if a firewall
policy error disallows legitimate communication, it may cause
significant loss due to interrupted businesses. For example, if
a firewall policy error prevents the communication between a
web server and its supporting database server, all transactions
that need such communication are interrupted.

B. Key Contributions

Despite of the importance of verifying firewall policies,
this problem has not been explored in previous work. In this
paper, we propose an efficient algorithm for verifying firewall
policies. To our best knowledge, this paper represents the first
formal study of firewall policy verification. The input of our
verification algorithm includes a firewall policy and a given
property, and the output is whether the policy satisfies the
property. This provides firewall administrators a basis for how
to fix the policy.

C. Road Map

The rest of this paper proceeds as follows. In Section II,
we present our firewall verification algorithm. In Section III,
we show our experimental results. In Section IV, we review
previous related work. In Section V, we give concluding
remarks. Because the focus of this paper is on security policies,
we simply use the term “firewall” to mean “firewall policy”,
“firewall rule set”, or “firewall configuration” unless otherwise
specified.

II. FIREWALL VERIFICATION

In this section, we present a method for verifying firewall
properties.

A. Property Representation

To verify whether a firewall satisfies a given property, we
need to translate the property to a set of non-overlapping rules,
which we call property rules in this context to distinguish them
from firewall rules. For example, the property of accepting all
web traffic to and from the web server except the web traffic
to and from the malicious domain 1.2.x.x can be converted to
the two property rules in Table II. Note that we use !1.2. % .x
to denote the set of all IP addresses that are not in the domain
1.2. % .x. How to convert high-level descriptions of a property
to a set of property rules is out of the scope of this paper.
We assume that property rules are available for verification
purposes.

Src IP Dest. IP Src Port Dest. Port Protocol Action

11.2.% % 192.168.0.2  * 80 TCP accept

192.168.0.2 11.2.% % * 80 TCP accept
TABLE II

EXAMPLE PROPERTY RULES

Given a firewall and a set of property rules, the verification
is successful if and only if every property rule is satisfied by
the firewall. Next, we focus on how to verify whether a firewall
satisfies one property rule.

B. Verification of Non-overlapping Firewalls

To make our firewall verification algorithm easy to un-
derstand, we first assume that the given firewalls are non-
overlapping. A firewall is non-overlapping if and only if no
rules in the firewall overlap. Two rules overlap if and only
if there exists at least one packet that can match both rules.
Note that real-life firewalls are most likely overlapping ones.
The above unrealistic assumption is only for the purpose of
introducing our verification algorithm that does not require
this assumption.

Figure 1 shows an example non-overlapping firewall. In this
firewall, for simplicity, we assume each packet has only two
fields, F} and F5, and the domain of each field is [1,100].

Ry: Fy €]20, 50] A Fy€[20, 70] — accept
Ry : Fy €20, 50] A Fre[l, 19] — accept
Rs: Fy €20, 50] A Fy e |[71, 100] — discard
Ry: FRefl, 19) AFye[l, 39 — accept
Rs: Fy €[5, 60] A Fye[l, 39 — accept
Rs: Fy€[l, 19] A Fy € [40, 100] — discard
R;: Fy €[51, 60] A Fye[l, 100] — discard
Rs: Fy €[61, 100] A F> € [1, 100] — discard
Fig. 1. A non-overlapping firewall

Suppose that we want to verify whether this firewall satisfies
the following property rule:

Fy € [30, 40] A F; € [80, 90] — discard

Comparing this property rule with each rule in the firewall, we
can find that this property rule does not conflict with any rule.
Two rules conflict if and only if they overlap and they have
different decisions. Therefore, this property rule is satisfied by
the firewall.

As another example, suppose that we want to verify whether
this firewall satisfies the following property rule:

Fy € [1, 100] A F» € [20, 30] — discard

Comparing this property rule with each rule in the firewall,
we can find that this property rule conflicts with both rule R4
and Rs. Therefore, this property rule is not satisfied, and rule
R4 and Rj5 are the cause of the failure.

The algorithm for verifying non-overlapping firewalls can
be directly derived from Theorem 1.

Theorem 1: A non-overlapping firewall satisfies a given
property rule if and only if the property rule does not conflict
with any rule in the firewall.

C. Verification of Generic Firewalls

Here we consider the verification of generic firewalls,
where the given firewall can be either overlapping or non-
overlapping. A firewall is called an overlapping firewall if and
only if there are at least two rules in the firewall which are
overlapping. Figure 2 shows an example overlapping firewall.
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ri: Fy €20, 50] A Fy €[20, 70] — accept

ro: Fy €[l, 60] A Fy e [40, 100] — discard
rg: Fy €[1, 100] A Fy €[l, 100] — accept
Fig. 2. An overlapping firewall

To verify whether a given firewall satisfies a property rule,
one solution is to first convert the firewall to an equivalent non-
overlapping firewall, then conduct the verification on the non-
overlapping firewall. For example, we can convert the firewall
in Figure 2 to an equivalent non-overlapping firewall as shown
in Figure 1. Two firewalls are equivalent if and only if for any
packet the two firewalls have the same decision.

A better solution is to convert the given firewall to an equiv-
alent firewall decision diagram, then conduct the verification
on the firewall decision diagram. A firewall decision diagram
is a compact and conflict-free representation of firewalls [14].
A Firewall Decision Diagram (FDD) with a decision set DS
and over fields Fi,---, Fy is an acyclic and directed graph
that has the following five properties:

1) There is exactly one node that has no incoming edges.
This node is called the root. The nodes that have no
outgoing edges are called terminal nodes.

2) Each node v has a label, denoted F'(v), such that

{F1,--- ,Fq}
DS

if v is a nonterminal node,
if v is a terminal node.

F(v) € {

3) Each edge e:u — v is labeled with a nonempty set of
integers, denoted I(e), where I(e) is a subset of the
domain of u’s label (i.e., I(e) C D(F(u))).

4) A directed path from the root to a terminal node is called
a decision path. No two nodes on a decision path have
the same label.

5) The set of all outgoing edges of a node v, denoted F(v),
satisfies the following two conditions:

a) Consistency: I(e) N I(e") = 0 for any two distinct
edges e and €’ in E(v).
b) Completeness: U ¢, I(€) = D(F(v)). O

For example, we can convert the firewall in Figure 2 to a

firewall decision diagram as shown in Figure 3.

Fig. 3.

A firewall decision diagram

Verifying whether a firewall decision diagram satisfies a
property rule is based on the following theorem.

Theorem 2 (Firewall Verification Theorem): A firewall de-
cision diagram satisfies a property rule if and only if the
property rule does not conflict with any rule defined by a
decision path of the firewall decision diagram.

A decision path in a firewall decision diagram is a path from
the root to a terminal node. Each decision path defines a rule.
For example, the leftmost decision path in Figure 3 defines
the following rule:

Fy € ]20, 50] A Fy € [20, 70] — accept

Figure 1 shows the six rules defined by the six decision paths
of the firewall decision diagram in Figure 3.

The firewall verification algorithm is in Figure 4. This algo-
rithm first converts the given firewall to an equivalent firewall
decision diagram. Then it begins to traverse the diagram from
its root. Let the property rule be (Fy; € S1) A --- A (Fy €
Sq) — (dec). For any edge e in a firewall decision diagram,
we use I(e) to denote the label of e. For any node v in a
firewall decision diagram, we use F'(v) to denote the label of
v. Let F; be the label of the root. For each outgoing edge e
of the root, we compute I(e) N Sy. If I(e) N.S; = 0, we skip
edge e and do not traverse the subgraph that e points to. If
I(e)N Sy # (), then we continue to traverse the subgraph that
e points to in a similar fashion. Whenever a terminal node is
encountered, we compare the label of the terminal node and
(dec). If they are different, we then terminate the traversal
and report that the given firewall does not satisfy the given
property. We use e.t to denote the (target) node that edge e
points to.

Firewall Verification Algorithm
Input : (1)A firewall

(2)A property rule (F1 € S1)A--- A (Fyq € Sq) — (dec)

Output : rrue if the firewall satisfies the property rule;
false otherwise.

Steps:

1. Convert the given firewall to a firewall decision diagram;

2. return(Verify(root, (F1 € S1) A -+ A (Fy € Sq) — (dec)) );

Verify( v, (F1 € S1)A--- A (Fq € Sq) — (dec) )
L. if ( v is a terminal node ) and ( F(v) = (dec) )

then return true;

if (v is a terminal node ) and ( F'(v) # (dec) )

then return false;
2. if ( v is a nonterminal node ) then

/*Let F; be the label of v*/

for each edge e in E(v) do
if (I(e)nS;#0 A

~ Verify(et,(F1 € S1)A--- N (Fy € Sq) — (dec) ))

then return false;
3. return true;

Fig. 4. Firewall Verification Algorithm
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IIT1. EXPERIMENTAL RESULTS

We implemented our firewall verification algorithm in Java
JDK 1.4. To evaluate the performance of this algorithm, first,
we ran our algorithm on two real-life firewalls. Second, we
stress tested our algorithms on a large number of synthetic
firewalls. These experiments were carried out on a SUN
workstation running Solaris 9 with 1Ghz CPU and 1 GB
memory. In both cases, the experimental results show that our
algorithms perform and scale well.

We obtained two real-life firewalls for this study. One
firewall, with 87 rules, is from a university. The other, with
661 rules, is from a private company. Table III shows the
performance of our algorithms on these two firewalls.

TABLE III
PERFORMANCE OF FIREWALL VERIFICATION ALGORITHMS ON TWO
REAL-LIFE FIREWALLS

# Rules | FDD Construction | Verification
Firewall 1 87 9 ms 0.1 ms
Firewall 11 661 98 ms 0.3 ms

Firewall configurations are considered confidential due to
security concerns. To further evaluate the performance of our
algorithms on large firewalls, we run our algorithms on syn-
thetic firewalls of large sizes. Every rule in a synthetic firewall
has five fields: source IP address, destination IP address, source
port number, destination port number, and protocol type. We
generate a large number of rules in a recursive fashion. First,
we randomly pick some source IP prefixes from our real-life
firewalls. These IP prefixes together with the source IP prefix
that matches all IP addresses form a set of source IP prefixes
that will be used to generate new rules. Second, for each prefix
in this set, we repeat the same procedure to generate a set of
destination IP prefixes. This process recursively continues for
source port, destination port, and protocol type. The decision
for each rule is completely random. This process of generating
rules is similar to the way that firewall administrators write
rules. More interestingly, we have found that the firewalls
generated using this process conform well to the characteristics
of real-life firewalls [3], [15].

In our experiments, we generate 100 firewalls of each fixed
size. For each firewall, we run our algorithm 100 times. In each
run of the algorithm we generate the property rule randomly.
Figure 5 shows the average running time for converting a
firewall to a firewall decision diagram. Figure 6 shows the
average running time for verifying a property rule on a firewall
decision diagram. From Figure 6 we can see that verifying a
property takes only a few milliseconds even for a large firewall.
Note that the time for constructing a firewall decision is a one-
time cost. Once a firewall decision diagram is constructed from
a firewall, we can use it to verify multiple properties.

IV. RELATED WORK

Previous work that is closest to ours is firewall testing [6],
[19]-[21], [26], [29]. In these testing methods, test cases, i.e.,
packets, are first generated based on a given firewall and the
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Fig. 5. Performance of firewall decision diagram construction

25

- o [N

Processing Time (msec)

o
o

1000 1500 2000 2500

Number of rules

0 500 3000

Fig. 6. Performance of firewall verification algorithm

properties that the firewall needs to satisfy; then the generated
packets are injected into the firewall to check whether the
packet gets accepted or discarded. Our firewall verification
technique is fundamentally different from these firewall testing
techniques in two aspects. First, our firewall verification tech-
nique can verify a property accurately, while firewall testing
techniques cannot because testing all possible (252 IP) packets
is computationally infeasible. Second, our firewall verification
technique does not involve injecting packets into a firewall and
inspecting the outcome of the firewall, which are often time
and labor consuming. Although packet injection and inspection
can be automated, such automation usually requires to take the
firewall device offline, which is often not affordable.

Some interesting work has been done on firewall policy
design and analysis. However, none of the previous work
explored the change-impact analysis of firewall policies. Fire-
wall decision diagrams were introduced in [13] for specifying
firewall policies. The method of diverse firewall design was
introduced in [23]. A Lisp-like language was introduced
in [16] for specifying a high-level packet filtering policy.
In a similar vein, a UML-like language was presented in
[5] for specifying global filtering policies. Algorithms for
detecting redundant rules were presented in [24]. Change-
impact analysis of firewall policies was discussed in [22].
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Detecting conflicts among firewall rules was studied in [4],
[8], [17]. In [9], [18], [25], [27], [30], a few firewall analysis
tools were presented. In [12], algorithms for detecting firewall
policy anomalies in distributed environment were proposed.
This work focuses on how to efficiently detect all pairs of
conflicting rules in a firewall. Some anomalies were defined
and techniques for detecting anomalies were presented in [2],
[32]. A good review of existing firewall technologies is in [7].

There are some tools currently available for network vulner-
ability testing, such as Satan [10], [11] and Nessus [28]. These
vulnerability testing tools scan a private network based on the
current publicly known attacks, rather than the requirement
specification of a firewall. Although these tools can possibly
catch some of the errors that allow illegitimate access to
the private network, they cannot find the errors that disable
legitimate communication between the private network and the
outside Internet.

V. CONCLUSIONS

This paper presents a method for formally verifying firewall
policies. Such a tool is extremely useful in many ways. For
example, it can be used in firewall debugging and trou-
bleshooting. It also can be used iteratively in the process
of designing a firewall. A firewall administrator can use this
tool to unambiguously demonstrate to their manager that the
firewall satisfies the organization’s security policies.

We have implemented our firewall verification algorithm
and evaluated it on both real-life firewall policies and synthetic
firewall policies of large sizes. The experimental results show
that the performance of our algorithm is very efficient.

It is worth emphasizing that the methods and algorithms
presented in this paper are not limited to the design and
analysis of firewall policies. Rather, they can be applied to
other rule based systems that can be expressed as a sequence
of rules, such as access control rules specified in XACML [1].
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