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Abstract

We consider opportunistic communication over multiplergiels where the state (“good” or “bad”)
of each channel evolves as independent and identicallyllistd Markov processes. A user, with limited
channel sensing and access capability, chooses one charseise and subsequently access (based on
the sensed channel state) in each time slot. A reward israatavhenever the user senses and accesses
a “good” channel. The objective is to design an optimal clearselection policy that maximizes the
expected total (discounted or average) reward accruedeofieite or infinite horizon. This problem can
be cast as a Partially Observable Markov Decision Proce®81(PP) or a restless multi-armed bandit
process, to which optimal solutions are often intractatle. show in this paper that a myopic policy
that maximizes the immediate one-step reward is alwaysngptivhen the state transitions are positively
correlated over time. When the state transitions are nedattorrelated, we show that the same policy
is optimal when the number of channels is limited to 2 or 3,levipresenting a counterexample for
the case of 4 channelsThis result finds applications in opportunistic transnuasscheduling in a
fading environment, cognitive radio networks for spectroverlay, and resource-constrained jamming

and anti-jamming.
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I. INTRODUCTION

We consider a communication system in which a sender hassatocanultiple channels, but
is limited to sensing and transmitting only on one at a giviemet We explore how a smart
sender should exploit past observations and the knowlefigigeastochastic state evolution of
these channels to maximize its transmission rate by swigcbpportunistically across channels.

We model this problem in the following manner. As shown inf&1, there are channels,
each of which evolves as an independent, identicallyibisted, two-state discrete-time Markov
chain. The two states for each channel — “good” (or staend “bad” (or stat®) — indicate the
desirability of transmitting over that channel at a givendislot. The state transition probabilities
are given byp;;, ¢,7 = 0,1. In each time slot the sender picks one of the channels tcesens
based on its prior observations, and obtains some fixed deffveiiis in the good state. The basic
objective of the sender is to maximize the reward that it can gver a given finite time horizon.
This problem can be described as a partially observable dWadkcision process (POMDP) [1]
since the states of the underlying Markov chains are noy fultiservedIt can also be cast as a
special case of the class of restless multi-armed bandtigmts [2]; more discussion on this is

given in Section VII.

Po1

Poo (bad) (good P11

P1o

Fig. 1. The Markov channel model.

This formulation is broadly applicable to several domalhsirises naturally in opportunistic
spectrum access (OSA) [3], [4], where the sender is a secpnaer, and the channel states
describe the occupancy by primary users. In the OSA probileensecondary sender may send
on a given channel only when there is no primary user occgpyirt pertains to communication
over parallel fading channels as well, if a two-state Mar&kovading model is employed. Another
interesting application of this formulation is in the domaif communication security, where it

can be used tdevelopbounds on the performance of resource-constrained jamrAifgmmer
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that has access to only one channel at a time could also usarnie stochastic dynamic decision
making process to maximize the number of times that it camessfully jam communications

that occur on these channels. In this application, the “f@bate for the jammer is precisely

when the channel is being utilized by other senders (in eshtwith the OSA problem).

In this paper we examine the optimality of a simple myopidgpofor the opportunistic access
problem outlined above. Specifically, we show that the mgqqlicy is optimal for arbitrary
n whenp;; > po;. We also show that it is optimal for = 3 whenp; < po;, while presenting
a finite horizon counter example showing that it is in genel optimal forn > 4. We also
generalize these results to related formulations invghdiscounted and average rewards over
an infinite horizon.

These results extend and complement those reported invpoide [5]. Specifically, it has been
shown in [5] that for all. the myopic policy has an elegant and robust structure thaatds the
need to know the channel state transition probabilitiesraddces channel selection to a simple
round robin procedure. Based on this structure, the opitynal the myopic policy forn = 2
was established and the performance of the myopic policyairticular, the scaling property
with respect tan, analyzed in [5]. It was conjectured in [5] that the myopidippis optimal for
any n. This conjecture was partially addressed in a preliminangference version [6where
the optimality was established under certain restrictmeditions on the channel parameters and
the discount factor. In the present paper, we significarglgx these conditions and formerly
prove this conjecture under the conditipny, > py;. We also provide a counter example for
P11 < po1-

We would like to emphasize that compared to earlier work [6], the approach used
in this paper relies on a coupling argument, which is the keyextending the optimality
result to the arbitraryn case. Earlier techniques were largely based on exploitiegconvex
analytic properties of the value function, and were showhawee difficulty in overcoming the
n = 2 barrier without further conditions on the discount factort@nsition probabilities. This
observation is somewhat reminiscent of the results regamntg/], where a coupling argument was
also used to solve am-queue problem while earlier versions [8] using value fiorcproperties
were limited to a2-queue case. We invite the interested reader to refer toaj®]important
manuscript on monotonicity in MDPs which explores the poasrwell as the limitation of

working with analytic properties of value functions and dygmic programming operators as we
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had done in our earlier work. In particular, [9, Section ®&plores the difficulty of using such
techniques for multi-dimensional problems where the nunatbeueues is more tham = 2; [9,
Chapter 12] contrasts this proof technique with the staah@&®upling arguments, which our
present work uses.

The remainder of this paper is organized as follows. We féateuthe problem in Section Il
and illustrate the myopic policy in Section Ill. In Sectiod, lwe prove that the myopic policy
is optimal in the case op;; > pgi, and show in Section V that it is in general not optimal
when this condition does not hold. Section VI extends theltegrom finite horizon to infinite
horizon. We discuss our work within the context of the clalseestless bandit problems as well

as some related work in this area in Section VII. Section ¢dhcludes the paper.

[I. PROBLEM FORMULATION

We consider the scenario where a user is trying to accessiteess spectrum to maximize
its throughput or data rate. The spectrum consista afidependent and statistically identical
channels. The state of a channel is given by a two-stateatiéestime Markov chain shown in
Figure 1.

The system operates in discrete time steps indexed, by= 1,2,---,7T, whereT is the
time horizon of interest. At time¢—, the channels (i.e., the Markov chains representing them) g
through state transitions, and at timéhe user makes the channel sensing and access decision.
Specifically, at timet the user selects one of the channels to sense, say channelf the
channel is sensed to be in the “good” state (state¢he user transmits and collects one unit of
reward. Otherwise the user does not transmit (or transrigéslawer rate), collects no reward,
and waits untilt + 1 to make another choice. This process repeats sequentidilythie time
horizon expires.

As mentioned earlier, this abstraction is primarily matigiby the following multi-channel
access scenario where a secondary user seeks spectrurtuagpon between a primary user's
activities. Specifically, time is divided into frames andtla¢ beginning of each frame there is
a designated time slot for the primary user to reserve ttaanhdr and for secondary users to
perform channel sensing. If a primary user intends to usaradrit will simply remain active in
a channel (or multiple channels) during that sensing time(gk., reservation is by default for a

primary user in use of the channel), in which case a secondaywill find the channel(s) busy
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and not attempt to use it for the duration of that frame. Ifphienary user is inactive during this

sensing time slot, then the remainder of the frame is operdorslary users. Such a structure
provides the necessary protection for the primary user asra sensing (in particular active
channel sensing that involves communication between agdaisers) conducted at arbitrary
times can cause undesirable interference.

Within such a structure, a secondary user has a limited amofutime and capability to
perform channel sensing, and may only be able to sense onsudsat of the channels before
the sensing time slot ends. And if all these channels areailalle then it will have to wait till
the next sensing time slot. In this paper we will limit oureaid to the special case where the
secondary user only has the resources to sense one charimel this slot. Conceptually our
formulation is easily extended to the case where the secpnd@r can sense multiple channels
at a time within this structure, although the correspondewgyults differ, see e.g., [10].

Note that in this formulation we do not explicitly model thest of channel sensing; it is
implicit in the fact that the user is limited in how many chaimit can sense at a time. Alternative
formulations have been studied where sensing costs arecifyptiaken into consideration in a
user’s sensing and access decision, see e.g., a sequéatimet sensing scheme in [11].

In this formulation we have assumed that sensing errors egéigible. Techniques used in
this paper may be applicable in proving the optimality of thgopic policy under imperfect
sensing and for a general number of channels. The reasondo#ts is that our proof exploits
the simple structure of the myopic policy, which remains wisensing is subject to errors as
shown in [12].

Note that the system is not fully observable to the user,the. user does not know the exact
state of the system when making the sensing decision. Sgalyifichannels go through state
transition at timet~ (or anytime betweer{t — 1,t)), thus when the user makes the channel
sensing decision at timg it does not have the true state of the system at ttmehich we
denote bys(t) = [s1(t), s2(t), -, s,(t)] € {0,1}". Furthermore, even after its action (at time
t™) it only gets to observe the true state of one channel, whigs ghrough another transition at
or before time(t +1)~. The user’s action space at timés given by the finite sef1,2,--- ;n},
and we will usea(t) = i to denote that the user selects channie sense at time. For clarity,
we will denote the outcome/observation of channel sensirtgree ¢ following the actiona(t)

by hqq)(t), which is essentially the true statg)(¢) of channela(t) at timet since we assume
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channel sensing to be error-free.

It can be shown (see e.g., [1], [13], [14]) that a sufficierdtistic of such a system for
optimal decision making, or thenformation stateof the system [13], [14], is given by the
conditional probabilities of the state each channel is iregiall past actions and observations.
Since each channel can be in one of two states, we denotentbisnation state or belief vector
by w(t) = [wi(t), - ,wn(t)] € [0,1]", wherew;(t) is the conditional probability that channel
i is in statel at timet given all past states, actions and observatioriBhroughout the paper
w;(t) will be referred to as the information state of channelt timet, or simply the channel
probability ofi at timet.

Due to the Markovian nature of the channel model, the futafermation state is only a
function of the current information state and the currerttoa¢ i.e., it is independent of past
history given the current information state and action.oltoivs that the information state of
the system evolves as follows. Given that the state at tinew(t) and actiona(t) = i is
taken, w;(t + 1) can take on two values: (1), if the observation is that channélis in a
“good” state (;(t) = 1); this occurs with probabilityP{h;(t) = 1|lw(t)} = wi(t); (2) per if
the observation is that channelis in a “bad” state §;(t) = 0); this occurs with probability
P{h;(t) = 0|w(t)} = 1 —w,;. For any other channel # i, the corresponding;(¢ + 1) can
only take on one value (i.e., with probability): w;(t + 1) = 7(w;(t)) where the operator

7 :]0,1] — [0, 1] is defined as

T(w) :=wpi1 + (1 —w)por, 0<w< 1. (1)

These transition probabilities are summarized in the ¥alg equation for = 1,2,--- , T—1:
P with prob. w;(t) if a(t) =i

{wit + D|@(t),at)} = po with prob. 1 — w;(t) if a(t) =4 , i=1,2,---,n, (2)

T(w;(t)) with prob. 1 if a(t) # i
Also note thatw(1) € [0,1]" denotes the initial condition (information state) of thestgyn,

which may be interpreted as the user’s initial belief abood Hikely each channel is in the

good state before sensing starts at time 1. For the purpose of the optimization problems

INote that this is a standard way of turning a POMDP problern antlassic MDP (Markov decision process) problem by

means of information state, the main implication being that state space is now uncountable.
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formulated below, this initial condition is considered @iy which can be any probability vector
2.

It is important to note that although in general a POMDP problhas an uncountable
state space (information states are probability distidmsf), in our problem the state space
is countable for any given initial conditiow(1). This is because as shown above, the in-
formation state of any channel with an initial probability © can only take on the values
{w, 7™ (W), por, ¥ (W), p11, ¥ (W)}, wherek = 1,2,--- and 7%(w) := 7(7%"1(w)), which is a
countable set.

For compactness of presentation we will further use the aipef/ to denote the above

probability distribution of the information state (the eatvector):
w(t+1) =T(w(t),alt)), ©)

by noting that the operation given in (2) is applieda¢) element-by-element. We will also

use the following to denote the information state given ole@n outcome:

T(@(t), a(t)[ha(t) = 1) = (T(wi(t), - T(Wa)-1 () P11, T(Wary 1 (1)), - -+, T(wn(t)))  (4)
T(@(), a(®)ha () = 0) = (T(wi(t); -+ T(Wary-1(1)) Por, T(wa(y+1 (1)), - -, T(wa(t))) - (5)

The objective of the user is to maximize its total (discodrde average) expected reward over
a finite (or infinite) horizon. Let/7(w), J§ (@), andJZ, (&) denote, respectively, these cost criteria
(namely, finite horizon, infinite horizon with discount, aimfinite horizon average reward) under
policy = starting in statev = [wy,--- ,w,]. The associated optimization problems ((P1)-(P3))

are formally defined as follows.

T
(P1): max J7(@) = max E[Y_ 57" Ry, (0(1))[0(1) = &]
(P2): max J§ (@) = max E™Y B Ry (@(t))|@(1) = @]
t=1
T
(P3): max J7,() = max Jim %E[Z R (@)|2(1) = &

2That is, the optimal solutions are functions of the initiahdition. A reasonable choice, if the user has no speciatinétion
other than the transition probabilities of these channsl& simply use the steady-state probabilities of chanbeisg in state

“1” as an initial condition (i.e., setting; (1) = SoHe—).
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wheres (0 < 5 <1 for (P1) and0 < § < 1 for (P2)) is the discount factor, anl,;,(w(t)) is
the reward collected under statg¢t) when channeh(t) = m,(w(t)) is selectedand hy)(t) is
observed. This reward is given by, (w(t)) = 1 with probability w,q)(t) (Whenh,q () = 1),
and 0 otherwise.

The maximization in (P1) is over the class of deterministiarkbv policies’. An admissible
policy m, given by the vectorr = [y, m, - - - , 77|, is thus such that; specifies a mapping from
the current information state(t) to a channel selection actiarit) = m(w(t)) € {1,2,--- ,n}.
This is done without loss of optimality due to the Markoviature of the underlying system, and
due to known results on POMDPs. Note that the class of Markdicips in terms of information
state are also known as seperated policies (see [14]). Diiritieness of (unobservable) state
spaces and action space in problem (P1), it is known that &malppolicy (over all random
and deterministic, history-dependent and history-indepat policies) may be found within the
class of separated (i.e. deterministic Markov) policie=e(s.g., [14, Theorem 7.1, Chapter 6]),
thus justifying the maximization and the admissible pokpace.

In Section VI we establish the existence of a stationary rsépd policy 7*, under which
the supremum of the expected discounted reward as well asufremum of expected average
cost are achieved, hence justifying our use of maximizaitiofi"2) and (P3). Furthermore, it is
shown that under this policy the limit in (P3) exists and isajer than the limsup of the average
performance of any other policy (in general history-degenénd randomized). This is a strong
notion of optimality; the interpretation is that the mosegsimistic” average performance under
policy 7* (liminf £J7 (-) = lim £J7 (-)) is greater than the most “optimistic’ performance
under any other policyt (lim sup %J;(-)). In much of the literature on MDP, this is referred to
as thestrong optimalityfor an expected average cost (reward) problem; for a digsmuss this,
see [15, Page 344].

IIl. OPTIMAL PoLICcY AND THE MYOPIC PoLICY

A. Dynamic Programming Representations

3A Markov policy is a policy that derives its action only deplérg on the current (information) state, rather than thérent

history of states, see e.g., [14].
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Problems (P1)-(P3) defined in the previous section may beedalsing their respective dy-
namic programming (DP) representations. Specificallypfoblem (P1), we have the following

recursive equations:

Vr(@) =  max E[R.(®)]
Vi@) = max E[Ru(@)+ BViai(T(@,a)]
= max (w, + BuVinr (T @.alD) + A1 —wa)Vier (T (@,0l0)) . (6)
fort=1,2,---,7 -1, whereV,(w) is known as the value function, or the maximum expected

future reward that can be accrued starting from timehen the information state is. In
particular, we havé/;(w) = max, J7(w), and an optimal deterministic Markov policy exists
such thatu = 7} (w) achieves the maximum in (6) (see e.g., [15] (Chapter 4))eNuwat since/
is a conditional probability distribution (given in (3));11(7 (v, a)) is taken to be the expectation
over this distribution when its argument 75, with a slight abuse of notation, as expressed in
(6).

Similar dynamic programming representations hold for (B2) (P3) as given below. For

problem (P2) there exists a unique functigp(-) satisfying the following fixed point equation:

Vis(w) = max E[R,(@0)+ BVs(T (w,a))]

a=1,---n

= max (w, + pw.Vs (T (w,all)) + B(1 — w,) Vs (T (@, al0))) . (7)

a=1,-n
We have that/s;(w) = max, Jj(w), and that a stationary separated policyis optimal if and
only if a« = 7*(w) achieves the maximum in (7) [16, Theorem 7.1].
For problem (P3), we will show that there exist a bounded tionch..(-) and a constant

scalarJ satisfying the following equation:

J+heo(@) = max E[R.(@)+ heo(T(@,a))]

a=1,2,---.n

—  max (We + waheo (T (@, a]1)) + (1 — wa)he (T (@, a|0))). 8)

a=1,-n
The boundedness df,, and the immediate reward implies that= max, JZ (w), and that a
stationary separated poliey is optimal in the context of (P3) if and only if = 7* () achieves
the maximum in (8) [16, Theorems 6.1-6.3].

Solving (P1)-(P3) using the above recursive equations igeimeral computationally heavy.

Therefore, instead of directly using the DP equations, twaid of this paper is on examining
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11

the optimality properties of a simple, greedy algorithm. Wédine this algorithm next and show

its simplicity in structure and implementation.

B. The Myopic Policy

A myopic or greedy policy ignores the impact of the currerttcacon the future reward, fo-
cusing solely on maximizing the expected immediate rewsggbpic policies are thus stationary.

For (P1), the myopic policy under state= [wy,ws, - - - ,w,] IS given by

a*(w) = arg max F[R,(w)] =arg max w,. 9)

a=1,-n a=1,+n

In general, obtaining the myopic action in each time slounexs the successive update of
the information state as given in (2), which explicitly esdion the knowledge of the transition
probabilities{p;;} as well as the initial conditiotw(1). Interestingly,it has been shown in [5]
that the implementation of the myopic policy requires otlg knowledge of the initial condition
and the order op,; andpg;, but not the precise values of these transition probadslifio make
the present paper self-contained, below we briefly desdrive this policy works; more details
may be found in [5].

Specifically, wherp;; > po; the conditional probability updating functiariw) is a monotoni-
cally increasing function, i.ez;(w;) > 7(ws) for w; > wy. Therefore the ordering of information
states among channels is preserved when they are not otdsér@ehannel has been observed to
be in state “1” (respectively “0”), its probability at thextestep becomes;; > 7(w) (respectively
po1 < 7(w)) for anyw € [0, 1]. In other words, a channel observed to be in state “1” (resfy
“0”) will have the highest (respectively lowest) possibigarmation state among all channels.

These observations lead to the following implementatiothef myopic policy. We take the
initial information stateo(1), order the channels according to their probabilitigd ), and probe
the highest one (top of the ordered list) with ties brokerdoamly. In subsequent steps we stay
in the same channel if the channel was sensed to be in statggtbd) in the previous slot;
otherwise, this channel is moved to the bottom of the ordéistdand we probe the channel
currently at the top of the list. This in effect creates a uwabin style of probing, where the
channels are cycled through in a fixed order. This circularcstire is exploited in Section IV

to prove the optimality of the myopic policy in the casemf > po;.
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12

When p;; < po1, we have an analogous but opposite situation. The conditiprobability
updating functionr(w) is now a monotonically decreasing function, i.e(w;) < 7(w,) for
w1 > wy. Therefore the ordering of information states among chianisereversed at each time
step when they are not observed. If a channel has been otiderbe in state “1” (respectively
“0"), its probability at the next step becomes, < 7(w) (respectivelyp,; > 7(w)) for any
w € [0, 1]. In other words, a channel observed to be in state “1” (respmdg “0”) will have the
lowest (respectively highest) possible information stateong all channels.

As in the previous case, these similar observations leadeddilowing implementation. We
take the initial information state(1), order the channels according to their probabilitiedl),
and probe the highest one (top of the ordered list) with tre&dn randomly. In each subsequent
step, if the channel sensed in the previous step was in sPétébad), we keep this channel
at the top of the list but completely reverse the order of #maining list, and we probe this
channel. If the channel sensed in the previous step wast| “§ta(good), then we completely
reverse the order of the entire list (including dropping ttihannel to the bottom of the list), and
probe the channel currently at the top of the list. This aléng circular structure is exploited

in Section V to examine the optimality of the myopic policytime case of; < po:.

IV. OPTIMALITY OF THE MYOPIC POLICY IN THE CASE OFp11 > por

In this section we show that the myopic policy, with a simphel aobust structure, is optimal
when py; > po1. We will first show this for the finite horizon discounted castse, and then
extend the result to the infinite horizon case under bothodisted and average cost criteria in
Section VI.

The main assumption is formally stated as follows.

Assumption 1:The transition probabilitieg,; andp;; are such that

puu—pn = 0. (10)

The main theorem of this section is as follows.

Theorem 1:Consider Problem (P1pPefine Vi(w;a) := E[R.(®) + fVir1 (T (@0, a))], i.e., the
value of the value function given in Eqn (6) when actions taken at timet followed by an
optimal policy. Under Assumption 1, the myopic policy is optimal, i.e. far, 1 < ¢ < T, and
Vo = [wy, - ,wy) €0, 1],

Vi(w;a =j) — Vi(w;a=1) >0, 11
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if wj>w;, fori=1,--- n.

The proof of this theorem is based on backward inductiort:agiven the optimality of the
myopic policy at timest + 1, + 2,--- T, we want to show that it is also optimal at tine
This relies on a number of lemmas introduced below. The #sinha introduces a notation that
allows us to express the expected future reward under theimyolicy.

Lemma 1:There existT n-variable functions, denoted by,(), t = 1,2,---,T, each of

which is a polynomial of orderland can be represented recursively in the following form:

Wi(@) = wp + wn Wi (T(w1), -y T(wno1), p11) + (1 — wp) BWis1 (po1, 7(w1)s -+, T(wn—1)),(12)

wherew = [wy,ws, -+ ,w,| and Wr () = w,.
Proof: The proof is easily obtained using backward inductiort given the above recursive
equation and noting that’r() is one such polynomial and the mapping is a linear operation.
[
Corollary 1: Whenw represents the ordered list of information states ws, - - - , w,] with
w <wy < --- < w,, thenW,(w) is the expected total reward obtained by the myopic policy
from time ¢ on.
This result follows directly from the description of the @yl given in Section IlI-B.
Proposition 1: The fact thatiV; is a polynomial of order 1 and affine in each of its elements

implies that

Wt(wla e, WR—2,Y, ZE') - Wt(wla cr, Wp—2, xay)
= (x_y)[Wt(UJb 7wn—27071) _Wt(wlv'” 7wn—27170)] . (13)

Similar results hold when we change the positions: &nd y.
To see this, considel;(wy, - -+ ,wp_2, z,y) and Wy(wy, - -+ ,w,_9,y,x), as functions ofr and
y, each having an term, ay term, anzy term and a constant term. Since we are just swapping
the positions ofz and y in these two functions, the constant term remains the santsa
does thery term. Thus the only difference is theterm and they term, as given in the above
equation. This linearity result will be used later in our i

The next lemma establishes a necessary and sufficient monddr the optimality of the

myopic policy.
“Each functioni¥; is affine in each variable, when all other variables are heldstzon.
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Lemma 2:Consider Problem (P1) and Assumption 1. Given the optimalitthe myopic
policy at timest + 1,¢+2,--- , T, the optimality at timet is equivalent to:

Wiwi, s Wint, Wity -+ o Woy wi) < Wiwy, -+, Wh), forallw; <. <w; <+ <y,

Proof: Since the myopic policy is optimal fromH-1 on, it is sufficient to show that probing

w, followed by myopic probing is better than probing any othkamnel followed by myopic
probing. The former is precisely given by the RHS of the abegeation; the latter by the LHS,
thus completing the proof. [ |

Having established thall,(w) is the total expected reward of the myopic policy for an
increasingly-ordered vectar = |wy, - - - ,w,|, We next proceed to show that we do not decrease
this total expected rewartd’;(w) by switching the order of two neighboring elementsand
wir1 If w; > w;y1. This is done in two separate cases, whenl < n (given in Lemma 4) and
wheni + 1 = n (given in Lemma 5), respectively. The first case is quiteigitéorward, while
proving the second cased turned out to be significantly mifiewdt. Our proof of the second
case (Lemma 5) relies on a separate lemma (Lemma 3) thatissésba boundetween the
greedy use of two identical vectors but with a different tatgr positionThe proof of Lemma 3
is based on a coupling argument and is quite instructiveo\B&Ve present and prove Lemmas
3,4 and 5.

Lemma 3:For0 < w; < wy, < ... < w, < 1, we have the following inequality for all
t=1,2,---,T:

1t Walw, -y, 1) > Walwr, - ). (14)

Proof: We prove this lemma using a coupling argument along any saipgth. The LHS
of the above inequality represents the expected reward olieygreferred to as L below) that
probes in the sequence of channélfllowed by n, n — 1, ---, and thenl again, and so on,
plus an extra reward of; the RHS represents the expected reward of a policy (refdoeas
R below) that probes in the sequence of channetsllowed byn — 1, ---, and1 and them
again, and so on. It helps to imagine lining up thehannels along a circle in the sequence of
n,n—1,---, 1, clock-wise, and thus L's starting positionlisR’s starting position is:, exactly
one spot ahead of L clock-wise. Each will cycle around theleitill time 7.

Now for any realization of the channel conditions (or any penpath of the system), consider

the sequence of0™s and “1”s that these two policies see, and consider the position dne on

May 6, 2008 DRAFT



15

the circle. The reward a policy gets along a given sample gafh = Z'fzt s for policy L,
wherej, = j if L sees a “1” at timej, and0 otherwise; the reward for R iB, = Z?:t B9 with
j- Similarly defined. There are two cases.

Case (1): the two eventually catch up with each other at some K < T, i.e., at some
point they start probing exactly the same channel. From ghiat on the two policies behave
exactly the same way along the same sample path, and thedrémer obtain from this point
on is exactly the same. Therefore in this case we only needrwpare the rewards (L has an
extral) leading up to this point.

Case (2): The two never manage to meet within the horiZolm this case we need to compare
the rewards for the entire horizon (frotrto 7).

We will consider Case (1) first. There are only two possile#itfor the two policies to meet:
(Case 1.a) either L has seen exactly one more “0” than R irefsience, or (Case 1.b) R has
seen exactly: — 1 more “0”s than L. This is because the moment we see a “0” wemale to
the next channel on the circle. L is only one position behind&one more “0” will put it at
exactly the same position as R. The same with R mowving1 more positions ahead to catch
up with L.

Case (1.a): L sees exactly one more “0” than R in its sequditeeextra “0” necessarily occurs
at exactly timeK, t < K < T, meaning that af(, L sees a “0” and R sees a “1”. Frohto K,
if we write the sequence of rewards (zeros and ones) undedlRanve observe the following:
betweent and K both L and R have equal number of zeros, while¥or=t¢,t+1,..., K —1,
the number of zeros up to timé is less (or no more) for L than for R. In other words, L
and R see the same number of “0”s, but Ls is always laggingnidefor no earlier). That is,
for every “0” R sees, L has a matching “0” that occurs no eati@n R’s “0.” This means
that if we denote byR, (1, t2) the rewards accumulated betwegrandi,, then for the rewards
in [t, K — 1], we haveR(t,t') > R.(t,t), for V¢ < K — 1, while R;(K,K) = % and
R,(K,K) = 0. Finally by definition we have?,(K + 1,T) = R,(K + 1,T). Therefore overall
we havel + R;(t,T) > R,(t,T), proving the above inequality.

Case (1.b): R sees— 1 more “0”s than L does. The comparison is simpler. We only rteed
note that R’s “0”s must again precedes (or be no later thanpidce otherwise we will return
to Case (1.a). Therefore we ha¥& > R,, and thusl + R; > R, is also true.

We now consider Case (2). The argument is essentially the.skmthis case the two don't
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get to meet, but they are on their way, meaning that either 4 éxactly the same “0’s as R
and their positions are no earlier (corresponding to Cas®)(lor R has more “0”s than L (but
not up ton — 1) and their positions are no later than L's (correspondinGase (1.b)). So either
way we havel + R, > R,.

The proof is thus complete. [ |

Lemma 4:For all j, 1 < j <n -3, and allz > y, we have
Wi(wi, .. wj, @y, wn) < Wilwr, o, wy, @, wy) (15)

Proof: We prove this by induction over The claim is obviously true fot = 7', since both
sides will be equal tav,, thereby establishing the induction basis. Now supposeclien is
true for allt +1,--- , 7 — 1. We have

Wi(wr, - Wity &, 4, -+ W)
= wa(l+ Wi (t(wr1), - 7(2), 7(y), -, T(Wn-1), P11
+ (1= wp) BWisa(por, 7(wi), - -+ (@), 7(y), - -+, T(Wna
< w1+ BWea(r(wi), -+ 7(y), 7(2), - T(Wa-1), P1r
+ (1= wp) Wi (por, 7(wi), - -+ 7(y), (), - -+, T(Wna
= Wilwy, - Wi, Yy Ty 5 wy) (16)
where the inequality is due to the induction hypothesis, anting thatr() is a monotone

increasingmapping in the case qf;; > po;. [ ]

Lemma 5:For all z > y, we have
Wi(wy, .. wj, ooy wn—o, 2, y) < Wiwy, ..o, wj, o, Wh—a, Y, ). a7)

Proof: This lemma is proved inductively. The claim is obviouslyetrior t = 7. Assume it

also holds for times +1,--- , 7 — 1. We have by the definition dfi/;() and due to its linearity
property:

VVt(Wl, ce >wn—2ayax) - VVt(Wl, ce >wn—2ax>y)
= (IZ}' - y)(Wt(wla s 7wn—2707 1) - Wt(wlv <oy Wn—2, 17O>>

= (v —y) (14 Wi (1(w1), - - -, T(Wn—2), Por; P11) — BWiga(Po1, T(wi), - - - T(Wn—2), P11)) -
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But from the induction hypothesis we know that

VVt—i—l(T(Wl)a ceey T(Wn—2)>P01>P11) > Wt+1(7(w1), e >7'(Wn—2)ap11>2901)- (18)

This means that

1+ 5Wt+1(7(w1), e 77'(Wn—2)7]90171711) - 5Wt+1(17017 T(w1>7 e 7T(wn—2>7p11)
> 1+ Wi (t(w1), - - - T(Wn—2), P11, P01) — BWis1(po1, T(w1), - - ., T(Wp—2),p11) >0,

where the last inequality is due to Lemma 3 (note that in teatrha we proved + A > B,
which obviously impliesl + SA > gB for 0 < 5 < 1 that is used above). This, together with
the conditionz > y, completes the proof. [ |
We are now ready to prove the main theorem.
Proof of Theorem 1The basic approach is by induction enThe optimality of the myopic
policy at timet = T is obvious. So the induction basis is established. Now asstnat the
myopic policy is optimal for all timeg + 1,¢+2,--- ,7 — 1, and we will show that it is also

optimal at timet. By Lemma 2 this is equivalent to establishing the following
Wt(wl, e, Wi, Wiat, - - - ,wn,wi) S Wt(wl, e ,wn). (19)
But we know from Lemmas 4 and 5 that,

Wi(wi, ey Wi 1, Wit 1y« - ey Wiy Wi) < Wiwr, ooy Wit Wit 1y - -+ Wiy Wh)
S Wt(wl,. ey Wi, Wi, - - .,wi,wn_l,wn) S ce S Wt<u)1, c. .,wn) s

where the first inequality is the result of Lemma 5, while tmaining inequalities are repeated
application of Lemma 4, completing the proof. [ |
We would like to emphasize that from a technical point of vidwemma 3 is the key to
the whole proof: it leads to Lemma 5, which in turn leads to dreen 1. While Lemma 5
was easy to conceptualize as a sufficient condition to prbgentain theorem, Lemma 3 was
much more elusive to construct and prove. This, indeed, snidn& main difference between the
proof techniques used here vs. that used in our earlier wvejrk_eemma 3 relies on a coupling

argument instead of the convex analytic properties of theevlunction.
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V. THE CASE OFp1; < po1

In the previous section we showed that a myopic policy ismogliif p;; > po;. In this section
we examine what happens when < pgi, which corresponds to the case when the Markovian
channel state process exhibits a negative auto-correlatier a unit timeThis is perhaps a case
of less practical interest and relevance. However, as wk séa this case presents a greater
degree of technical complexity and richness than the pusvease. Specifically, wirst show
that when the number of channels is three=f 3) or when the discount factor < % the
myopic policy remains optimal even for the casepof < py; (the proof for two channels in this
case was given earlier in [5]). We thus conclude that the neypplicy is optimal forn < 3 or
B < 1/2 regardless of the transition probabilities. We then preseocounter example showing
that the the myopic policy is not optimal in general whex» 4 and > 1/2. In particular, our

counter example is for a finite horizon with=4 and g = 1.

A-n=3org<i

We start by developing some results parallel to those pteden the previous section for the
case ofpi1 > por.

Lemma 6: There existT' n-variable polynomial functions of orddr, denoted byZ,(),t =

1,2,---,T, i.e., each function is linear in all the elements, and camepeesented recursively

in the following form:

Zt(d)) = wn(l -+ ﬁZt+1(p117 T(wn_l), e ,T(u)l)))
+(1 = wn) B2 (T(wn-1)s - - -, T(w1), Po1)- (20)
where Z(w) = w,.
Corollary 2: Z,(w) given in (20) represents the expected total reward of thepieypolicy
whenw is ordered in increasing order af.
Similar to Corollary 1, the above result follows directlyifn the policy description given in
Section 1lI-B.

It follows that the functionZ; also has the same linearity property presented earlier, i.e

Zt(wb e 7Wn—27y7$) - Zt(wh e 7wn—27x7y>

= (x_y)(Zt(wla 7wn—27071) _Zt(wlv'” 7wn—27170)) . (21)
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Similar results hold when we change the positions: &ndy.
In the next lemma and theorem we prove that the myopic paisyiil optimal wherp;; < po:
if n=3or5 <1/2.In particular, Lemma 7 below is the analogy of Lemmas 4 andrblined.
Lemma 7:Attimet (t = 1,2,---,T), for all j < n — 2, we have the following inequality
forVl >z >y >0 if eithern=3o0or g <1/2:
Zt(wl,...,wj,y,x,wj%,...,wn) Z Zt(wl,...,wj,x,y,wj+3,...,wn). (22)
Proof: We prove this by induction oh The claim is obviously true for = 7. Now suppose
it's true fort + 1,--- ,7 — 1. Due to the linearity property of;,
Zt(wb sy Wi Y, T, Wi, e 7wn) - Zt(wlu sy Wi XL Y, Whis, - 7wn>
= (.CL’ — y) (Zt(wl, <, Wy, 0, 1,wj+3, . ,(A}n) - Zt(wl, . ,wj, 17 0,Wj+3, . ,wn)) . (23)

Thus it suffices to show thaf, (wy, . .., w;, 0, 1, wjis, ..., wy) > Zy(wr, ..., wj, 1,0,wjss3, ..., wy).

We treat the case when< n—2 andj = n— 2 separately. Indeed, without loss of generality,
let ; = n — 3 (the proof follows exactly for allj < n — 3 with more lengthy notations). At time

t we have

Zi(wiy .oy wWn—3,0, 1, wy,) — Zy(wr,y ..oy wn_3, 1,0, w,)
= wB(Zir1(p11, P11, por, T(wWn-s), -, T(w1)) = Zpsa (P, Por, Pa1, T(wn3), - -, T(w1)))
+ (1= w)B(Ziy1(pr1; por, T(Wn-3), - - -, T(w1),p01) — Zis1(por, pr1, T(Wn-3), - - -, T(w1), Po1))
> 0

where the last inequality is due to the induction hypothesis

Now we will consider the case when=n — 2.
Zt(wl, e, Wh—9, 0, 1) — Zt(wl, e, Whp—9, 1, 0)

= 1 + 5Zt+l(p117p017 T(wn—2)7 s 77-(("}1)) - BZH-l(pll) T(wn—2)7 ey T(wl)vp()l)' (24)

Next we show that ifs < 1/2 or n = 3 the right hand side of (24) is non-negative.
If 5 <1/2, then

1+ BZi41(p11, por, T(wWn—2), - -, T(w1)) = BZs1 (P11, T(wn—2), . .., T(w1), Po1)

B
>1———2>0.
- 1 -
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If n =3, then
1+ BZ1(p11, por, T(w1)) — BZia (P11, T(w1), por)

= 14 B(7(w1) = po1)(Zi41(p11,0,1) = Zyy1(p11, 1,0))

1-— 5(Zt+1(p117 07 1) - Zt-l—l(pllv 17 0))

> 0

v

where the first inequality is due to the fact that < 7(w;) — po1 < 0 and the last inequality is

given by the induction hypothesis. [ ]
Theorem 2:Consider Problem (P1). Assume that < po;. The myopic policy is optimal

for the case ofi = 3 and the case of < 1/2 with arbitraryn. More precisely, for these two

casesyt, 1 <t < T, we have
Vi(@;a =j) — Vi(w;a =1i) >0, (25)

if wj>w;fori=1,--- n.

Proof: We prove by induction or. The optimality of the myopic policy at time= T is
obvious. Now assume that the myopic policy is optimal fortiatlest +1,¢t+2,--- , T —1, and
we want to show that it is also optimal at timeSuppose at time the channel probabilities
are such that,, > w; fori =1,--- ,n — 1. The myopic policy is optimal at timeif and only
if probing w,, followed by myopic probing is better than probing any othlearnel followed by
myopic probing. Mathematically, this means

Zt(wla sy Wi 1, Wi, - 7wn7wi) < Zt(wla s 7wn)7 for all w1 < w; < wp.

But this is a direct consequence of Lemma 7, completing tbefpr [ |

B. A4-channel Counter Example

The following example shows that the myopic policy is not,general, optimal fom > 4
Whenpn < Po1-
Examplel: Consider an example with the following parameters: = 0.9,p1; = 0.1,8 =

1, andw = [.97,.97,.98,.99]. Now compare the following two policies at tiniE — 3: play
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myopically (1), or play the.98 channel first, followed by the myopic policy (I1). Computati

reveals that

Vi 5(.97,.97,.98,.99) = 2.401863

< VHL,(.97,.97,.98,.99) = 2.402968

which shows that the myopic policy is not optimal in this case
It remains an interesting question as to whether such coexrtenples exist in the case when

the initial condition is such that all channel are in the gatate with the stationary probability.

VI. INFINITE HORIZON

Now we consider extensions of results in Sections IV and VR®) (and (P3), i.e., to show
that the myopic policy is also optimal for (P2) and (P3) unter same conditions. Intuitively,
this holds due to the fact that the stationary optimal polifythe finite horizon problem is
independent of the horizon as well as the discount factoeoféms 3 and 4 below concretely
establish this.

We point out that the proofs of Theorems 3 and 4 do not rely onadditional assump-
tions other than the optimality of the myopic policy for (P1ndeed, if the optimality of the
myopic policy for (P1) can be established under weaker ¢mmdi, Theorems 3 and 4 can be
readily invoked to establish its optimality under the sameaker condition for (P2) and (P3),
respectively.

Theorem 3:If myopic policy is optimal for (P1), it is also optimal for g for 0 < 5 < 1.
Furthermore, its value function is the limiting value fuoct of (P1) as the time horizon goes
to infinity, i.e., we havemax, Jj (@) = limy_, o max, J7(©).

Proof: We first use the bounded convergence theorem (BCT) to eshdblé fact that under
any deterministic stationary Markov policy, we haveJj(w) = limy ., J7(@). We prove this

by noting that

Jp@) = Elim 35 Re (@(8) (1) = &)
= lim B[} 5 Ra(@(1))[@(1) = @]
= Jim Jf(@) o5
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where the second equality is due to BCT @le B Ry (w(t)) < ﬁ. This proves the
second part of the theorem by noting that due to the finitenégbhe action space, we can
interchange maximization and limit.

Let 7* denote the myopic policy. We now establish the optimalityzof for (P2). From

Theorem 1, we know:
I @) = max fe+ B (T (@)
+0 (L= wi) Iy (T (@,4]0)) } -
Taking limit of both sides, we have
T3 @) = maxf + B (T (@)
+8 (1= w)Jj (T (@,i0))} . (27)

Note that (27) is nothing but the dynamic programming equafor the infinite horizon dis-
counted reward problem given in (7). From the uniquenesie@lynamic programming solution,
then, we have

Ji (@) = Va(@) = max J7 (&)

hence, the optimality of the myopic policy.
[ |
Theorem 4:Consider (P3) with the expected average reward and undeertiedicity as-

sumption|p;; — peo| < 1. Myopic policy is optimal for problem (P3) if it is optimal fo(P1).

Proof: We consider the infinite horizon discounted cost fiox 1 under the optimal policy

denoted byr*:
J5 (@) = max {w; + BwiJj (T (w,i[1))
+B(1 = wi) J§ (T (@,1[0))} - (28)
This can be written as
(1-8)J5 (@)
= max {uw; + B [T (T (@.1[1) — J§' (@)]
+B(1 = wi) [J5 (T (@,il0)) = J5 (@)] } .
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Notice that the boundedness of the reward function and comess of information state
implies that the sequence ¢f1 — 3).J5 (@)} is boundedj.e. for all0 < 5 <1,

(1-8)J5 (@) < 1. (29)

Also, applying Lemma 2 from [6] (which provides an upper bdwn the difference in value
functions between taking two different actions followed thg optimal policy) and noting that

—1 < pu1 —poo < 1, we have that there exists some positive constant — L such that

\Pn—p(n\

|J5 (T (@,i]0)) — J5 (@)| < K. (30)

By Bolzano-Weierstrass theorem, (29) and (30) guaranteeettistence of a converging

sequences, — 1 such that

Jim (1= ) J5 (@7) = J*, (31)
and  lim [J5(@) = J5 ()] = 7 (@) , (32)
wherew; := l_pffﬁrm is the steady-state belief (the limiting belief when chdnnie not sensed

for a long time).

As a result, (31) can be written as

J* = lim {(1— B)J5, (@) + (1 = B) [J5, (@) — J5 (@]}

k—00

In other words,

J* = lim max {w; + Buw; [J5, (T (@,i[1))

— T (@)] + B (1= wi) [J5, (T (@,i0)) = J5, (@)]} -

From (32), we can write this as

J*+ B (@) = max {w; +wh™ (T (w,i[1)) +

a=1

(1 —w)h™ (T (w,4]0))} . (33)

Note that (33) is nothing but the DP equation as given by (@)ddition, we know that the
immediate reward as well as functidgnare both bounded byhax(1, K). This implies that/*

is the maximum average reward, i.£. = max, JZ (w(t)) (see [16, Theorems 6.1-6.3])
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On the other hand, we know from Theorem 3 that the myopic paicoptimal for (P2) if it
is for (P1), and thus we can take in (28) to be the myopic policy. Rewriting (28) gives the

following:

Repeating steps (31)-(33) we arrive at the following:
J+h"(©) = We@) + War@h™ (T (@,7%(@)[1)) +
(1 = wre@)h™ (T (@, 7 (@)]0)), (34)

which shows that(J*, ™", 7*) is a canonical triplet [16, Theorems 6.2]. This, togethethwi
boundedness of™ and immediate rewardmplies that the myopic policyr* is optimal for
(P3) [16, Theorems 6.3] [ |

VIl. DISCUSSION ANDRELATED WORK

The problem studied in this paper may be viewed as a spedalaia class of MDPs known
as therestless bandit problenig]. In this class of problemsy controlled Markov chains (also
called projectsor machine} are activated (or played) one at a time. A machine when ateiil/
generates a state dependent reward and transits to thetaexascording to a Markov rule. A
machine not activated transits to the next state accordirgg(potentially different) Markov rule.
The problem is to decide the sequence in which these machreeactivated so as to maximize
the expected (discounted or average) reward over an infioiieon. To put our problem in this
context, each channel corresponds to a machine, and a ¢hsangvated when it is probed, and
its information state goes through a transition dependimghe observation and the underlying
channel model. When a channel is not probed, its informadtate goes through a transition
solely based on the underlying channel model

In the case that a machine stays frozen in its current staenwiot played, the problem

reduces to themulti-armed bandit problema class of problems solved by Gittins in his 1970

® The standard definition of bandit problems typically asssifisite or countably infinite state spaces. While our problem
can potentially have an uncountable state space, it is th@less countable for a given initial state. This view hasnbiaken

throughout the paper.
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seminal work [17]. Gittins showed that there exists iadex associated with each machine
that is solely a function of that individual machine and itats, and that playing the machine
currently with the highest index is optimal. This index hasce been referred to as tl@ttins
indexdue to Whittle [18]. The remarkable nature of this resuls lie the fact that it essentially
decomposes th&/-dimensional problem int&v 1-dimensional problems, as an index is defined
for a machine independent of others. The basic model of rautied bandit has been used
previously in the context of channel access and cognitideoraetworks. For example, in [19],
Bayesian learning was used to estimate the probability ofianicel being available, and the
Gittins indices, calculated based on such estimates (wite only updated when a channel
is observed and used, thus giving rise to a multi-armed b&odhulation rather than a restless
bandit formulation), were used for channel selection.

On the other hand, relatively little is known about the simue of the optimal policies for
the restless bandit problems in general. It has been shoatrttie Gittins index policy is not
in general optimal in this case [2], and that this class obfgms is PSPACE-hard in general
[20]. Whittle, in [2], proposed a Gittins-like index (refed to as the Whittle’s index policy),
shown to be optimal under a constraint on theragenumber of machines that can be played
at a given time, and asymptotically optimal under certaimting regimes [21]. There has been
a large volume of literature in this area, including vari@pproximation algorithms, see for
example [22] and [23] for near-optimal heuristics, as weallcanditions for certain policies to
be optimal for special cases of the restless bandit probsem,e.qg., [24], [25]The nature of
the results derived in the present paper is similar to thg24f, [25] in spirit. That is, we have
shown that for this special case of the restless bandit enolain index policy is optimal under
certain conditions. For the indexability (as defined by \Wif2]) of this problem, see [26].

Recently Guha and Munagala [27], [28] studied a class oflprob referred to as thfeedback
multi-armed banditproblems. This class is very similar to the restless bandiblem studied
in the present paper, with the difference that channels naag different transition probabilities
(thus this is a slight generalization to the one studied )haMhile we identified conditions
under which a simple greedy index policy is optimal in theseré paper, Guha and Munagala
in [27], [28] looked for provably good approximation algdms. In particular, they derived a

2 + e-approximate policy using a duality-based technique.
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VIII. CONCLUSION

The general problem of opportunistic sensing and accesssam many multi-channel com-
munication contexts. For cases where the stochastic @olof channels can be modelled as
i.i.d. two-state Markov chains, we showed that a simple atist myopic policy is optimal for
the finite and infinite horizon discounted reward criterianagl as the infinite horizon average
reward criterion, when the state transitions are positieelrrelated over time. When the state
transitions are negatively correlated, we showed thatdhgespolicy is optimal when the number

of channels is limited to 2 or 3, and presented a counterebafop the case of 4 channels.
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