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Abstract

We consider opportunistic communication over multiple channels where the state (“good” or “bad”)

of each channel evolves as independent and identically distributed Markov processes. A user, with limited

channel sensing and access capability, chooses one channelto sense and subsequently access (based on

the sensed channel state) in each time slot. A reward is obtained whenever the user senses and accesses

a “good” channel. The objective is to design an optimal channel selection policy that maximizes the

expected total (discounted or average) reward accrued overa finite or infinite horizon. This problem can

be cast as a Partially Observable Markov Decision Process (POMDP) or a restless multi-armed bandit

process, to which optimal solutions are often intractable.We show in this paper that a myopic policy

that maximizes the immediate one-step reward is always optimal when the state transitions are positively

correlated over time. When the state transitions are negatively correlated, we show that the same policy

is optimal when the number of channels is limited to 2 or 3, while presenting a counterexample for

the case of 4 channels.This result finds applications in opportunistic transmission scheduling in a

fading environment, cognitive radio networks for spectrumoverlay, and resource-constrained jamming

and anti-jamming.

Preliminary version of this work was presented atIEEE International Conference on Communications (ICC), May 2008,

Beijing, China.

May 6, 2008 DRAFT

http://arxiv.org/abs/0811.0637v2


2

Index Terms

Opportunistic access, cognitive radio, POMDP, multi-armed bandit, restless bandit, Gittins index,

Whittle’s index, myopic policy.

May 6, 2008 DRAFT



3

I. INTRODUCTION

We consider a communication system in which a sender has access to multiple channels, but

is limited to sensing and transmitting only on one at a given time. We explore how a smart

sender should exploit past observations and the knowledge of the stochastic state evolution of

these channels to maximize its transmission rate by switching opportunistically across channels.

We model this problem in the following manner. As shown in Figure 1, there aren channels,

each of which evolves as an independent, identically-distributed, two-state discrete-time Markov

chain. The two states for each channel — “good” (or state1) and “bad” (or state0) — indicate the

desirability of transmitting over that channel at a given time slot. The state transition probabilities

are given bypij , i, j = 0, 1. In each time slot the sender picks one of the channels to sense

based on its prior observations, and obtains some fixed reward if it is in the good state. The basic

objective of the sender is to maximize the reward that it can gain over a given finite time horizon.

This problem can be described as a partially observable Markov decision process (POMDP) [1]

since the states of the underlying Markov chains are not fully observed.It can also be cast as a

special case of the class of restless multi-armed bandit problems [2]; more discussion on this is

given in Section VII.

PSfrag replacements

0 1
(bad) (good)

p01

p11p00

p10

Fig. 1. The Markov channel model.

This formulation is broadly applicable to several domains.It arises naturally in opportunistic

spectrum access (OSA) [3], [4], where the sender is a secondary user, and the channel states

describe the occupancy by primary users. In the OSA problem,the secondary sender may send

on a given channel only when there is no primary user occupying it. It pertains to communication

over parallel fading channels as well, if a two-state Markovian fading model is employed. Another

interesting application of this formulation is in the domain of communication security, where it

can be used todevelopbounds on the performance of resource-constrained jamming. A jammer
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that has access to only one channel at a time could also use thesame stochastic dynamic decision

making process to maximize the number of times that it can successfully jam communications

that occur on these channels. In this application, the “good” state for the jammer is precisely

when the channel is being utilized by other senders (in contrast with the OSA problem).

In this paper we examine the optimality of a simple myopic policy for the opportunistic access

problem outlined above. Specifically, we show that the myopic policy is optimal for arbitrary

n whenp11 ≥ p01. We also show that it is optimal forn = 3 whenp11 < p01, while presenting

a finite horizon counter example showing that it is in generalnot optimal forn ≥ 4. We also

generalize these results to related formulations involving discounted and average rewards over

an infinite horizon.

These results extend and complement those reported in priorwork [5]. Specifically, it has been

shown in [5] that for alln the myopic policy has an elegant and robust structure that obviates the

need to know the channel state transition probabilities andreduces channel selection to a simple

round robin procedure. Based on this structure, the optimality of the myopic policy forn = 2

was established and the performance of the myopic policy, inparticular, the scaling property

with respect ton, analyzed in [5]. It was conjectured in [5] that the myopic policy is optimal for

any n. This conjecture was partially addressed in a preliminary conference version [6], where

the optimality was established under certain restrictive conditions on the channel parameters and

the discount factor. In the present paper, we significantly relax these conditions and formerly

prove this conjecture under the conditionp11 ≥ p01. We also provide a counter example for

p11 < p01.

We would like to emphasize that compared to earlier work [5],[6], the approach used

in this paper relies on a coupling argument, which is the key to extending the optimality

result to the arbitraryn case. Earlier techniques were largely based on exploiting the convex

analytic properties of the value function, and were shown tohave difficulty in overcoming the

n = 2 barrier without further conditions on the discount factor or transition probabilities. This

observation is somewhat reminiscent of the results reported in [7], where a coupling argument was

also used to solve ann-queue problem while earlier versions [8] using value function properties

were limited to a2-queue case. We invite the interested reader to refer to [9],an important

manuscript on monotonicity in MDPs which explores the poweras well as the limitation of

working with analytic properties of value functions and dynamic programming operators as we
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had done in our earlier work. In particular, [9, Section 9.5]explores the difficulty of using such

techniques for multi-dimensional problems where the number of queues is more thann = 2; [9,

Chapter 12] contrasts this proof technique with the stochastic coupling arguments, which our

present work uses.

The remainder of this paper is organized as follows. We formulate the problem in Section II

and illustrate the myopic policy in Section III. In Section IV, we prove that the myopic policy

is optimal in the case ofp11 ≥ p01, and show in Section V that it is in general not optimal

when this condition does not hold. Section VI extends the results from finite horizon to infinite

horizon. We discuss our work within the context of the class of restless bandit problems as well

as some related work in this area in Section VII. Section VIIIconcludes the paper.

II. PROBLEM FORMULATION

We consider the scenario where a user is trying to access the wireless spectrum to maximize

its throughput or data rate. The spectrum consists ofn independent and statistically identical

channels. The state of a channel is given by a two-state discrete time Markov chain shown in

Figure 1.

The system operates in discrete time steps indexed byt, t = 1, 2, · · · , T , whereT is the

time horizon of interest. At timet−, the channels (i.e., the Markov chains representing them) go

through state transitions, and at timet the user makes the channel sensing and access decision.

Specifically, at timet the user selects one of then channels to sense, say channeli. If the

channel is sensed to be in the “good” state (state1), the user transmits and collects one unit of

reward. Otherwise the user does not transmit (or transmits at a lower rate), collects no reward,

and waits untilt + 1 to make another choice. This process repeats sequentially until the time

horizon expires.

As mentioned earlier, this abstraction is primarily motivated by the following multi-channel

access scenario where a secondary user seeks spectrum opportunity in between a primary user’s

activities. Specifically, time is divided into frames and atthe beginning of each frame there is

a designated time slot for the primary user to reserve that frame and for secondary users to

perform channel sensing. If a primary user intends to use a frame it will simply remain active in

a channel (or multiple channels) during that sensing time slot (i.e., reservation is by default for a

primary user in use of the channel), in which case a secondaryuser will find the channel(s) busy

May 6, 2008 DRAFT



6

and not attempt to use it for the duration of that frame. If theprimary user is inactive during this

sensing time slot, then the remainder of the frame is open to secondary users. Such a structure

provides the necessary protection for the primary user as channel sensing (in particular active

channel sensing that involves communication between a pairof users) conducted at arbitrary

times can cause undesirable interference.

Within such a structure, a secondary user has a limited amount of time and capability to

perform channel sensing, and may only be able to sense one or asubset of the channels before

the sensing time slot ends. And if all these channels are unavailable then it will have to wait till

the next sensing time slot. In this paper we will limit our attend to the special case where the

secondary user only has the resources to sense one channel within this slot. Conceptually our

formulation is easily extended to the case where the secondary user can sense multiple channels

at a time within this structure, although the correspondingresults differ, see e.g., [10].

Note that in this formulation we do not explicitly model the cost of channel sensing; it is

implicit in the fact that the user is limited in how many channels it can sense at a time. Alternative

formulations have been studied where sensing costs are explicitly taken into consideration in a

user’s sensing and access decision, see e.g., a sequential channel sensing scheme in [11].

In this formulation we have assumed that sensing errors are negligible. Techniques used in

this paper may be applicable in proving the optimality of themyopic policy under imperfect

sensing and for a general number of channels. The reason behind this is that our proof exploits

the simple structure of the myopic policy, which remains when sensing is subject to errors as

shown in [12].

Note that the system is not fully observable to the user, i.e., the user does not know the exact

state of the system when making the sensing decision. Specifically, channels go through state

transition at timet− (or anytime between(t − 1, t)), thus when the user makes the channel

sensing decision at timet, it does not have the true state of the system at timet, which we

denote bys(t) = [s1(t), s2(t), · · · , sn(t)] ∈ {0, 1}n. Furthermore, even after its action (at time

t+) it only gets to observe the true state of one channel, which goes through another transition at

or before time(t+1)−. The user’s action space at timet is given by the finite set{1, 2, · · · , n},

and we will usea(t) = i to denote that the user selects channeli to sense at timet. For clarity,

we will denote the outcome/observation of channel sensing at time t following the actiona(t)

by ha(t)(t), which is essentially the true statesa(t)(t) of channela(t) at timet since we assume
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channel sensing to be error-free.

It can be shown (see e.g., [1], [13], [14]) that a sufficient statistic of such a system for

optimal decision making, or theinformation stateof the system [13], [14], is given by the

conditional probabilities of the state each channel is in given all past actions and observations.

Since each channel can be in one of two states, we denote this information state or belief vector

by ω̄(t) = [ω1(t), · · · , ωn(t)] ∈ [0, 1]n, whereωi(t) is the conditional probability that channel

i is in state1 at time t given all past states, actions and observations1. Throughout the paper

ωi(t) will be referred to as the information state of channeli at time t, or simply the channel

probability of i at time t.

Due to the Markovian nature of the channel model, the future information state is only a

function of the current information state and the current action; i.e., it is independent of past

history given the current information state and action. It follows that the information state of

the system evolves as follows. Given that the state at timet is ω̄(t) and actiona(t) = i is

taken,ωi(t + 1) can take on two values: (1)p11 if the observation is that channeli is in a

“good” state (hi(t) = 1); this occurs with probabilityP{hi(t) = 1|ω̄(t)} = ωi(t); (2) p01 if

the observation is that channeli is in a “bad” state (hi(t) = 0); this occurs with probability

P{hi(t) = 0|ω̄(t)} = 1 − ωi. For any other channelj 6= i, the correspondingωj(t + 1) can

only take on one value (i.e., with probability1): ωj(t + 1) = τ(ωj(t)) where the operator

τ : [0, 1] → [0, 1] is defined as

τ(ω) := ωp11 + (1− ω)p01, 0 ≤ ω ≤ 1. (1)

These transition probabilities are summarized in the following equation fort = 1, 2, · · · , T−1:

{ωi(t+ 1)|ω̄(t), a(t)} =



















p11 with prob.ωi(t) if a(t) = i

p01 with prob. 1− ωi(t) if a(t) = i

τ(ωi(t)) with prob. 1 if a(t) 6= i

, i = 1, 2, · · · , n, (2)

Also note thatω̄(1) ∈ [0, 1]n denotes the initial condition (information state) of the system,

which may be interpreted as the user’s initial belief about how likely each channel is in the

good state before sensing starts at timet = 1. For the purpose of the optimization problems

1Note that this is a standard way of turning a POMDP problem into a classic MDP (Markov decision process) problem by

means of information state, the main implication being thatthe state space is now uncountable.
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formulated below, this initial condition is considered given, which can be any probability vector
2.

It is important to note that although in general a POMDP problem has an uncountable

state space (information states are probability distributions), in our problem the state space

is countable for any given initial condition̄ω(1). This is because as shown above, the in-

formation state of any channel with an initial probability of ω can only take on the values

{ω, τk(ω), p01, τ
k(ω), p11, τ

k(ω)}, where k = 1, 2, · · · and τk(ω) := τ(τk−1(ω)), which is a

countable set.

For compactness of presentation we will further use the operator T to denote the above

probability distribution of the information state (the entire vector):

ω̄(t+ 1) = T (ω̄(t), a(t)), (3)

by noting that the operation given in (2) is applied toω̄(t) element-by-element. We will also

use the following to denote the information state given observation outcome:

T (ω̄(t), a(t)|ha(t)(t) = 1) = (τ(ω1(t)), · · · , τ(ωa(t)−1(t)), p11, τ(ωa(t)+1(t)), · · · , τ(ωn(t))) (4)

T (ω̄(t), a(t)|ha(t)(t) = 0) = (τ(ω1(t)), · · · , τ(ωa(t)−1(t)), p01, τ(ωa(t)+1(t)), · · · , τ(ωn(t))) (5)

The objective of the user is to maximize its total (discounted or average) expected reward over

a finite (or infinite) horizon. LetJπ
T (ω̄), J

π
β (ω̄), andJπ

∞(ω̄) denote, respectively, these cost criteria

(namely, finite horizon, infinite horizon with discount, andinfinite horizon average reward) under

policy π starting in statēω = [ω1, · · · , ωn]. The associated optimization problems ((P1)-(P3))

are formally defined as follows.

(P1): max
π

Jπ
T (ω̄) = max

π
Eπ[

T
∑

t=1

βt−1Rπt
(ω̄(t))|ω̄(1) = ω̄]

(P2): max
π

Jπ
β (ω̄) = max

π
Eπ[

∞
∑

t=1

βt−1Rπt
(ω̄(t))|ω̄(1) = ω̄]

(P3): max
π

Jπ
∞(ω̄) = max

π
lim
T→∞

1

T
Eπ[

T
∑

t=1

Rπt
(ω̄(t))|ω̄(1) = ω̄]

2That is, the optimal solutions are functions of the initial condition. A reasonable choice, if the user has no special information

other than the transition probabilities of these channels,is to simply use the steady-state probabilities of channelsbeing in state

“1” as an initial condition (i.e., settingωi(1) =
p10

p01+p10
).
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whereβ (0 ≤ β ≤ 1 for (P1) and0 ≤ β < 1 for (P2)) is the discount factor, andRπt
(ω̄(t)) is

the reward collected under statēω(t) when channela(t) = πt(ω̄(t)) is selectedandha(t)(t) is

observed. This reward is given byRπt
(ω̄(t)) = 1 with probability ωa(t)(t) (whenha(t)(t) = 1),

and0 otherwise.

The maximization in (P1) is over the class of deterministic Markov policies.3. An admissible

policy π, given by the vectorπ = [π1, π2, · · · , πT ], is thus such thatπt specifies a mapping from

the current information statēω(t) to a channel selection actiona(t) = πt(ω̄(t)) ∈ {1, 2, · · · , n}.

This is done without loss of optimality due to the Markovian nature of the underlying system, and

due to known results on POMDPs. Note that the class of Markov policies in terms of information

state are also known as seperated policies (see [14]). Due tofiniteness of (unobservable) state

spaces and action space in problem (P1), it is known that an optimal policy (over all random

and deterministic, history-dependent and history-independent policies) may be found within the

class of separated (i.e. deterministic Markov) policies (see e.g., [14, Theorem 7.1, Chapter 6]),

thus justifying the maximization and the admissible policyspace.

In Section VI we establish the existence of a stationary separated policyπ∗, under which

the supremum of the expected discounted reward as well as thesupremum of expected average

cost are achieved, hence justifying our use of maximizationin (P2) and (P3). Furthermore, it is

shown that under this policy the limit in (P3) exists and is greater than the limsup of the average

performance of any other policy (in general history-dependent and randomized). This is a strong

notion of optimality; the interpretation is that the most “pessimistic” average performance under

policy π∗ (lim inf 1
T
Jπ∗

T (·) = lim 1
T
Jπ∗

T (·)) is greater than the most “optimistic” performance

under any other policyπ (lim sup 1
T
Jπ
T (·)). In much of the literature on MDP, this is referred to

as thestrong optimalityfor an expected average cost (reward) problem; for a discussion on this,

see [15, Page 344].

III. OPTIMAL POLICY AND THE MYOPIC POLICY

A. Dynamic Programming Representations

3A Markov policy is a policy that derives its action only depending on the current (information) state, rather than the entire

history of states, see e.g., [14].
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Problems (P1)-(P3) defined in the previous section may be solved using their respective dy-

namic programming (DP) representations. Specifically, forproblem (P1), we have the following

recursive equations:

VT (ω̄) = max
a=1,2,··· ,n

E[Ra(ω̄)]

Vt(ω̄) = max
a=1,2,··· ,n

E[Ra(ω̄) + βVt+1(T (ω̄, a))]

= max
a=1,··· ,n

(ωa + βωaVt+1 (T (ω̄, a|1)) + β(1− ωa)Vt+1 (T (ω̄, a|0))) , (6)

for t = 1, 2, · · · , T − 1, whereVt(ω̄) is known as the value function, or the maximum expected

future reward that can be accrued starting from timet when the information state is̄ω. In

particular, we haveV1(ω̄) = maxπ J
π
T (ω̄), and an optimal deterministic Markov policy exists

such thata = π∗
t (ω̄) achieves the maximum in (6) (see e.g., [15] (Chapter 4)). Note that sinceT

is a conditional probability distribution (given in (3)),Vt+1(T (ω̄, a)) is taken to be the expectation

over this distribution when its argument isT , with a slight abuse of notation, as expressed in

(6).

Similar dynamic programming representations hold for (P2)and (P3) as given below. For

problem (P2) there exists a unique functionVβ(·) satisfying the following fixed point equation:

Vβ(ω̄) = max
a=1,··· ,n

E[Ra(ω̄) + βVβ(T (ω̄, a))]

= max
a=1,··· ,n

(ωa + βωaVβ (T (ω̄, a|1)) + β(1− ωa)Vβ (T (ω̄, a|0))) . (7)

We have thatVβ(ω̄) = maxπ J
π
β (ω̄), and that a stationary separated policyπ∗ is optimal if and

only if a = π∗(ω̄) achieves the maximum in (7) [16, Theorem 7.1].

For problem (P3), we will show that there exist a bounded function h∞(·) and a constant

scalarJ satisfying the following equation:

J + h∞(ω̄) = max
a=1,2,··· ,n

E[Ra(ω̄) + h∞(T (ω̄, a))]

= max
a=1,··· ,n

(ωa + ωah∞ (T (ω̄, a|1)) + (1− ωa)h∞ (T (ω̄, a|0))). (8)

The boundedness ofh∞ and the immediate reward implies thatJ = maxπ J
π
∞(ω̄), and that a

stationary separated policyπ∗ is optimal in the context of (P3) if and only ifa = π∗(ω̄) achieves

the maximum in (8) [16, Theorems 6.1-6.3].

Solving (P1)-(P3) using the above recursive equations is ingeneral computationally heavy.

Therefore, instead of directly using the DP equations, the focus of this paper is on examining
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the optimality properties of a simple, greedy algorithm. Wedefine this algorithm next and show

its simplicity in structure and implementation.

B. The Myopic Policy

A myopic or greedy policy ignores the impact of the current action on the future reward, fo-

cusing solely on maximizing the expected immediate reward.Myopic policies are thus stationary.

For (P1), the myopic policy under statēω = [ω1, ω2, · · · , ωn] is given by

a∗(ω̄) = arg max
a=1,··· ,n

E[Ra(ω̄)] = arg max
a=1,··· ,n

ωa. (9)

In general, obtaining the myopic action in each time slot requires the successive update of

the information state as given in (2), which explicitly relies on the knowledge of the transition

probabilities{pij} as well as the initial condition̄ω(1). Interestingly,it has been shown in [5]

that the implementation of the myopic policy requires only the knowledge of the initial condition

and the order ofp11 andp01, but not the precise values of these transition probabilities.To make

the present paper self-contained, below we briefly describehow this policy works; more details

may be found in [5].

Specifically, whenp11 ≥ p01 the conditional probability updating functionτ(ω) is a monotoni-

cally increasing function, i.e.,τ(ω1) ≥ τ(ω2) for ω1 ≥ ω2. Therefore the ordering of information

states among channels is preserved when they are not observed. If a channel has been observed to

be in state “1” (respectively “0”), its probability at the next step becomesp11 ≥ τ(ω) (respectively

p01 ≤ τ(ω)) for anyω ∈ [0, 1]. In other words, a channel observed to be in state “1” (respectively

“0”) will have the highest (respectively lowest) possible information state among all channels.

These observations lead to the following implementation ofthe myopic policy. We take the

initial information statēω(1), order the channels according to their probabilitiesωi(1), and probe

the highest one (top of the ordered list) with ties broken randomly. In subsequent steps we stay

in the same channel if the channel was sensed to be in state “1”(good) in the previous slot;

otherwise, this channel is moved to the bottom of the orderedlist, and we probe the channel

currently at the top of the list. This in effect creates a round robin style of probing, where the

channels are cycled through in a fixed order. This circular structure is exploited in Section IV

to prove the optimality of the myopic policy in the case ofp11 ≥ p01.
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When p11 < p01, we have an analogous but opposite situation. The conditional probability

updating functionτ(ω) is now a monotonically decreasing function, i.e.,τ(ω1) ≤ τ(ω2) for

ω1 ≥ ω2. Therefore the ordering of information states among channels is reversed at each time

step when they are not observed. If a channel has been observed to be in state “1” (respectively

“0”), its probability at the next step becomesp11 ≤ τ(ω) (respectivelyp01 ≥ τ(ω)) for any

ω ∈ [0, 1]. In other words, a channel observed to be in state “1” (respectively “0”) will have the

lowest (respectively highest) possible information stateamong all channels.

As in the previous case, these similar observations lead to the following implementation. We

take the initial information statēω(1), order the channels according to their probabilitiesωi(1),

and probe the highest one (top of the ordered list) with ties broken randomly. In each subsequent

step, if the channel sensed in the previous step was in state “0” (bad), we keep this channel

at the top of the list but completely reverse the order of the remaining list, and we probe this

channel. If the channel sensed in the previous step was in state “1” (good), then we completely

reverse the order of the entire list (including dropping this channel to the bottom of the list), and

probe the channel currently at the top of the list. This alternating circular structure is exploited

in Section V to examine the optimality of the myopic policy inthe case ofp11 < p01.

IV. OPTIMALITY OF THE MYOPIC POLICY IN THE CASE OFp11 ≥ p01

In this section we show that the myopic policy, with a simple and robust structure, is optimal

when p11 ≥ p01. We will first show this for the finite horizon discounted costcase, and then

extend the result to the infinite horizon case under both discounted and average cost criteria in

Section VI.

The main assumption is formally stated as follows.

Assumption 1:The transition probabilitiesp01 andp11 are such that

p11 − p01 ≥ 0. (10)

The main theorem of this section is as follows.

Theorem 1:Consider Problem (P1).DefineVt(ω̄; a) := E[Ra(ω̄) + βVt+1(T (ω̄, a))], i.e., the

value of the value function given in Eqn (6) when actiona is taken at timet followed by an

optimal policy.Under Assumption 1, the myopic policy is optimal, i.e. for∀t, 1 ≤ t < T , and

∀ω̄ = [ω1, · · · , ωn] ∈ [0, 1]n,

Vt(ω̄; a = j)− Vt(ω̄; a = i) ≥ 0, (11)
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if ωj ≥ ωi, for i = 1, · · · , n.

The proof of this theorem is based on backward induction ont: given the optimality of the

myopic policy at timest + 1, t + 2, · · · , T , we want to show that it is also optimal at timet.

This relies on a number of lemmas introduced below. The first lemma introduces a notation that

allows us to express the expected future reward under the myopic policy.

Lemma 1:There existT n-variable functions, denoted byWt(), t = 1, 2, · · · , T , each of

which is a polynomial of order 14 and can be represented recursively in the following form:

Wt(ω̄) = ωn + ωnβWt+1(τ(ω1), . . . , τ(ωn−1), p11) + (1− ωn)βWt+1(p01, τ(ω1), . . . , τ(ωn−1)),(12)

whereω̄ = [ω1, ω2, · · · , ωn] andWT (ω̄) = ωn.

Proof: The proof is easily obtained using backward induction ont given the above recursive

equation and noting thatWT () is one such polynomial and the mappingτ() is a linear operation.

Corollary 1: When ω̄ represents the ordered list of information states[ω1, ω2, · · · , ωn] with

ω1 ≤ ω2 ≤ · · · ≤ ωn, thenWt(ω̄) is the expected total reward obtained by the myopic policy

from time t on.

This result follows directly from the description of the policy given in Section III-B.

Proposition 1: The fact thatWt is a polynomial of order 1 and affine in each of its elements

implies that

Wt(ω1, · · · , ωn−2, y, x)−Wt(ω1, · · · , ωn−2, x, y)

= (x− y)[Wt(ω1, · · · , ωn−2, 0, 1)−Wt(ω1, · · · , ωn−2, 1, 0)] . (13)

Similar results hold when we change the positions ofx andy.

To see this, considerWt(ω1, · · · , ωn−2, x, y) andWt(ω1, · · · , ωn−2, y, x), as functions ofx and

y, each having anx term, ay term, anxy term and a constant term. Since we are just swapping

the positions ofx and y in these two functions, the constant term remains the same, and so

does thexy term. Thus the only difference is thex term and they term, as given in the above

equation. This linearity result will be used later in our proofs.

The next lemma establishes a necessary and sufficient condition for the optimality of the

myopic policy.

4Each functionWt is affine in each variable, when all other variables are held constant.
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Lemma 2:Consider Problem (P1) and Assumption 1. Given the optimality of the myopic

policy at timest+ 1, t+ 2, · · · , T , the optimality at timet is equivalent to:

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωn, ωi) ≤ Wt(ω1, . . . , ωn), for all ω1 ≤ · · · ≤ ωi ≤ · · · ≤ ωn.

Proof: Since the myopic policy is optimal fromt+1 on, it is sufficient to show that probing

ωn followed by myopic probing is better than probing any other channel followed by myopic

probing. The former is precisely given by the RHS of the aboveequation; the latter by the LHS,

thus completing the proof.

Having established thatWt(ω̄) is the total expected reward of the myopic policy for an

increasingly-ordered vector̄ω = [ω1, · · · , ωn], we next proceed to show that we do not decrease

this total expected rewardWt(ω̄) by switching the order of two neighboring elementsωi and

ωi+1 if ωi ≥ ωi+1. This is done in two separate cases, wheni+ 1 < n (given in Lemma 4) and

when i+ 1 = n (given in Lemma 5), respectively. The first case is quite straightforward, while

proving the second cased turned out to be significantly more difficult. Our proof of the second

case (Lemma 5) relies on a separate lemma (Lemma 3) that establishes a boundbetween the

greedy use of two identical vectors but with a different starting position.The proof of Lemma 3

is based on a coupling argument and is quite instructive. Below we present and prove Lemmas

3, 4 and 5.

Lemma 3:For 0 < ω1 ≤ ω2 ≤ . . . ≤ ωn < 1 , we have the following inequality for all

t = 1, 2, · · · , T :

1 +Wt(ω2, . . . , ωn, ω1) ≥ Wt(ω1, . . . , ωn). (14)

Proof: We prove this lemma using a coupling argument along any sample path. The LHS

of the above inequality represents the expected reward of a policy (referred to as L below) that

probes in the sequence of channels1 followed by n, n − 1, · · · , and then1 again, and so on,

plus an extra reward of1; the RHS represents the expected reward of a policy (referred to as

R below) that probes in the sequence of channelsn followed by n − 1, · · · , and1 and thenn

again, and so on. It helps to imagine lining up then channels along a circle in the sequence of

n, n−1, · · · , 1, clock-wise, and thus L’s starting position is1, R’s starting position isn, exactly

one spot ahead of L clock-wise. Each will cycle around the circle till time T .

Now for any realization of the channel conditions (or any sample path of the system), consider

the sequence of “0”s and “1”s that these two policies see, and consider the position they are on
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the circle. The reward a policy gets along a given sample pathis Rl =
∑T

j=t β
jl for policy L,

wherejl = j if L sees a “1” at timej, and0 otherwise; the reward for R isRr =
∑T

j=t β
jr with

jr similarly defined. There are two cases.

Case (1): the two eventually catch up with each other at some time K ≤ T , i.e., at some

point they start probing exactly the same channel. From thispoint on the two policies behave

exactly the same way along the same sample path, and the reward they obtain from this point

on is exactly the same. Therefore in this case we only need to compare the rewards (L has an

extra1) leading up to this point.

Case (2): The two never manage to meet within the horizonT . In this case we need to compare

the rewards for the entire horizon (fromt to T ).

We will consider Case (1) first. There are only two possibilities for the two policies to meet:

(Case 1.a) either L has seen exactly one more “0” than R in its sequence, or (Case 1.b) R has

seen exactlyn−1 more “0”s than L. This is because the moment we see a “0” we willmove to

the next channel on the circle. L is only one position behind R, so one more “0” will put it at

exactly the same position as R. The same with R movingn− 1 more positions ahead to catch

up with L.

Case (1.a): L sees exactly one more “0” than R in its sequence.The extra “0” necessarily occurs

at exactly timeK, t ≤ K ≤ T , meaning that atK, L sees a “0” and R sees a “1”. Fromt to K,

if we write the sequence of rewards (zeros and ones) under L and R, we observe the following:

betweent andK both L and R have equal number of zeros, while for∀t′ = t, t+1, . . . , K − 1,

the number of zeros up to timet′ is less (or no more) for L than for R. In other words, L

and R see the same number of “0”s, but L’s is always lagging behind (or no earlier). That is,

for every “0” R sees, L has a matching “0” that occurs no earlier than R’s “0.” This means

that if we denote byRl(t1, t2) the rewards accumulated betweent1 and t2, then for the rewards

in [t,K − 1], we haveRl(t, t
′) ≥ Rr(t, t

′), for ∀t′ ≤ K − 1, while Rl(K,K) = βK and

Rr(K,K) = 0. Finally by definition we haveRl(K + 1, T ) = Rr(K + 1, T ). Therefore overall

we have1 +Rl(t, T ) ≥ Rr(t, T ), proving the above inequality.

Case (1.b): R seesn− 1 more “0”s than L does. The comparison is simpler. We only needto

note that R’s “0”s must again precedes (or be no later than) L’s since otherwise we will return

to Case (1.a). Therefore we haveRl ≥ Rr, and thus1 +Rl ≥ Rr is also true.

We now consider Case (2). The argument is essentially the same. In this case the two don’t
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get to meet, but they are on their way, meaning that either L has exactly the same “0”s as R

and their positions are no earlier (corresponding to Case (1.a)), or R has more “0”s than L (but

not up ton−1) and their positions are no later than L’s (corresponding toCase (1.b)). So either

way we have1 +Rl ≥ Rr.

The proof is thus complete.

Lemma 4:For all j, 1 ≤ j ≤ n− 3, and allx ≥ y, we have

Wt(ω1, . . . , ωj, x, y, . . . , ωn) ≤ Wt(ω1, . . . , ωj, y, x, . . . , ωn) (15)

Proof: We prove this by induction overt. The claim is obviously true fort = T , since both

sides will be equal toωn, thereby establishing the induction basis. Now suppose theclaim is

true for all t + 1, · · · , T − 1. We have

Wt(ω1, · · · , ωj−1, x, y, · · · , ωn)

= ωn(1 + βWt+1(τ(ω1), · · · , τ(x), τ(y), · · · , τ(ωn−1), p11))

+ (1− ωn)βWt+1(p01, τ(ω1), · · · , τ(x), τ(y), · · · , τ(ωn−1))

≤ ωn(1 + βWt+1(τ(ω1), · · · , τ(y), τ(x), · · · , τ(ωn−1), p11))

+ (1− ωn)βWt+1(p01, τ(ω1), · · · , τ(y), τ(x), · · · , τ(ωn−1))

= Wt(ω1, · · · , ωj−1, y, x, · · · , ωn) (16)

where the inequality is due to the induction hypothesis, andnoting that τ() is a monotone

increasingmapping in the case ofp11 ≥ p01.

Lemma 5:For all x ≥ y, we have

Wt(ω1, . . . , ωj, . . . , ωn−2, x, y) ≤ Wt(ω1, . . . , ωj, . . . , ωn−2, y, x). (17)

Proof: This lemma is proved inductively. The claim is obviously true for t = T . Assume it

also holds for timest+1, · · · , T − 1. We have by the definition ofWt() and due to its linearity

property:

Wt(ω1, . . . , ωn−2, y, x)−Wt(ω1, . . . , ωn−2, x, y)

= (x− y)(Wt(ω1, . . . , ωn−2, 0, 1)−Wt(ω1, . . . , ωn−2, 1, 0))

= (x− y) (1 + βWt+1(τ(ω1), . . . , τ(ωn−2), p01, p11)− βWt+1(p01, τ(ω1), . . . , τ(ωn−2), p11)) .

May 6, 2008 DRAFT



17

But from the induction hypothesis we know that

Wt+1(τ(ω1), . . . , τ(ωn−2), p01, p11) ≥ Wt+1(τ(ω1), . . . , τ(ωn−2), p11, p01). (18)

This means that

1 + βWt+1(τ(ω1), . . . , τ(ωn−2), p01, p11)− βWt+1(p01, τ(ω1), . . . , τ(ωn−2), p11)

≥ 1 + βWt+1(τ(ω1), . . . , τ(ωn−2), p11, p01)− βWt+1(p01, τ(ω1), . . . , τ(ωn−2), p11) ≥ 0 ,

where the last inequality is due to Lemma 3 (note that in that lemma we proved1 + A ≥ B,

which obviously implies1 + βA ≥ βB for 0 ≤ β ≤ 1 that is used above). This, together with

the conditionx ≥ y, completes the proof.

We are now ready to prove the main theorem.

Proof of Theorem 1:The basic approach is by induction ont. The optimality of the myopic

policy at time t = T is obvious. So the induction basis is established. Now assume that the

myopic policy is optimal for all timest + 1, t + 2, · · · , T − 1, and we will show that it is also

optimal at timet. By Lemma 2 this is equivalent to establishing the following

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωn, ωi) ≤ Wt(ω1, . . . , ωn). (19)

But we know from Lemmas 4 and 5 that,

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωn, ωi) ≤ Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωi, ωn)

≤ Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωi, ωn−1, ωn) ≤ . . . ≤ Wt(ω1, . . . , ωn) ,

where the first inequality is the result of Lemma 5, while the remaining inequalities are repeated

application of Lemma 4, completing the proof.

We would like to emphasize that from a technical point of view, Lemma 3 is the key to

the whole proof: it leads to Lemma 5, which in turn leads to Theorem 1. While Lemma 5

was easy to conceptualize as a sufficient condition to prove the main theorem, Lemma 3 was

much more elusive to construct and prove. This, indeed, marks the main difference between the

proof techniques used here vs. that used in our earlier work [6]: Lemma 3 relies on a coupling

argument instead of the convex analytic properties of the value function.
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V. THE CASE OFp11 < p01

In the previous section we showed that a myopic policy is optimal if p11 ≥ p01. In this section

we examine what happens whenp11 < p01, which corresponds to the case when the Markovian

channel state process exhibits a negative auto-correlation over a unit time.This is perhaps a case

of less practical interest and relevance. However, as we shall see this case presents a greater

degree of technical complexity and richness than the previous case. Specifically, wefirst show

that when the number of channels is three (n = 3) or when the discount factorβ ≤ 1
2
, the

myopic policy remains optimal even for the case ofp11 < p01 (the proof for two channels in this

case was given earlier in [5]). We thus conclude that the myopic policy is optimal forn ≤ 3 or

β ≤ 1/2 regardless of the transition probabilities. We then present a counter example showing

that the the myopic policy is not optimal in general whenn ≥ 4 andβ > 1/2. In particular, our

counter example is for a finite horizon withn = 4 andβ = 1.

A. n = 3 or β ≤ 1
2

We start by developing some results parallel to those presented in the previous section for the

case ofp11 ≥ p01.

Lemma 6:There existT n-variable polynomial functions of order1, denoted byZt(), t =

1, 2, · · · , T , i.e., each function is linear in all the elements, and can berepresented recursively

in the following form:

Zt(ω̄) := ωn(1 + βZt+1(p11, τ(ωn−1), . . . , τ(ω1)))

+(1− ωn)βZt+1(τ(ωn−1), . . . , τ(ω1), p01). (20)

whereZT (ω̄) = ωn.

Corollary 2: Zt(ω̄) given in (20) represents the expected total reward of the myopic policy

when ω̄ is ordered in increasing order ofωi.

Similar to Corollary 1, the above result follows directly from the policy description given in

Section III-B.

It follows that the functionZt also has the same linearity property presented earlier, i.e.

Zt(ω1, · · · , ωn−2, y, x)− Zt(ω1, · · · , ωn−2, x, y)

= (x− y)(Zt(ω1, · · · , ωn−2, 0, 1)− Zt(ω1, · · · , ωn−2, 1, 0)) . (21)
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Similar results hold when we change the positions ofx andy.

In the next lemma and theorem we prove that the myopic policy is still optimal whenp11 < p01

if n = 3 or β ≤ 1/2 . In particular, Lemma 7 below is the analogy of Lemmas 4 and 5 combined.

Lemma 7:At time t (t = 1, 2, · · · , T ), for all j ≤ n − 2, we have the following inequality

for ∀1 ≥ x ≥ y ≥ 0 if either n = 3 or β ≤ 1/2:

Zt(ω1, . . . , ωj, y, x, ωj+3, . . . , ωn) ≥ Zt(ω1, . . . , ωj, x, y, ωj+3, . . . , ωn). (22)

Proof: We prove this by induction ont. The claim is obviously true fort = T . Now suppose

it’s true for t+ 1, · · · , T − 1. Due to the linearity property ofZt,

Zt(ω1, . . . , ωj, y, x, ωj+3, . . . , ωn)− Zt(ω1, . . . , ωj, x, y, ωj+3, . . . , ωn)

= (x− y) (Zt(ω1, . . . , ωj, 0, 1, ωj+3, . . . , ωn)− Zt(ω1, . . . , ωj, 1, 0, ωj+3, . . . , ωn)) . (23)

Thus it suffices to show thatZt(ω1, . . . , ωj, 0, 1, ωj+3, . . . , ωn) ≥ Zt(ω1, . . . , ωj, 1, 0, ωj+3, . . . , ωn).

We treat the case whenj < n−2 andj = n−2 separately. Indeed, without loss of generality,

let j = n− 3 (the proof follows exactly for allj ≤ n− 3 with more lengthy notations). At time

t we have

Zt(ω1, . . . , ωn−3, 0, 1, ωn)− Zt(ω1, . . . , ωn−3, 1, 0, ωn)

= ωβ(Zt+1(p11, p11, p01, τ(ωn−3), . . . , τ(ω1))− Zt+1(p11, p01, p11, τ(ωn−3), . . . , τ(ω1)))

+ (1− ω)β(Zt+1(p11, p01, τ(ωn−3), . . . , τ(ω1), p01)− Zt+1(p01, p11, τ(ωn−3), . . . , τ(ω1), p01))

≥ 0

where the last inequality is due to the induction hypothesis.

Now we will consider the case whenj = n− 2.

Zt(ω1, . . . , ωn−2, 0, 1)− Zt(ω1, . . . , ωn−2, 1, 0)

= 1 + βZt+1(p11, p01, τ(ωn−2), . . . , τ(ω1))− βZt+1(p11, τ(ωn−2), . . . , τ(ω1), p01). (24)

Next we show that ifβ ≤ 1/2 or n = 3 the right hand side of (24) is non-negative.

If β ≤ 1/2, then

1 + βZt+1(p11, p01, τ(ωn−2), . . . , τ(ω1))− βZt+1(p11, τ(ωn−2), . . . , τ(ω1), p01)

≥ 1−
β

1− β
≥ 0.
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If n = 3, then

1 + βZt+1(p11, p01, τ(ω1))− βZt+1(p11, τ(ω1), p01)

= 1 + β(τ(ω1)− p01)(Zt+1(p11, 0, 1)− Zt+1(p11, 1, 0))

≥ 1− β(Zt+1(p11, 0, 1)− Zt+1(p11, 1, 0))

≥ 0

where the first inequality is due to the fact that−1 ≤ τ(ω1)− p01 ≤ 0 and the last inequality is

given by the induction hypothesis.

Theorem 2:Consider Problem (P1). Assume thatp11 < p01. The myopic policy is optimal

for the case ofn = 3 and the case ofβ ≤ 1/2 with arbitraryn. More precisely, for these two

cases,∀t, 1 ≤ t ≤ T , we have

Vt(ω̄; a = j)− Vt(ω̄; a = i) ≥ 0, (25)

if ωj ≥ ωi for i = 1, · · · , n.

Proof: We prove by induction ont. The optimality of the myopic policy at timet = T is

obvious. Now assume that the myopic policy is optimal for alltimest+1, t+2, · · · , T −1, and

we want to show that it is also optimal at timet. Suppose at timet the channel probabilities

are such thatωn ≥ ωi for i = 1, · · · , n− 1. The myopic policy is optimal at timet if and only

if probing ωn followed by myopic probing is better than probing any other channel followed by

myopic probing. Mathematically, this means

Zt(ω1, . . . , ωi−1, ωi+1, . . . , ωn, ωi) ≤ Zt(ω1, . . . , ωn), for all ω1 ≤ ωi ≤ ωn.

But this is a direct consequence of Lemma 7, completing the proof.

B. A 4-channel Counter Example

The following example shows that the myopic policy is not, ingeneral, optimal forn ≥ 4

whenp11 < p01.

Example1: Consider an example with the following parameters:p01 = 0.9, p11 = 0.1, β =

1, and ω̄ = [.97, .97, .98, .99]. Now compare the following two policies at timeT − 3: play
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myopically (I), or play the.98 channel first, followed by the myopic policy (II). Computation

reveals that

V I
T−3(.97, .97, .98, .99) = 2.401863

< V II
T−3(.97, .97, .98, .99) = 2.402968

which shows that the myopic policy is not optimal in this case.

It remains an interesting question as to whether such counter examples exist in the case when

the initial condition is such that all channel are in the goodstate with the stationary probability.

VI. I NFINITE HORIZON

Now we consider extensions of results in Sections IV and V to (P2) and (P3), i.e., to show

that the myopic policy is also optimal for (P2) and (P3) underthe same conditions. Intuitively,

this holds due to the fact that the stationary optimal policyof the finite horizon problem is

independent of the horizon as well as the discount factor. Theorems 3 and 4 below concretely

establish this.

We point out that the proofs of Theorems 3 and 4 do not rely on any additional assump-

tions other than the optimality of the myopic policy for (P1). Indeed, if the optimality of the

myopic policy for (P1) can be established under weaker conditions, Theorems 3 and 4 can be

readily invoked to establish its optimality under the same weaker condition for (P2) and (P3),

respectively.

Theorem 3:If myopic policy is optimal for (P1), it is also optimal for (P2) for 0 ≤ β < 1.

Furthermore, its value function is the limiting value function of (P1) as the time horizon goes

to infinity, i.e., we havemaxπ J
π
β (ω̄) = limT→∞maxπ J

π
T (ω̄).

Proof: We first use the bounded convergence theorem (BCT) to establish the fact that under

any deterministic stationary Markov policyπ, we haveJπ
β (ω̄) = limT→∞ Jπ

T (ω̄). We prove this

by noting that

Jπ
β (ω̄) = Eπ[ lim

T→∞

T
∑

t=1

βt−1Rπ(t)(ω̄(t))|ω̄(1) = ω̄]

= lim
T→∞

Eπ[

T
∑

t=1

βt−1Rπ(t)(ω̄(t))|ω̄(1) = ω̄]

= lim
T→∞

Jπ
T (ω̄) (26)
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where the second equality is due to BCT for
∑T

t=1 β
t−1Rπ(t)(ω̄(t)) ≤ 1

1−β
. This proves the

second part of the theorem by noting that due to the finitenessof the action space, we can

interchange maximization and limit.

Let π∗ denote the myopic policy. We now establish the optimality ofπ∗ for (P2). From

Theorem 1, we know:

Jπ∗

T (ω̄) = max
a=i

{

ωi + βωiJ
π∗

T−1 (T (ω̄, i|1))

+β (1− ωi)J
π∗

T−1 (T (ω̄, i|0))
}

.

Taking limit of both sides, we have

Jπ∗

β (ω̄) = max
a=i

{

ωi + βωiJ
π∗

β (T (ω̄, i|1))

+β (1− ωi)J
π∗

β (T (ω̄, i|0))
}

. (27)

Note that (27) is nothing but the dynamic programming equation for the infinite horizon dis-

counted reward problem given in (7). From the uniqueness of the dynamic programming solution,

then, we have

Jπ∗

β (ω̄) = Vβ(ω̄) = max
π

Jπ
β (ω̄)

hence, the optimality of the myopic policy.

Theorem 4:Consider (P3) with the expected average reward and under theergodicity as-

sumption|p11 − p00| < 1. Myopic policy is optimal for problem (P3) if it is optimal for (P1).

Proof: We consider the infinite horizon discounted cost forβ < 1 under the optimal policy

denoted byπ∗:

Jπ∗

β (ω̄) = max
a=i

{

ωi + βωiJ
π∗

β (T (ω̄, i|1))

+β(1− ωi)J
π∗

β (T (ω̄, i|0))
}

. (28)

This can be written as

(1− β)Jπ∗

β (ω̄)

= max
a=i

{

ωi + βωi

[

Jπ∗

β (T (ω̄, i|1))− Jπ∗

β (ω̄)
]

+β(1− ωi)
[

Jπ∗

β (T (ω̄, i|0))− Jπ∗

β (ω̄)
]}

.
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Notice that the boundedness of the reward function and compactness of information state

implies that the sequence of{(1− β)Jπ∗

β (ω̄)} is bounded,i.e. for all 0 ≤ β ≤ 1,

(1− β)Jπ∗

β (ω̄) ≤ 1. (29)

Also, applying Lemma 2 from [6] (which provides an upper bound on the difference in value

functions between taking two different actions followed bythe optimal policy) and noting that

−1 < p11 − p00 < 1, we have that there exists some positive constantK := 1
1−|p11−p01|

such that

∣

∣Jπ∗

β (T (ω̄, i|0))− Jπ∗

β (ω̄)
∣

∣ ≤ K. (30)

By Bolzano-Weierstrass theorem, (29) and (30) guarantee the existence of a converging

sequenceβk → 1 such that

lim
k→∞

(1− βk)J
π∗

βk
(ω̄∗) := J∗, (31)

and lim
k→∞

[

Jπ∗

βk
(ω̄)− Jπ∗

βk
(ω̄∗)

]

:= hπ∗

(ω̄) , (32)

whereω∗
i :=

p01
1−p11+p01

is the steady-state belief (the limiting belief when channel i is not sensed

for a long time).

As a result, (31) can be written as

J∗ = lim
k→∞

{

(1− βk)J
π∗

βk
(ω̄∗) + (1− βk)

[

Jπ∗

βk
(ω̄)− Jπ∗

βk
(ω̄∗)

]}

.

In other words,

J∗ = lim
k→∞

max
a=i

{

ωi + βkωi

[

Jπ∗

βk
(T (ω̄, i|1))

−Jπ∗

βk
(ω̄)

]

+ βk (1− ωi)
[

Jπ∗

βk
(T (ω̄, i|0))− Jπ∗

βk
(ω̄)

]}

.

From (32), we can write this as

J∗ + hπ∗

(ω̄) = max
a=i

{

ωi + ωih
π∗

(T (ω̄, i|1))+

(1− ωi)h
π∗

(T (ω̄, i|0))
}

. (33)

Note that (33) is nothing but the DP equation as given by (8). In addition, we know that the

immediate reward as well as functionh are both bounded bymax(1, K). This implies thatJ∗

is the maximum average reward, i.e.J∗ = maxπ J
π
∞(ω̄(t)) (see [16, Theorems 6.1-6.3]).
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On the other hand, we know from Theorem 3 that the myopic policy is optimal for (P2) if it

is for (P1), and thus we can takeπ∗ in (28) to be the myopic policy. Rewriting (28) gives the

following:

Jπ∗

β (ω̄) = ωπ∗(ω̄) + βωπ∗(ω̄)J
π∗

β (T (ω̄, π∗(ω̄)|1))

+β(1− ωπ∗(ω̄))J
π∗

β (T (ω̄, π∗(ω̄)|0)) .

Repeating steps (31)-(33) we arrive at the following:

J + hπ∗

(ω̄) = ωπ∗(ω̄) + ωπ∗(ω̄)h
π∗

(T (ω̄, π∗(ω̄)|1))+

(1− ωπ∗(ω̄))h
π∗

(T (ω̄, π∗(ω̄)|0)) , (34)

which shows that(J∗, hπ∗

, π∗) is a canonical triplet [16, Theorems 6.2]. This, together with

boundedness ofhπ∗

and immediate reward,implies that the myopic policyπ∗ is optimal for

(P3) [16, Theorems 6.3].

VII. D ISCUSSION ANDRELATED WORK

The problem studied in this paper may be viewed as a special case of a class of MDPs known

as therestless bandit problems[2]. In this class of problems,N controlled Markov chains (also

calledprojectsor machines) are activated (or played) one at a time. A machine when activated

generates a state dependent reward and transits to the next state according to a Markov rule. A

machine not activated transits to the next state according to a (potentially different) Markov rule.

The problem is to decide the sequence in which these machinesare activated so as to maximize

the expected (discounted or average) reward over an infinitehorizon. To put our problem in this

context, each channel corresponds to a machine, and a channel is activated when it is probed, and

its information state goes through a transition depending on the observation and the underlying

channel model. When a channel is not probed, its informationstate goes through a transition

solely based on the underlying channel model5.

In the case that a machine stays frozen in its current state when not played, the problem

reduces to themulti-armed bandit problem, a class of problems solved by Gittins in his 1970

5 The standard definition of bandit problems typically assumes finite or countably infinite state spaces. While our problem

can potentially have an uncountable state space, it is nevertheless countable for a given initial state. This view has been taken

throughout the paper.
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seminal work [17]. Gittins showed that there exists anindex associated with each machine

that is solely a function of that individual machine and its state, and that playing the machine

currently with the highest index is optimal. This index has since been referred to as theGittins

indexdue to Whittle [18]. The remarkable nature of this result lies in the fact that it essentially

decomposes theN-dimensional problem intoN 1-dimensional problems, as an index is defined

for a machine independent of others. The basic model of multi-armed bandit has been used

previously in the context of channel access and cognitive radio networks. For example, in [19],

Bayesian learning was used to estimate the probability of a channel being available, and the

Gittins indices, calculated based on such estimates (whichwere only updated when a channel

is observed and used, thus giving rise to a multi-armed bandit formulation rather than a restless

bandit formulation), were used for channel selection.

On the other hand, relatively little is known about the structure of the optimal policies for

the restless bandit problems in general. It has been shown that the Gittins index policy is not

in general optimal in this case [2], and that this class of problems is PSPACE-hard in general

[20]. Whittle, in [2], proposed a Gittins-like index (referred to as the Whittle’s index policy),

shown to be optimal under a constraint on theaveragenumber of machines that can be played

at a given time, and asymptotically optimal under certain limiting regimes [21]. There has been

a large volume of literature in this area, including variousapproximation algorithms, see for

example [22] and [23] for near-optimal heuristics, as well as conditions for certain policies to

be optimal for special cases of the restless bandit problem,see e.g., [24], [25].The nature of

the results derived in the present paper is similar to that of[24], [25] in spirit. That is, we have

shown that for this special case of the restless bandit problem an index policy is optimal under

certain conditions. For the indexability (as defined by Whittle [2]) of this problem, see [26].

Recently Guha and Munagala [27], [28] studied a class of problems referred to as thefeedback

multi-armed banditproblems. This class is very similar to the restless bandit problem studied

in the present paper, with the difference that channels may have different transition probabilities

(thus this is a slight generalization to the one studied here). While we identified conditions

under which a simple greedy index policy is optimal in the present paper, Guha and Munagala

in [27], [28] looked for provably good approximation algorithms. In particular, they derived a

2 + ǫ-approximate policy using a duality-based technique.
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VIII. C ONCLUSION

The general problem of opportunistic sensing and access arises in many multi-channel com-

munication contexts. For cases where the stochastic evolution of channels can be modelled as

i.i.d. two-state Markov chains, we showed that a simple and robust myopic policy is optimal for

the finite and infinite horizon discounted reward criteria aswell as the infinite horizon average

reward criterion, when the state transitions are positively correlated over time. When the state

transitions are negatively correlated, we showed that the same policy is optimal when the number

of channels is limited to 2 or 3, and presented a counterexample for the case of 4 channels.
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