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Abstract—We study the broadcast throughput capacity of
random wireless ad hoc networks when the nodes are endowed
with multipacket reception (MPR) capability. We show that, in
such networks, a per-node throughput capacity of Θ

(
R2(n)

)
bits per second can be achieved as a tight bound (i.e., upper
and lower bounds) for broadcast communication, where R(n)
is the receiver range that depends on the complexity of the
nodes. Compared to ad hoc networks in which receivers decode
at most one transmission at a time, the minimum capacity gain
of MPR-based networks is Θ(log n). This is attained when the
minimum value for R(n) is used, which equals the minimum
transmission range needed to guarantee connectivity in the
network (r(n) = Θ(

√
log n/n)).

I. INTRODUCTION

Gupta and Kumar [1] established that the per-node through-
put capacity of wireless ad hoc network with multi-pair
unicast traffic scales as Θ

(
1/
√

n log n
)

when any receiver can
successfully decode at most one packet at a time. Since then,
researchers have studied the throughput capacity of wireless ad
hoc networks for multicast and broadcast communication [2]–
[5].

Without exploiting node mobility [6], in static networks, the
only two possible approaches to increase the order capacity
of an ad hoc network consist of increasing the amount of
information in each relay by utilizing more bandwidth, or
avoiding interference by increasing cooperation among nodes.
Work has been carried out in both fronts. If bandwidth is
allowed to increase proportionally to the number of nodes in
the network [7], higher transport capacities can be attained
for static wireless networks. Ozgur et al. [8] proposed a
hierarchical cooperation technique based on virtual MIMO
to achieve linear capacity scaling. Cooperation can also be
extended to the simultaneous transmission and reception by
adjacent nodes in the network, which can result in significant
improvement in capacity [9].

Multipacket reception (MPR) is another cooperative tech-
nique that was first presented by Ghez et al. [10], [11]. MPR
allows multiple nodes to transmit their packets simultaneously
to the same receiver node, which can decode all these packets
successfully. The ability of MPR-based networks to embrace
interference contrasts with the traditional view in which a
receiver is assumed to decode successfully at most one trans-
mission at a time [1], which necessarily leads to interference
avoidance.

In the context of MPR, multiple nodes cooperate to transmit
their packets simultaneously to a single node using multiuser
detection (MUD), directional antennas (DA) [12], multiple
input multiple output (MIMO) techniques, or physical or
analog network coding [13], [14]. Furthermore, Toumpis and
Goldsmith [15] have shown that the capacity regions of
ad hoc networks are significantly increased when multiple
access schemes are combined with spatial reuse (i.e., multiple
simultaneous transmissions), multi-hop routing (i.e., packet
relaying), and successive interference cancelation (SIC). In
our previous work [16], we have proved that the throughput
capacity of a wireless network with MPR is Θ (R(n)) for

multi-pair unicast applications. When R(n) = Θ
(√

log n/n
)

to guarantee connectivity criterion, a gain of Θ(log n) is
achieved compared to the case in which network nodes can
decode at most one transmission at a time [1].

The study of the broadcast capacity of wireless networks
has also attracted considerable attention. Tavli [2] was the
first to show a bound of Θ(1/n) for broadcast capacity of
arbitrary networks. Zheng [3] derived the broadcast capacity
of power-constrained networks, together with another metric
called ”information diffusion rate” for single-source broadcast.
The work by Keshavarz et al. [4] is the most general case of
computing the broadcast capacity of a wireless network for
any number of sources. Our work was inspired by some of
the contributions in this paper.

The main contribution of this paper is to show that the
per-source-destination broadcast capacity CB(n) of a wireless
random ad hoc network in which receivers are endowed
with MPR capability is tightly bounded by Θ(R2(n)) (upper
and lower bounds) w.h.p. 1, where R(n) is the reception
range [9], [16] of a receiver. Furthermore, we note that when
R(n) = r(n) ≥ Θ

(√
log n/n

)
, the broadcast capacity has

the minimum gain of Θ(log n) compared to the broadcast
capacity of a wireless random ad hoc network in which
receivers can decode at most one packet at a time [4].

This paper is organized as follows. Section II describes the
network model and definitions. The upper and lower bounds
broadcast capacity of MPR-based networks is presented in
Sections III and IV, respectively.

1We say that an event occurs with high probability (w.h.p.) if its probability
tends to one as n goes to infinity. Θ, Ω and O are the standard order bounds.
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II. NETWORK MODEL, DEFINITIONS, AND

PRELIMINARIES

We assume a random wireless ad hoc network with n nodes
distributed uniformly in the network area. Our analysis is
based on dense networks, where the area of the network is
a square of unit value. All nodes use a common transmis-
sion range r(n) for all their communications2. Our capacity
analysis is based on extending the protocol model for dense
networks introduced in [1].

The protocol model [1] is defined as follows: Node Xi

can successfully transmit to node Xj if for any concurrent
transmitter node Xk, k �= i, we have |Xi − Xj | ≤ r(n) and
|Xk − Xj | ≥ (1 + ∆)r(n).

In wireless networks with MPR capability, the protocol
model assumption allows a receiver to receive packets from
multiple transmitters concurrently, as long as they are within
a radius of R(n) from the receiver and all other transmitting
nodes have a distance to the receiver larger than (1+∆)R(n).
Note that the transmission range r(n) is a random variable,
while R(n) in MPR is a predefined value that depends on the
complexity of receivers. We assume that nodes cannot transmit
and receive at the same time, which is equivalent to half-
duplex communications [1]. The data rate for each transmitter-
receiver pair is a constant value of W bits/second and does
not depend on n. Given that W does not change the order
capacity of the network, we normalize its value to 1.

The relationship between the receiver range used in the
capacity computation for MPR-based wireless networks and
the transmission range in [1] is defined as

R(n) = r(n) ≥ Θ

(√
log n

n

)
. (1)

Definition 2.1: Throughput broadcast capacity: In a wire-
less network with n nodes in which each source node transmits
its packets to all n nodes, a throughput of CB(n) bits per
second for each node is feasible if there is a spatial and
temporal scheme for scheduling transmissions, such that by
operating the network in a multi-hop fashion and buffering
at intermediate nodes when awaiting transmission, every node
can send CB(n) bits per second on average to all n nodes.
That is, there is a T < ∞ such that in every time interval
[(i−1)T, iT ] every node can send TCB(n) bits to all n nodes.

Definition 2.2: Order of throughput capacity: CB(n) is
said to be of order Θ(f(n)) bits per second if there exist
deterministic positive constants c and c′ (c < c′) such that


lim

n→∞ Prob (CB(n) = cf(n) is feasible) = 1

lim
n→∞ Prob (CB(n) = c′f(n) is feasible) < 1.

(2)

Definition 2.3: Minimum Connected Dominating Set
(MCDS (R(n))): A dominating set (DS (R(n))) of a graph
G is defined as a set of nodes such that every node in the
graph G either belongs to this set or it is within a range
R(n) of one element of DS(R(n)). A connected dominating

2In this paper, we assume receiver range is equal to transmission range

set (CDS (R(n))) is a dominating set such that the subgraph
induced by its nodes is connected. A Minimum Connected
Dominating Set (MCDS (R(n))) is a CDS(R(n)) of G with
the minimum number of nodes.

Definition 2.4: Maximum Independent Set
(MIS (∆, r(n))): An Independent Set IS(∆, r(n)) of a graph
G is a set of vertices in G such that the distance between
any two elements of this set is greater than r(n). The
MIS(∆, r(n)) of G is an IS(r(n)) such that, by adding any
vertex from G to this set, there is at least one edge shorter
than or equal to r(n).

We note that MIS(∆, r(n)) is a unique largest independent
set for a given graph. Finding such a set in a general graph
G is called the MIS problem and is an NP-hard problem. In
[4], MIS(∆, r(n)) is used to describe the maximum number of
simultaneous transmitters in plain routing scheme. We define a
new concept, called Maximum MPR Independent Set (MMIS),
to describe the same concept when MPR scheme is used.

Definition 2.5: Maximum MPR Independent Set
(MMIS (∆, R(n))): An MPR set is a set of nodes in G that
contains one receiver node and all (transmitting) nodes within
a distance of R(n) from this receiver node. A Maximum MPR
Independent Set (MMIS (∆, R(n))) consists of the maximum
number of MPR sets that simultaneously transmit their packets
while MPR protocol model is satisfied for all these MPR sets.
If we add any transmitter node from G to MMIS(∆, R(n)),
there will be at least one MPR set that violates the MPR
protocol model.

In this paper, T denotes the statistical average of T and #T
defines the total number of vertices (nodes) in a tree T .

The distribution of nodes in random networks is uniform,
so if there are n nodes in a unit square, then the density of
nodes equals n. Hence, if |S| denotes the area of region S, the
expected number of the nodes, E(NS), in this area is given
by E(NS) = n|S|. Let Nj be a random variable defining the
number of nodes in Sj . Then, for the family of variables Nj ,
we have the following standard results known as the Chernoff
bounds [17]:

Lemma 2.6: Chernoff bound

• For any δ > 0, P [Nj > (1+ δ)n|Sj |] <
(

eδ

(1+δ)1+δ

)n|Sj |

• For any 0 < δ < 1, P [Nj < (1 − δ)n|Sj |] < e−
1
2 n|Sj |δ2

Combining these two inequalities we have, for any 0 < δ < 1:

P [|Nj − n|Sj || > δn|Sj |] < e−θn|Sj |, (3)

where θ = (1+ δ) ln(1+ δ)− δ in the case of the first bound,
and θ = 1

2δ2 in the case of the second bound.
Therefore, for any θ > 0, there exist constants such that

deviations from the mean by more than these constants occur
with probability approaching zero as n → ∞. It follows that
we can get a very sharp concentration on the number of nodes
in an area. Thus, we can find the achievable lower bound
w.h.p., provided that the upper bound (mean) is given. In the
next two sections, we first derive the upper bound, and then
use the Chernoff bound to prove the achievable lower bound.
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III. UPPER BOUND BROADCAST CAPACITY WITH MPR

In this section, we compute the upper bound for MPR (i.e.,
the broadcast capacity of wireless networks when nodes are
endowed with MPR capability). Note that #MCDS(R(n))
equals the average minimum number of retransmission re-
quired to broadcast a packet and #MMIS(∆, R(n)) is the av-
erage maximum number of successful simultaneous transmis-
sions in the network. The following Lemma computes an upper
bound as the ratio of #MMIS(∆, R(n)) to #MCDS(R(n)).
In [4], #MIS(∆r(n)) is used to express the average maximum
number of simultaneous transmissions without MPR instead of
#MMIS(∆, R(n)).

Lemma 3.1: Per node broadcast capacity with MPR is

upper bounded as O
(

1
n × #MMIS(∆,R(n))

#MCDS(R(n))

)
.

Proof: We observe that #MCDS(R(n)) represents the to-
tal average number of channel usage required to broadcast in-
formation from a source. By Definition 2.1, the total broadcast
capacity in the network is equal to nCB(n) =

∑n
i=1 λi(n).

Denote by NT the total number of broadcasted bits in [0, T ],
then

nCB(n) =
n∑

i=1

λi(n) = lim
T→∞

NT

T
. (4)

Let NB(b) denote the total number of times any bit b
is transmitted in order to broadcast to the network, then
NB(b) ≥ #MCDS(R(n)). The total number of retransmis-
sions for broadcast in [0, T ] is thus NT × NB(b). Since all
broadcast packets are received in a limited time Tmax, at time
T +Tmax all transmissions of NT bits are finished. Therefore,

#MMIS(∆, R(n)) × (T + Tmax) ≥NT × NB(b)
≥NT #MCDS(R(n)).(5)

By combining the two previous equations, we have

CB(n) =
1
n
× lim

T→∞
NT

T

=
1
n
× lim

T→∞
NT

T + Tmax

≤ 1
n
× #MMIS(∆, R(n))

#MCDS(R(n))
, (6)

which proves the lemma.
We need to compute the upper bound of #MMIS(∆, R(n))

and the lower bound of #MCDS(R(n)) and then combine
them with Lemma 3.1 to compute the upper bound broadcast
capacity for MPR.

Lemma 3.2: The average number of nodes in a broadcast
tree with receiver range R(n) has the following lower bound:

#MCDS(R(n)) ≥ Θ
(
R−2(n)

)
(7)

Proof: We first divide the network area into square cells.
Each square cell has an area of R(n)2

2 which makes the
diagonal length of square equal to R(n) as shown in Fig. 1.
Under this condition, connectivity inside all cells is guaranteed
and all nodes inside a cell are within reception range of each
other. We build a cell graph over the cells that are occupied

with at least one vertex (node). Two cells are connected if
there exist a pair of nodes, one in each cell, that are less than
or equal to R(n) distance apart. Because the whole network

is connected when R(n) = r(n) ≥ Θ
(√

log n/n
)

, it follows
that the cell graph is connected [18], [19].

( )R n

( )
2

R nL

1

O ( )
2

R n

( )
2

R n

Receiver CircleReceivers Simultaneous Receive Cell

1
23

4 5
6

78
9
10

11 12 13

1415

16

Fig. 1. Cell construction of wireless dense ad hoc networks

From Definition 2.3, every node has to be covered by a
MCDS. It has been shown [18] that if R(n) satisfies the
connectivity criterion, then each cell has at least one node
w.h.p., which implies that all cells in the network are covered
by the MCDS. For any receiver with R(n) as its receiver range,
it can cover at most 12 (in some literature they use 16) cells
that is shown in the upper right corner in Fig. 1. Therefore, to
cover all

(
R(n)/

√
2
)−2

cells in the networks, the number of

nodes in MCDS has to be at least
(
R(n)/

√
2
)−2

/12. Hence,
the lower bound for MCDS is given by

#MCDS(R(n)) ≥ Θ
(
R−2(n)

)
, (8)

which proves the Lemma.
Lemma 3.3: The average number of maximum MPR inde-

pendent sets that transmit simultaneously is upper bounded
by

#MMIS(∆, R(n)) ≤ Θ(n). (9)

Proof: We want to find out the maximum simultaneous
MPR set of transmitters in this dense network. From the
protocol model for MPR, the disk with radius R(n) centered
at any receiver should be disjoint from the other disks centered
at the other receivers. We demonstrate it by contradiction. If
the disks of different receivers overlap, then there exists some
transmitters that are within the receiver range of two receiver
nodes. Based on the definition of MPR, these nodes in the
overlapping areas will send two different packets at any time
to their corresponding receivers, which is in contradiction with
the fact that each node can only transmit one packet at a time.
That means the disk with radius R(n) centered at any receiver
should be disjoint.

Thus, it is clear that, in a dense network, there are πnR2(n)
transmitters for each receiver node with receiver range of
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R(n). Since MPR protocol model requires a minimum dis-
tance between receiver nodes, it follows that each receiver

node requires an area of at least π
(
R(n) + ∆R(n)

2

)2

. It is
easy to show that there are a total of at most n

(1+∆
2 )2 nodes in

this network which provides the order upper bound of Θ(n)
for #MMIS(∆, R(n)).

Combining Lemmas 3.1, 3.2, and 3.3, we state the upper
bound of broadcast capacity with MPR in the following
theorem.

Theorem 3.4: Per node broadcast capacity for MPR is up-
per bounded as O

(
R2(n)

)
.

IV. LOWER BOUND BROADCAST CAPACITY WITH MPR

We now provide an achievable lower bound for broadcast
capacity using a TDMA scheme similar to the approaches
presented in [18], [19].

To satisfy the MPR protocol model, we should design a
communication scheme for the network in groups of cells such
that there is enough separation for simultaneous transmission.
Let L represents the minimum number of cell separations
in each group of cells that allows simultaneous successful
communication as shown for one example of L = 4 in Fig. 1.
Utilizing the MPR protocol model, L should satisfy

L =
⌈
1 +

R(n) + (1 + ∆)R(n)
R(n)/

√
2

⌉
= �1+

√
2(2+∆)�. (10)

Let us divide time into L2 time slots and assign each time slot
to a single group of cells. If L is large enough, interference
is avoided and the MPR protocol model is satisfied. We know
from the MPR protocol model that the minimum distance
between two receiver node should be (2 + ∆)R(n). By
comparing this distance with (L−1)R(n)√

2
which is the distance

between two receiver node in our TDMA scheme and using
Eq. 10, it is clear that the MPR protocol model is satisfied
with this scheme. It can be shown in the upper middle two
circles in Fig. 1.

Using this TDMA scheme, we can derive an achievable
broadcast capacity for MPR. The following Lemma demon-
strates that this TDMA scheme with parameter L does not
change the order of the broadcast capacity of a wireless
network.

Lemma 4.1: The capacity reduction caused by the proposed
TDMA scheme is a constant factor and does not change the
order of broadcast capacity for the network.

Proof: The TDMA scheme introduced above requires
cells to be divided into L2 groups, such that only nodes in each
group can communicate simultaneously. Eq. (10) demonstrates
that the upper bound of L is not a function of n and is only a
constant factor. Because the proposed TDMA scheme requires
L2 channel uses, it follows that this TDMA scheme reduces
the capacity by a constant factor.

Next we prove that, when n nodes are distributed uniformly
over a unit square area, we have simultaneously at least

1
(LR(n)/

√
2)2

circular regions in Fig. 1, each one contains

Θ(nR2(n)) nodes w.h.p.. The objective is to find the achiev-
able lower bound using the Chernoff bound, such that the
distribution of the number of nodes in each receiver range
area is sharply concentrated around its mean, and hence in a
randomly chosen network, the actual number of simultaneous
transmission occurring in the unit space is indeed Θ(n) w.h.p.
similar to Lemma 3.3 for the upper bound analysis.

Lemma 4.2: Each receiver in the cross sign in Fig. 1 with
circular shape of radius R(n) contains Θ(nR2(n)) nodes
w.h.p. and uniformly for all values of j, 1 ≤ j ≤ 1

(LR(n)/
√

2)2
.

This Lemma can be expressed as

lim
n→∞P




1
(LR(n)/

√
2)2⋂

j=1

|Nj − E(Nj)| < δE(Nj)


 = 1, (11)

where Nj is the number of transmitter nodes in the receiver
circle of radius R(n) centered at the receiver j, E (Nj) is the
expected value of Nj , and δ is a positive small value arbitrarily
close to zero.

Proof: From Chernoff bound in (3), for any given 0 <
δ < 1, we can find θ > 0 such that

P [|Nj − E(Nj)| > δE(Nj)] < e−θE(Nj). (12)

Thus, we can conclude that the probability that the value
of the random variable Nj deviates by an arbitrarily small
constant value from the mean tends to zero as n → ∞.
This is a key step in showing that when all the events⋂ 1

(LR(n)/
√

2)2

j=1 |Nj − E(Nj)| < δE(Nj) occur simultaneously,
then all Njs converge uniformly to their expected values.
Utilizing the union bound, we arrive at

P




1
(LR(n)/

√
2)2⋂

j=1

|Nj − E(Nj)| < δE(Nj)




= 1 − P




1
(LR(n)/

√
2)2⋃

j=1

|Nj − E(Nj)| > δE(Nj)




≥ 1 −
1

(LR(n)/
√

2)2∑
j=1

P [|Nj − E(Nj)| > δE(Nj)]

> 1 − 1
(LR(n)/

√
2)2

e−θE(Nj). (13)

Since E(Nj) = πnR2(n), then we have

lim
n→∞P




1
(LR(n)/

√
2)2⋂

j=1

|Nj − E(Nj)| < δE(Nj)




≥ 1 − lim
n→∞

1
(LR(n)/

√
2)2

e−θπnR2(n) (14)

When R(n) satisfies connectivity criterion, then

limn→∞ e−θπnR2(n)

R2(n) → 0, which concludes the proof.
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This lemma proved that w.h.p., there are indeed Θ(n)
transmitter nodes inside 1

(LR(n)/
√

2)2
circles centered around

receiver nodes with radius R(n). Combining Lemmas 4.1 and
4.2, we have the following achievable lower bound.

Theorem 4.3: The achievable lower bound for broadcast
capacity with MPR is

CB(n) = Ω
(
R2(n)

)
. (15)

Proof: From the fact that our TDMA scheme does not
change the order capacity (Lemma 4.1), we conclude that at
any given time there are at least Ω(R−2(n)) simultaneous
cells, each one receives information from Ω(R2(n)n) trans-
mitters simultaneously. Hence, from the Lemma 4.2, the total
number of allowed simultaneous transmission is Ω(n).

There are 1
(R(n)/

√
2)2

cells in the unit square network area.
For broadcasting, every cell receives the broadcast packet
from a neighbor cell and relays it to the next adjacent cell.
The number of relaying is at most Θ

(
R−2(n)

)
in order to

guarantee all the nodes receive the packet from source. In
other words, each broadcasting session requires Θ

(
R−2(n)

)
relaying. Since the network can support Θ(n) simultaneous
transmissions, therefore, the total broadcast capacity for this
network is given by Ω

(
n

R−2(n)

)
.

Accordingly, the lower bound of the per-node capacity is
given by Ω

(
R2(n)

)
, which proves the lemma.

From Theorems 3.4 and 4.3 and connectivity criterion in
Eq. (1), the tight bound broadcast capacity of MPR can be
given in the following theorem.

Theorem 4.4: Per node broadcast capacity of MPR is

CB(n) = Θ
(
R2(n)

)
, (16)

where R(n) ≥ Θ
(√

log n/n
)

.
This result implies that the broadcast capacity for MPR

system increases by increasing the receiver range. This is in
sharp contrast with simple routing techniques. The main reason
for this difference is that strong interference from adjacent
nodes is embraced with MPR, rather than avoided.

V. CONCLUSION

We showed that using multipacket reception (MPR) in wire-
less networks renders a Θ

(
R2(n)

)
bits per second broadcast

capacity for both lower and upper bounds. R(n) is the receiver
range, which depends on the complexity of the receiver and
connectivity condition in the network. If the receiver range has
the minimum value to guarantee connectivity, MPR achieves
Θ(log n) gain compared with the case of broadcasting when
receivers can decode at most one transmission at a time [4].
By increasing the receiver range, the broadcast capacity with
MPR increases.
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