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Abstract—This paper presents a novel methodology for finding
the network connectivity in wireless mesh networks while tiing
into account dependencies existing between links of geomieally
co-located nodes, as well as the effect of a finite network
boundary. We show that the commonly used assumption of
link independence almost always underestimate the network
connectivity. We also show that the assumption of infinite nevork
boundary is invalid as it overestimates the network connedtity
by a non negligible amount. We use our methodology to derive
accurate upper bounds for network connectivity in the optimal

Next in Section Il, we define the problem. Section Il
presents the derivation of the model. We present our reisults
Section IV. The conclusions are given in Section V.

Il. PROBLEM DEFINITION

A network formed by a set of nodes located in an akeia
said to be fully connected if and only if there is a path betwee
each pair of nodes i\. For a path to exist between a pair
triangular lattice topology. A comparison study shows thatthe Of wireless nodes, all links along the path must be connected
error due to either assumptions depends on the link conneatity Hence, in wireless networks, connectivity is usually espesl
as well as the network size, and can be very significant. The jn terms of the probability of individual link connectivity
devised methodology can also be applied to any lattice topmdly |, 44iq Jinks, the probability that a link exist between two
in order to quantify the error and define the range of link . A
conductivities within which the assumptions can be used. nodes depend among other things on the geometric distance
between the two nodes. Hence, link connectivity in one direc
tion implicitly depends on that of the opposite directiomeT
amount of correlation, or the extent of dependency betwieen t
Network Connectivity is a vital metric that is frequentlytwo unidirectional links is affected by several factorssas
utilized in the design and network planning process, as agll multi-path fading, shadowing, and the difference in theesd
in describing and comparing networks. Network connegtivitransmitting powers.
often refers to the probability that nodes in a network can In this work, we present a methodology for finding a closed
communicate with each other at any given time. form expression for the connectivity in wireless networks
In wireless networks, connectivity is often expressed iwhile taking into account inter-node links dependencies.
terms of individual links’ connectivities. To the best ofrou A wireless network is composed of nodes that are allocated
knowledge, all previous work embeds either or both of thie an areaA according to the topology. Define the following:

following assumptions: « L to be the set of wireless nodesAn I = {1,2,...,L}.
1) Inter-node links’ connectivities are independent of one s D; C L to be the set of nodes that are neighbors of

I. INTRODUCTION

another. node i € L, that is, nodes that are one-hop away from
2) Border nodes are assumed to have the same connectivity node i.
as the interior nodes in a network. « l;; to be the event that a link exists betweetde i and

node j, wherei € I andj € D,.

ri; to be the probability that a link exists betweeode
andnode j, that isP(l;;), Vi € L andVj € D;, where
P(e) is the probability of event happening.

The first assumption implies that the probability a node is
connected is independent of that of the other nodes in the’
same network. The second assumption is based on the invalid
perception that if the network is large enough to be assumed
infinite, then the border nodes will have the same connégtiv
as the rest of the interior nodes in the network. o .

Although these simplifications are adopted by many re- SOme realistic assumptions were made, these are:
searchers such as [1]-[5], the impacts of such assumptions Similar to most researchers, we consider interference as
were never examined. a capacity-affecting factor that reduces the capacity of a

In this work, we present a methodology to derive a closed link instead of lowering the probability of connectivity.
form upper bound for the node connectivity in wireless net- « Symmetric bidirectional links that are fully dependant.
works taking into account dependencies existing betwes li That is, P(l;;) = P(l;;) Vi € L andVj € D;,
of geometrically co-located nodes, as well as the effect of a Nodes are equidistantly located, and tAdtas a homoge-

iA. Basic Assumptions

finite network boundary. Although we derive the model and
analyze the results for the optimal triangular lattice 1opy,

the qualitative conclusions will generally hold for sinmila *
topologies.

nous shadowing and fading conditions. HenB¢l;;) =
Tig =T, Vi e L ande € D;.

P(l;;) =0 Vj & D, i.e. node i can only be connected
through one or more of its neighbors (i.e. nodedDiy).



B. Upper bound for connectivity The embedded assumption here is that the effect of such

Finding the exact connectivity of a wireless network jgodes on the. overa!l _network connectiv@ty in an infinitel_y
very costly in terms of computational complexity. Instea, 2'9€ network is negligible. We argue against that, andveeri
find the probability that none of the nodes in the network XPressions for network connectivity that take into ac¢dhe
isolated,P(no node isolated). However, a situation may arise"educed connectivity of border nodes.
where one or more islands of nodes are formed causing the I1l. CONNECTIVITY MODEL
network to be partitioned. Hence, the probability that nohe

the nodes in a network is isolated is an upper bound for tﬁ‘é Modeling Link Dependencies

connectivity of a network, that is: We apply our methodology to find the connectivity in a
wireless network, whose topology, is a triangular lattice.
P(network connected) < P(no node isolated) This topology is obtained when nodes are placed on the
= P(ny,n2,...,nr) (1) vertices of an equilateral triangular lattice, or equintlg

, , . .at the centers of regular hexagons. A 2-tier triangulaickatt
whereni' is a r_andom variable that denotes the ConneCt'V'%pology is shown in Figure 1. It was previously proven that
of node ¢, that is: the triangular lattice topology results in the minimum nenb

1 if node i is not isolated with probability?(n;) of nodes needed to achieve full coverage of a plane [7]. The
n; = goal is to derive the joint probability in (1) for this netvkor
0 if node i is isolated with probabilityl — P(n;)
(2)

where

P(n;) = P (at least one link (I;; : Vj € D;) is connected)

®3) e
According to Erdds and Rényi [6], this bound for connec- S
tivity is tight for nodes whose topology are purely random. Fig. 1: Nodes in a Triangular Lattice Topology

Hence, this upper bound is expected to be even tighter for

a network of fixed topology, and where nodes are plac%dDeﬁnEj;]Li th]L to be t_:le szt (_)rfhintd_ic.es for the nodes that
equidistantly apart. ave not yet been considered. That is:

C. Link and Node Independence Li={i+1,i+2 ..., L}

We compare our computed upper bound for connectivit‘Q{here the nodes iT are r!umbered in sequence from the
P(no node isolated), that takes into account link depen-Center outwards, starting withode 1 for the center _node._
dance and a finite network boundary, with the upper bound,P€fine the seQ; C D; to be the set of all neighboring
P(no node isolated)* commonly utilized in the literature, nodes ofi that have not yet been considered. Therefore,

and which assumes link independence. The probability that Q = L,ND,.
none of the nodes in a given network are isolated assuming .
independent links is: Defineg; € Q; to indicate thetth element inQ;, and N =
|Q;|. Hence, we can re-write (1) as follows:
P(no node isolated)” = H P(n;)
VieL P(n1,n2,...,n1)
= H (1 - P(m)) = P(ni|ng,...,n5) - P(na2,...,nr)
VieL L1
= H P(ni|nita,...,ne) - P(nr)
= [ (1~ I PG| @ =
Vi€EL ViED;

N

L-1
o = [ Pilng, ... ng ) P(ng) (5)
where @ denotes the complement of evemnt the first line i=1
follows from applying the assumption of node independenggqre the first line follows from the definition of conditidna
on (1); the second line follows the comp_lement_rule_; thedth"probability; the second line is obtained by iteratively by
line follows from applying the assumption of link indepenthe gefinition of conditional probability; the third line lfows
dence and the complement rule on (3). from the assumption thahode i can only be connected
through one or more of its neighbors, thatrig,depends only

) ) ) on nodes inQ;.
Prior to this work, most researchers avoid the effect of Furthermore

reduced node connectivity of border nodes by assuming that
the networks examined are infinitely large. Border node® havP(
less neighbors, and hence, less chances of being connected.

D. Infinite Boundary Assumption

P(ni,ng,...ng ) _
P(ngi,...ngi) fori<L (8

qi» qi

nl|nqi,nq}v) =



also using the definition of conditional probability. Case 3: nodes of typey

For nodes of typey, we find thatQ, is comprised of three

of the six neighboring nodes, that |®);] = 3. The three
remaining nodes are not elementslof (they were already
considered in the computation), and are consequently not
elements inQ;. There are 5 link dependencies as denoted by
the dashes in Figure 3.

Case 4: nodeL

Lastly, we note that we need to find(ny) in order to solve

(5). However, no dependencies need to be considered since
we do not need to finekode L’s marginal probability.

For a triangular lattice topology whose number of ti€fs,
S is greater than 1, there are exactly the following occurance
Fig. 2: Location of various node types of the above node types:

« node 1: 1 occurrence;

« node types: 67 — 1 occurrences;

« node typey: Zthl 6(t —1) = 3T(T — 1) occurrences;
« nodelL: 1 occurance.

Depending on the location aofode i in the topology, the
number of elements in the s&; will be different. Therefore,
the quotient resulting from (6) will differ depending on the
location of node i. Because of the assumption of equal
network-wide link connectivity, only the number of elementHence, we re-write (5) in terms ofodes 1, §, v, andL:
in Q; matters. The exact node id is irrelevant. In order to P(
simplify matters, we leverage on the geometry and recursive
decomposition of the triangular lattice topology. Similar
most research, we also ignore the border effect of the outer p(n7|nq?,nq;7nq;)3T(T4) - P(ny) 7)
most tier (nodes in the outer tier only have three or four
neighbors); in a way, we assume that the network exists in' """ h
an infinitely large topology, so every node has 6 neighbordlities in (7) yield:
Hence, there are four cases to consider (Refer to Figure 2)p(p, n,, ... ny) =

P(ng,m s,m s,n 5,Mm 5) 611
(P(n17n27---7n7)).< B e ey May ey ) ,

P(na,...,n7) P(n {””Qv”qé”"qf)

node | nodes B nodes y n(zd?!.
a%0 3D e "
R Lo L @ i
“0” P(”Va”q?a”qQa”qQ)) . P(nz)

n1,No,...,NL) =

P(ni|na,...,ny) - P(n5|an,nq§ , nqg,an)GT_l :

Finally substituting (6) into each of the conditional preba

(8)

P(ngy,ngy,ngy)

Fig. 3: Neighbors and Dependencies for various node types . .
B. Modeling the Finite Network Boundary

Case 1: nodel We now extend our developed model to take into account the

We start by first considering the node located at the centereffect of a finite network. In such network, nodes belongimg t

the topology, that isiode 1. Dy similar toD; for all nodesi the outer tier (i.e. nodes at the border of the network) velld

will be comprised of the six nodes surroundingde 7. Since reduced connectivity due to the reduced number of neighbors

node 1 is the first node to consider in the computatidin, Hence, two additional node types,and \°, will need to be

will contain all nodes in the topology except this center @modconsidered in the computation of the joint probability in).(1

Hence,Q; = IL; NID; = D;. That is,Q; is comprised of all Figure 4 shows the locations of the various node types in

six nodes neighboringode 1, and |Q;| = 6. There are 12 triangular lattice topology whosg = 3.

link dependencies as denoted by the dashes in Figure 3.
Case 5: nodes of type\ and \°

Case 2: nodes of type3 We shall now consider nodes comprising the outer tier of a
We find that for each node of typg Q; is comprised of four finite triangular lattice (i.e. nodes on the network boumgdlar

of the six nodes neighboring it, that |{€);| = 4. The two We find that these nodes can only have either three neighbors
remaining nodes are not elementsIof (they were already (i.e. nodes\° with |D;| = 3) or four neighbors (i.e. nodes
considered in the previous term and hence eliminated fromith |ID;| = 4). Out of these three or four neighbors, only one
the consequent terms), and therefore are not elemerfig.in (the node that follows in the same tier) remains an element
There are 7 link dependencies as denoted by the dasheir,;, the rest were already considered in the computation.
Figure 3. We also note that except for the outer tier, each ldénce,|Q;| = 1 for nodes of type\ and \°. Therefore, there

the remaining tiers will include six nodes of typke is 1 link dependency as denoted by the dash in Figure 5.



bilities in (9) yield:

P(nl,ng,...,nL) =
(P(nl,ng,...,n7)> )
Plna,...,n7)
6(T—1
<P(ng,nq1@,nq§,nq§,nq5)> ( )
P(nqlg ) nng y nqéa y an)
3T%-9T+6
P(”Vanq?anqgvnq;{) )
P(nq? y nq;r y nq;)
6(T—2) 6
Fig. 4: Location of various node types in the finite topology P(”/\vnq?) ) P(ny, ”ql”’)
P(n,) P(n )
P(n)\o n )\) °
nodes % nodes 1° node L ’ a1
—X ] -P 10
( Plng) ) (nr) (10)
1

C@ ' @ C. Computing the Model

Fig. 5: Neighbors and Dependencies for additional nodestype

The computational complexity for computing the joint
probability grows exponentially with the number of nodes
in the network; the computational complexity in calculgtin

] ) . P(n;,...,n;) is O(c~"!), where the constant repre-

Note than node L will only have 3 neighbors (i.€. sents the number of events preventing a node in a given
;| = 3). However, no dependencies need to be considergghoiogy from becoming isolated. Also note thatgrows
since we do not need to findode L’s marginal probability. exponentially with the topology, that is = 2% — 1 where

dr = degree of a node in topolody (dr = 6 for a triangular

For a finite triangular lattice topology &f > 1 tiers, there lattice topology).
are exactly the following occurrences of the various node
types (and combinations), each of which will have a différen
marginal probability: S

The manual computation of (8) and (10) are quiet cumber-
ome. Hence, we developed a computer program to automate
this process. We utilized a cluster of processors running on
Sharcnet [8] in order to speed up the computation.

« node 1: 1 occurrence;

« node types: 6(T — 1) occurrences; Due to space limitation and the complexity of the resulting
« nhode typey: ZtT:’Ql 6(t—1) = 372 —9T+6 occurrences; computation, we have only included the closed form expres-
« node type\ followed by A\: 6(7 — 2) occurrences; sions of the constituents of the first term in (10). Refer tp [9
« node typel followed by \° (or L): 6 occurrences; and [10] for the rest of the computations.

« node type)° followed by A: 5 occurrences.
« nodeL: 1 occurrence.

P(ny,no,...,n7) =
Hence, we re-write (5) in terms afodes 1, 3, v, A°, A, andL: ( 187 7?4(]26 +73)678 5% + 52913 19624 + 395652172 +
P(n1,ng, ... nL) = 1906956 %¢* + 6632116 7°¢" + 17782062 "% +
P(nilna, ..., n7),- 38333088 711 + 68331612 712 + 102688686 r'3¢'7 +
R R R 131860854 711¢'% 4 146018842 '°¢"® + 140287383 1% +
8T%—9T+6 117339336 77" + 85551290 7'8¢'? 4 54329784 r'9¢"* +

"U

(

(n’Y |nq¥ ) nqg ) nqz)

(nAlnq?)ﬁ(TfQ) . P(n,\|nq?o)6 . p(momq?)?} .
(nr) 9)

29970633 r*°¢"" + 14292982 *'¢” + 5850993 r*%¢® +
2035632 r°%¢" + 593768 r>4¢® + 142506 r*°¢° +
27405 1" + 4060127 + 435r2%¢% + 307 + % (11)

el

Finally substituting (6) into each of the conditional prebawhereq =1 — r, and



increases with increasing probability of link connectiyit.
Furthermore, for a given value of, P(no node isolated)

P(na,. 3 ’27:7) - 4 26 5 95 6 24 decreases as the number of nodes in a network increase. This
2r°q”" +249717°¢"" + 65821°q¢”” + 763657177 + is expected since the addition of each node into the network
505440 r7¢* + 2253024 r8¢*2 4 7432948 r2¢* + enhances the chances of at least one node in the network
19215999 1920 + 40387200 1141 + becoming isolated. Lastly, the computBdno node isolated)

exceeds the claimed upper boudt{no node isolated)*.

12 18 13 17
70736989 r"¢ ™ + 105022794 ¢ + Therefore, we proved that there are cases when the network

133752441 7™ + 147303096 7'°¢"° + connectivity can exceed(no node isolated)*, and hence
141017040 r15¢M 4 117684414 7¢"3 + established a new upper bound that can be computed using
85685772 7'8¢"% + 54372282 1% + (8)-

Figure 6b plots the percentage of error in
20981259 r*¢"" + 14295006 r*'q” + 5851269 1°%¢" + P(no node isolated) due to the assumption of independent
2035656 r*3q" + 593769 r**¢® + 142506 r*¢° + links and nodes connectivities. It is evident that the error
27405 r20¢* + 4060 r27¢® + 43512%¢> + 301%°¢ + r3°  decreases with increasing valuesrofit is almost negligible

(12) for » > 0.6. It is also evident that the error increases with
increasing number of nodes. Hence, for a given network size,
While understanding the resulting computations in (11) ange can quantify the error resulting from the assumption of

(12) is cumbersome, we will give few brief insights. Fotink and node independence, as well as identify the critical

simplicity, consider Equation (12). We note that the lastte range ofr at which the error is unacceptable for a given

resembles the probability of one extreme event occurrimag, t application.

is when all 36 links (6 links/node * 6 nodes) are connected. o

Since 6 out of the 36 inter-node links are common (i.8- Effect of Infinite Boundary

dependant), the probability of such event occurring-i8. Figure 7 highlights the effect of assuming an infinite bound-

Similarly, the first resembles the probability of the othesry on the connectivity of a triangular lattice topology. ¥et

extreme event, when the 6 nodes are connected just enopih in Figure 7a our closed form expression resulting from

for none of them to be isolated. This event occurs when onfy0). In the same figure, the closed form expression resultin
links between 3 pairs of adjacent nodes (i.e. nodes 2-3, 4f&m our earlier model which takes into account the effect of

6-7 or 7-2, 3-4, 5-6) are connected, the remaining 27 linkiak dependence but ignored the effect of an outer boundary i

are not connected. Since such event can occur in two differgfiven for comparison. It is evident th&t(no node isolated)

ways, the resulting probability &r3¢*7. The middle terms in is erroneously higher when an infinite boundary is assumed.

(12) resemble the probabilities of all other events betwieen This is contributed to the fact that outer tier nodes are only

two discussed extremes. surrounded by three or four neighbors (verses six when an
infinite boundary is assumed), therefore causing a significa
IV. RESULTS reduction in connectivity.
A. Effect of Independent Links Figure 7b plots the percentage errotiitno node isolated)

. due to assuming an infinitely large topology. We observe that
We present the probability that none of the nodes afge error follows a bell-curve pattern: it first increases to

isolated for networks composed of 1, 3, and 5 tiers foundach 5 peak, then starts decreasing as the link conngctivit
using our generated closed form solution that takes info.rease. We also observe that the magnitude of the peak erro
account internode link dependency. We compare our result§{creases dramatically with increasing network size; taakp
computations based on the common assumption of internQge,, percentages afel3%, 8960%, and 124000% for the 1,

link independence. _ _ _ 3, and 5 tiers respectively. Moreover, the error only draps t
In assuming independence of links and nodes in a trianguldfy; when > 0.75 (this is not evident from the figure due to
lattice topology, (4) simplifies to: the big range on the y-axis). This hence shows that ignoring

T,)6)1+3T(T+1) (13) the effect of the network boundary has a non-negligiblectffe
of overestimating the connectivity of the network.
The simplification in the above equation is due to the fact tha
all nodes in the t(%pology have 6 neighbors; the total number
of nodes isl + ), 6t =14 37(T + 1) (we added! for In this work, we presented a novel methodology for finding
the center node). a closed form upper bound for wireless mesh network con-
Figure 6a plots three sets of results corresponding to thectivity. Our solution is the first to take into account the
three sized networks. For each set, we plot our closed fogffect of both: interdependence of connectivity of spéhtial
solution given by the computation resulting from (8), argl itco-located nodes; and the effect of network boundary nodes’
independent link counterpart given by (13). Few obserwmatioconnectivity. We used the methodology to find the conndgtivi
are noteworthy. Firstly, as expectef(no node isolated) in the optimal triangular lattice topology. We first analgize

P(no node isolated)* = (1 — (1 —

V. CONCLUSION
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