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Abstract—Maintaining performance and reliability in wireless
networks is a challenging task due to the nature of wire-
less channels. Multipath data transmission has been used in
wired scenarios to reduce latency, improve throughput, and -
when/where possible - balance the load. In this paper, we propose
an approach for multipath data transmission over wireless
networks. We demonstrate that the problem under study can
be formulated as a Markov Decision Process (MDP) and we
propose an algorithm called On-line Policy Iteration (OPI), to
solve the formulated MDP in real time. We verified the proposed
approach using simulations with ns-2 and data collected from
real heterogeneous wired/wireless networks. The results indicate
that we improve both delay and loss characteristics of end-to-end
wireless communications outperforming the classical multi-path
schemes including Round Robin and Join the Shortest Queue.

I. INTRODUCTION

Wireless networks are noisy and unreliable communication
environments. Unlike in wired networks where data losses
are mainly caused by traffic congestions, losses in wireless
networks are due to both traffic congestions and transmis-
sion errors. If traffic congestions are somewhat predictable,
transmission errors are subject to the variation of the wireless
propagation environment, and therefore much harder to predict
and control. As a result, providing Quality of Service (QoS)
in wireless networks is more challenging.

Recently, multipath data transmission has been proposed as
a promising solution to overcome the bandwidth limitation,
end-to-end delay fluctuations, and consecutive losses in the
wired Internet environment [4], [7], [10], [12], [15], [23].
Nonetheless, the proposed approaches revealed a number
of limitations including: (i) protocol specific; (ii) excessive
computation; (iii) requirements of explicit knowledge of the
network characteristics; (iv) optimal only for specific network
configurations. In addition, the significant difference in data
transmission characteristics of wired and wireless networks
suggests the necessity of further investigation.

Therefore, in this paper we present an analytical approach
to optimally transfer data over multiple wireless network
paths. In particular, we have taken the following steps. First,
thanks to the Imbedded Markov Chain technique [16], we
demonstrate that the system under study can be modeled as
a Markov chain. Second, by using such results we formulate
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the multipath data transmission problem as a Markov Decision
Process (MDP) [21], a powerful mathematical framework for
making decisions in control environments exhibiting dynamic
behaviors, e.g. wired and wireless networks [1], [3]. Third, we
introduce a simple path state monitoring mechanism. Fourth,
an algorithm called OPI (On-line Policy Iteration), which
has a low computational complexity, is proposed to select
transmission paths on the fly by using the MPD. Fifth, through
simulations and real data, we show the feasibility of our
approach as well as its capability to obtain better performance
than classical approaches such as Round Robin and Join-the-
Shortest-Queue. Also, we argue that our approach is general
enough to be applied for improving other QoS metrics such
as the throughput or a function of multiple QoS parameters.

Attempts to improve QoS in wireless networks by means
of multipath data transmission were made by [6] and [9].
In [6], the authors proposed a multipath routing mechanism,
which adaptively searches for available network paths from a
source to a destination, and optimally routes traffic among the
paths. However in [6], the routing problem was formulated
as a static optimization problem, using the average value of
some network parameters. On the contrary, we formulate the
problem using a dynamic optimization framework, which is
capable of reflecting the network dynamics. In [9], a Join the
Shortest Queue (JSQ)-like algorithm was used to reduce the
cost of data alignment at the receiver side while spreading
traffic among multiple TCP connections. On the other hand,
this paper focuses on reducing end-to-end delay fluctuations
and improving packet loss characteristics while showing that
our newly proposed approach outperforms the JSQ algorithm
in various simulation scenarios. Furthermore, compared to [9],
we are not tied to a specific transport protocol.

The rest of the paper is organized as follows. In Section
II and III, the problem under study is defined and the system
model is established. The formulation of the MDP is presented
in Section IV while Section V details a novel algorithm
to solve the formulated MDP. In Section VI, the numerical
verification of the proposed approach is presented. Finally,
concluding remarks are made in Section VII.

II. PROBLEM DEFINITION

Consider the data transmission between two wireless end
points using M, (M > 1) independent paths. Fig. 1 illustrates
the conceptual scenario with M = 2. The multipath traffic
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distributor is an abstract module (see Section VI-B1 for a
proof of concept scenario), which is implemented to optimally
distribute traffic over the paths.

path 1

path 2Multipath
Traffic Distributor

Wireless bridge Wireless bridge

Multipath
Traffic Distributor

Fig. 1. Multipath data transmission with 2 independent paths.

Assume that data arrives at the traffic distributor in a stream
of constant-length bins (i.e packets)1, with an average rate of
λ. Since the arrival process is discrete, we approximate it using
a Poisson process [13] with inter-arrival time between consec-
utive bins following an exponential i.i.d. random variable.2

The traffic distributor has to decide the path over which
to send the bins according to a predefined policy. We are
interested in finding a policy, which is optimal in terms of
minimizing the average transmission delay and loss rate. Since
delays and losses are dynamic characteristics, which exhibit
randomness to some degrees, static distribution policies are not
suitable. A powerful framework to cope with such stochastic
optimization problems is Markov Decision Processes (MDPs).
Nonetheless, before the framework can be applied, the problem
under study has to be formulated as a MDP.

III. SYSTEM AND STATES

In this section, we explain what we mean by the system
states, and how we monitor them. We also demonstrate that
the system under study at specific instances can be modeled
as a Markov chain where the MDP framework is applicable.

A. System Model: basic idea

Previous studies on similar problems ([14], [19]) when ap-
plying decision frameworks, often assume the perfect knowl-
edge of the network path characteristics e.g. loss, delay
and throughput. To avoid this assumption, we design a path
state monitoring mechanism, which reveals loss and delay
conditions of the path by keeping track of data bins being
transmitted. The mechanism works as follows. Before the
distributor sends a bin over the selected path (i.e. it delivers
the bin to the related Access Point), the bin ID and a time
stamp are recorded on a list of size K. This information is
kept until the bin is correctly received by the other end of
the wireless link (i.e. the other Access Point). In this manner,
given the data stream, the evolution of the number of bins
on the list will implicitly reflect the path state in terms of

1The constant length is assumed to simplify the formulation of the model
which can be, however, easily generalized for variable sized packets.

2In general, any discrete arrival process, e.g. packet streams, can be
approximated using the Poisson arrival process (see Faddy MJ (1997a)
Extended Poisson process modelling and analysis of count data for example).
Nonetheless, our arrival process is not purely Poisson but Markov Modulated
Poisson like. The reason is we consider the arrival process is Poisson(λ) only
in a short period of time. After this period, λ may change to another value.

Round Trip Time (RTT) and loss. In a real implementation,
the information regarding the transmission success can be
retrieved directly from the Access Point by using protocols
such as CAPWAP [8]. At a first glance, this can be seen as
a considerable overhead. However we have verified that, even
if this information is obtained every 10/15 bins, the results
presented in Section VI remain almost unchanged (here, due
to the space constraints, we do not present this analysis).

From the traffic distributor viewpoint it is easy to see
that by using the path state monitoring mechanism, each
path is modeled as a single server queue. The inter-departure
intervals between “customers” in the queue are characterized
by the distribution of RTT jitter3. Since each path is a single
server queue, the system under study is a set of M parallel
queues (thanks to the monitoring mechanism the buffer can
be dynamically allocated in order to avoid overflows). The
system states are created by vectors of “customers” queuing
in the system. Fig. 2 depicts the system model.

i i+1i-1 P1

j j+1j-1 P2j-2

k k+1 PM

Traffic
Distributor

nn-1

Fig. 2. The system model with M independent paths.

B. Imbedded Markov Chain

At the time instance when a data bin arrives at the traffic
distributor, a decision has to be made on where to send the
bin. Depending on the decision, the system may change its
state in accordance. Therefore, the system behaviors observed
at the arrival instances are important for the decision maker.
To study these behaviors, the method of Imbedded Markov
Chain [16] in combination with renewal theory [5] is applied.

Let ti be the arrival instance of bin i at the traffic distributor.
In accordance, let Qm(ti) be the number of bins found in the
m-th queue at ti. Consequently, the system state at ti is a
vector {Qm(ti)}, (m = 1 . . . M). We are interested in the
evolution of {Qm(ti)}, (i = 1, 2, 3 . . .∞) under the impact of
the scheduling actions taken at the traffic distributor.

Assume that, at arrival instance ti, the bin i is sent
to the m−th queue by the decision maker. To eliminate
the possible transitive period and simplify the discussion,
we assume a decision and its action can be completed in-
stantly. As a consequence, the system will move immediately
from state {Q1(ti), Q2(ti), . . . , Qm(ti), . . . , QM (ti)} to state
{Q1(ti), Q2(ti), . . . , [Qm(ti)← Qm(ti) + 1], . . . , QM (ti)}.

From this moment, until the arrival of the next bin, the
evolution of {Qm(ti)} depends only on the number of bins
departing from each queue during [ti+1 − ti] interval. In
other words, if PQQ′ denotes the probability the system is
in state {Q′

m(ti+1)} at the arrival instance of bin (i+1), then

3RTT jitter is defined as the absolute difference between two consecutive
RTT values i.e. Jitteri = RTTi+1 − RTTi.
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PQQ′ equals to the probability there are Q1(ti) − Q′
1(ti+1)

bins departing from the first queue, Q2(ti) − Q′
2(ti+1) bins

departing from the second queue, and so on during [ti+1− ti]
interval. Since these departure processes are independent, we
can obtain PQQ′ by taking product of the probabilities.

To compute the probability there are Qm(ti) − Q′
m(ti+1)

bins departing from the m-th queue, we utilize some results
from renewal theory. Let τk and τk+1 subsequently denote the
departure instances of bins k and k + 1 from the m-th queue.
Assuming that, the inter-departure intervals [τk+1 − τk] are
i.i.d. random variables4 with a general distribution gm(x) =
P (τk+1 − τk ≤ x). As a consequence, the sequence of
departure points {τk} fully forms an ordinary renewal process.

Suppose the queuing process has attained a steady state.
Subsequently, the sequence of departure points {τk}, started
from the arrival instance ti, forms the equilibrium renewal
process of the above ordinary renewal process [5] (Fig. 3).

E(ti)

t

arrivalsdepartures

the equilibrium renewal process

i i+1k+1 k+3k k+2

x0 x1

t i+1t i

Fig. 3. The queuing process of the m-th queue.

According to renewal theory, for the equilibrium renewal
process, the number of bins departing from the queue in
[ti+1− ti] interval is proportional to the length of the interval
and does not depend on ti. Hence, Qm(ti+1) is fully deter-
mined by Qm(ti) and does not depend on E(ti), which is the
elapsed time since the last departure observed at ti. Thus, the
random variable Qm(ti) forms a discrete-state Markov chain
imbedded in the queuing process. The state space of the chain
is comprised of all possible numbers of bins in the queue.

Let βj denote the probability of j bins, j = 0 . . . K,
departing from the queue in [ti+1 − ti] interval. Since by
assumption [ti+1 − ti] are exponentially distributed, we have:

βj =

∫ ∞

0

P [N(t) = j]λe−λtdt (1)

Recall that the inter-departure intervals [τk+1−τk] are i.i.d.
random variables with a general PDF gm(x). Let Gm(x) be
the corresponding cumulative distribution function of the inter-
departure intervals, and G

(n)
m (x) be the n-fold convolution of

Gm(x). Let µm ≡ E[τk+1−τk] be the mean value of the inter-
departure times. Subsequently, as shown in [5], the probability
of having j renewals during interval (0, t) of the equilibrium
renewal process P [N(t) = j] is:

P [N(t) = j] =
1

µ

∫ t

0

(P [No(u) = j − 1] − P [No(u) = j])du

=
1

µ

∫ t

0

[(G(j−1)
m (u) − G(j)

m (u)) − (G(j)
m (u) − G(j+1)

m (u))]du

4we only assume i.i.d in a period of time since Internet Path Properties e.g.
delays, throughputs are stationary in scale of minutes [25].

where P [No(u) = r] = G
(r)
m (u) − G

(r+1)
m (u) is the

probability of having r renewals during interval (0, u) of the
corresponding ordinary renewal process. Substituting received
P [N(t) = j] to (1), we can compute βj .

As mentioned, the random variable Qm(ti) forms a discrete-
state Markov chain in which the state transitions occur only
at the arrival instances. As a result, vectors {Qm(ti)},m =
1 . . . M , which are the system states also form a discrete-state
discrete-time Markov chain. The chain is illustrated in Fig. 4.

Q2

Q1

Qm

QM

Q’2

Q’1

Q’m

Q’M

State {Qm(Ti)} State {Q’m(Ti+1)}Unobservable states change
 during inter-arrival interval

QQP
QQ’P

Q’Q’P

t

Ti+1Ti

Fig. 4. The imbedded Markov chain.

C. Transition Probability Matrix Computational Issues

Although we are able to obtain the transition probabilities
matrix of the combined Markov chain in the general form, it is
challenging to compute the matrix with inter-departure inter-
vals following a general distribution g(x). Several approaches
are available to cope with the transition matrix computational
difficulty including simulation (e.g Monte-Carlo), reinforce-
ment learning (e.g. Q-learning), and function approximation.
Due to the space constraint, here we present only the function
approximation approach. In particular, we approximate g(x)
by the a-stage Erlang distribution with rate ρ. In Section VI-A,
we will show that the approximation is acceptable by studying
RTT jitter of real heterogeneous networks.

By approximation:

g(x) ≈ ρaxa−1e−ρx

(a − 1)!

Since:
∫ t

0

ρm+1ume−ρu

m!
du = 1 −

m∑
n=0

(ρt)ne−ρt

n!

We can compute P [N(t) = j] directly:

P [N(t) = j] =
ρ

a

∫ t

0

{ ja−1∑
m=ja−a

−
ja+a−1∑
m=ja

}
(ρu)me−ρu

m!
du

=
1

a

ja+a−1∑
n=ja

(ja + a − n)
(ρt)ne−ρt

n!

+
1

a

ja−1∑
n=ja−a

(n − ja + a)
(ρt)ne−ρt

n!

Substituting received P [N(t) = j] to (1), we get:
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βj =

∫ ∞

0

P [N(t) = j]λe−λtdt

=
1

a

[ ja+a−1∑
n=ja

(ja + a − n)( ρ
λ
)n

(1 + ρ
λ
)n+1

+

ja−1∑
n=ja−a

(n − ja + a)( ρ
λ
)n

(1 + ρ
λ
)n+1

]

Given ρ/λ ratio5, we can be compute βj directly by using
the above formula. Obtaining βj for each queue, we can
compute the transition probability matrix of the Markov chain.

IV. MDP FORMULATION FOR MULTIPATH

TRANSMISSIONS

In previous section we demonstrated that the system under
study can be modeled as a Markov chain. Now, we show how
such a problem is formulated as a MDP.

Consider a time homogeneous MDP with a countable state
space S, a finite action space A where A(s) ∈ A, s ∈ S is a
set of admissible actions in state s, a non-negative immediate
reward function R : S×A(S)→ �+, and a set of conditional
probabilities P (s′|s, a), which is the probability of moving
from state s to state s′ if action a, a ∈ A(s) is taken. In
context of the problem under study, the MDP objective is to
minimize the average reward, which is a function of the path
delay/loss states over a period of time. The four-component
tuple {S,A, P,R} of the MDP is subsequently made of:

• S which is the state space of the defined system consisting of
M, (M ≥ 1) paths. It is clear that S is the state space of the
combined Markov chain.

• A = {a1, a2 . . . aM} is the set of actions each of which corre-
sponds to the action of scheduling a data bin to one of M paths.

• P is the state transition probability matrix of the combined
Markov chain, which can be calculated from the transition prob-
abilities of each path in the system.

• R is the immediate reward function, which should be able to
reflect the minimum average transmission loss/delay objective.
Thanks to the path monitoring mechanism, the number of queu-
ing bins on each path is a proportional function of the path
delay/loss states [18]. Hence, we define the immediate reward
function R(s, a) = (µas + da)(1 − ploss

s,a ) where µa is the
common inter-departure interval of the path chosen by action
a; s ∈ {1, 2 . . . K} is the state of the path; da is the path
propagation delay; and ploss

s,a is the probability the packet is lost
if the path is in state s. In practice, da can be estimated as a half
of the minimum RTT delay, and ploss

s,a can be estimated from the
historical data using the frequency count technique.

A Markov policy is a description of behaviors, which
specifies the action to be taken in correspondence to each
system state and time step. If a policy is stationary, it specifies
only the action to be taken in each state independently of the
time steps. Given policy π and initial state s of the system, one
can quantitatively evaluate π based on the expected long-term
average reward, which is defined as follows:

vπ(s) ≡ lim sup
N→∞

1

N

N∑
t=1

Eπ
s

{
R(S(t), aπ(S(t)))

}
(2)

5In practical implementation, ρ/λ ratio can be periodically estimated on
the fly from the historical evolution of the path queue lengths.

where R(S(t), aπ(S(t)) denotes the immediate expected
reward received by the decision maker at time t, when taking
action aπ(S(t)) in accordance with the policy π, while the
system is in state S(t). An optimal policy is the one that
minimizes the average reward vπ. Note that, it is sufficient
to find an optimal policy in the Markov policy space since,
for any history-dependent policy there is a Markov policy that
yields the same average reward [21]. In unconstrained MDP
formulation, it is possible to find a stationary optimal policy.

V. OPTIMAL DATA DISTRIBUTION ALGORITHM

Optimal data distribution can be achieved by solving the
formulated MDP. To obtain the MDP optimal policies, differ-
ent approaches can be used e.g. dynamic programming and
linear programming. However, we pay more attention on the
solving time since the problem under study is time sensitive
and we are interested, as next step of this work, in building
a real implementation. Therefore, we implement an algorithm
called On-line Policy Iteration (OPI) to gradually approach
the optimal policy of the formulated MDP on the fly.

A. Scheduling with On-line Policy Iteration

On-line Policy Iteration is based on the idea of the Pol-
icy Iteration (PI) algorithm [21] and asymmetric dynamic
programming. Two key factors, which potentially make OPI
a preferable algorithm for time sensitive problems are the
incremental on-line policy improvement and the computational
efficiency. The first factor comes naturally since OPI is based
on the PI algorithm, which iteratively improves a given random
policy until an ε-optimal policy is found. The second factor
however is resulted from a smart choice of the starting policy
and the improvement strategy. Particularly, instead of choosing
a random policy for improvement, like in the PI algorithm, we
select the Join the Shortest Queue (JSQ) policy to be the start-
ing policy for OPI. Since the JSQ policy is an optimal policy
for 2 parallel symmetric queues and an acceptable policy for
several other cases [17], we can save a lot of iterations by
starting from it, on the way to reach an ε-optimal policy. The
policy improvement strategy also plays an important role in
saving computational efforts. It is common in practice that
some states of a system are more frequently visited than the
others. These states are usually more important to the decision
maker as they contribute more to the final outcome. Therefore,
instead of equally evaluating and improving the policy for
every state, as in Policy Iteration algorithm, we could spend
more time on evaluating and improving the policy for those
important states. This policy improvement strategy is known
as prioritized sweeping, which still guarantees an ε-optimal
policy will be found if all system states are visited infinitely
often [21]. The OPI algorithm is detailed below:

• Step 1: Evaluate JSQ policy to obtain vopi(s) = vjsq(s).
• Step 2: Obtain the system current state s. Take action a ∈ A that

maximizes vopi(s) and update vopi(s) with the maximum value:

vopi(s) = max
a∈A

{R(s, a) +
∑
s′∈S

pa(s′|s)vopi(s′)} (3)
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Fig. 5. RTT Jitter and Erlang distributions for each path.

where pa(s′|s) denotes the transition probability from state s to
state s′ if action a is taken.

• Step 3: If there is a decision to be made, i.e. more data to send,
return to Step 2. Otherwise, stop.

The implementation of OPI is straightforward. The decision
maker does not have to wait until the algorithm finds an ε-
optimal policy. Instead, it can start immediately with the JSQ
policy, and the JSQ policy will be improved on-line after each
decision epoch. For many cases, the JSQ policy will become
ε-optimal after few iterations, e.g. 10 to 15.

B. Complexity Analysis

Since the most computationally expensive step of OPI (the
evaluation of JSQ policy) can be done offline, immediately
whenever the system model is available, the OPI algorithm is
lightweight and can be used for making decisions on the fly. In
specific, we only have to compute Eq. (3), the complexity of
which is O(N), (N = sizeof(S)). In practice, N is usually
in the range of thousands, depending on K and M .

VI. NUMERICAL STUDY

In Section III we demonstrated that the problem under study
can be modeled as a Markov chain. Afterward, in Section IV
we have shown how to apply the MDP to such problem, and in
Section V we presented the OPI algorithm to solve it on the fly.
In this section, first, (i) we provide experimental evidences of
an assumption made in Section III-C; then, (ii) we investigate
the behavior of important QoS parameters when the OPI is
adopted; and finally, (iii) we compare the performance of OPI
with those of the other scheduling algorithms.

A. RTT Jitter Distribution

This section analyzes the distribution of RTT jitter mea-
sured over different real wireless network paths. This analysis
is meant to provide an experimental proof of the thesis,
previously argued in Section III-C, for which such jitter is
well approximated by an Erlang distribution. The network
scenarios on which the data was collected are part of a real
heterogeneous testbed (see [2] for more details). To show our
claim, here we consider the following three network paths:
(i) Ethernet-to-802.11b; (ii) 802.11b-to-802.11b (infrastructure
mode); (iii) 802.11b-to-802.11b (ad-hoc mode). Taking into
account RTT jitter related to different paths with different
characteristics allows to verify our assumption over several
network scenarios making it more general.

Fig. 5 shows the RTT jitter distribution for the above
mentioned network scenarios. In all the cases the Erlang

distribution obtains a good fitting. To provide a numerical
evidence, we have evaluated a discrepancy measure (by using
the λ2 [22]) between the RTT jitter and three analytical
distributions: Erlang, Normal, and Weibull. In details, in the
first case the three distributions obtained 0.44, 1.24, and 0.54
respectively. In the second case, they obtained 0.20, 5.15, and
0.74 respectively, and in the third 0.25, 3.89, and 0.48. In
conclusion, thanks to this preliminary analysis, we can state
that, in all the three cases, the Erlang distribution provides the
best approximation for the RTT jitter distribution.

B. Performance Evaluation

1) Simulation Setup: To evaluate the proposed approach,
we setup a multipath wireless communication scenario in
which two wireless end points exchange data over - respec-
tively - 2, 3, and 4 paths while moving in parallel in a [1500m
x 1500m] flat grid area, with speed of 5−10m/s. The scenario
is illustrated in Fig. 6. With respect to Figure 1, here the traffic
distributor module is integrated into the end points.

Fig. 6. Multipath wireless communication: 4-path scenario.

Each path is comprised of 3 wireless nodes (2 hosts and
an Access Point), which implement Ricean radio propagation
model [20], 802.11 MAC with the basic rate of 1Mbps,
600m of transmission range, and supporting Dynamic Source
Routing Protocol [11]. To create disjoint wireless paths, dif-
ferent communication channels are used. Since in ns-2 the
channels are orthogonal, the interference effect by default is
not considered. Therefore, to simulate transmission errors on
802.11 links more appropriately, we implement a modification
of the 802.11 error model proposed by Wu [24] in conjunction
with the Ricean fading propagation model. The two end nodes
exchange data in a 500-byte packet stream at the average rates
of 2.0Mbps to 4.0Mbps depending on the number of paths in
use. The stream of packets arrives at the traffic distributor like
in a Poisson process. The packets are then routed to the paths
for transmission using 3 algorithms: OPI, RR, and JSQ.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.



 0

 10

 20

 30

 40

 50

 60

 70

 0  5000  10000  15000  20000

qu
eu

e 
le

ng
th

 (
pa

ck
et

s)
The evolution of queue length (RR)

path 1
path 2
path 3
path 4

 0

 10

 20

 30

 40

 50

 60

 70

 0  5000  10000  15000  20000

qu
eu

e 
le

ng
th

 (
pa

ck
et

s)

packet sequence numbers

The evolution of queue length (JSQ)

path 1
path 2
path 3
path 4

 0

 10

 20

 30

 40

 50

 60

 70

 0  5000  10000  15000  20000

qu
eu

e 
le

ng
th

 (
pa

ck
et

s)

packet sequence numbers

The evolution of queue length (OPI)

path 1
path 2
path 3
path 4

Fig. 7. The average path queue lengths obtained with RR, JSQ and OPI (4-path scenario).
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2) Performance Comparison: We compare the perfor-
mance of the scheduling algorithms in terms of average end-
to-end delay, jitter, loss rate, and distribution of consecutive
losses while transferring 10MB of data between the two end
nodes. We vary the distance and speed of the two end nodes
to create 3 different loss scenarios, in which the average loss
rates (experienced by the RR algorithm) approximately are
1.0%, 3.0% and 6.0%. Due to the space constraint, we cannot
present here the simulation results of all scenarios we have
considered. Hence, only the representative results of the 6.0%
average loss rate scenario are presented. Table I shows the
average, and variance in parenthesis, of delay and loss rates
obtained by the algorithms with 2, 3 and 4 paths.

TABLE I
AVERAGE AND VARIANCE (IN PARENTHESIS) OF DELAY AND LOSS RATE.

2 paths 3 paths 4 paths
D(ms) L(%) D(ms) L(%) D(ms) L(%)

RR 7.7(2.4) 6.0(0.1) 7.4(2.3) 5.8(0.1) 7.6(2.1) 5.9(0.1)
JSQ 8.3(0.9) 6.2(0.1) 8.1(0.7) 6.5(0.1) 8.2(0.7) 6.1(0.1)
OPI 7.2(0.6) 5.9(0.1) 6.7(0.5) 4.7(0.1) 5.9(0.5) 4.2(0.1)

As shown in Table I, the OPI obtains the best performance.
Compared to JSQ and RR, OPI achieved smaller average end-
to-end delay and loss rate in all considered scenarios. A good
explanation for these results is in Fig. 7, which illustrates the
evolution of the path queue lengths of the three algorithms
obtained with 4 paths. As shown, the fluctuations of the
RR queues indicates the dynamics of the wireless channels,
which reflect both congestion and transmission errors. These
fluctuations are resulted in high end-to-end delay variance
and jitter (shown in Fig. 8 - left). Compared to RR, the JSQ
managed to maintain a stable and equal queue length for all

paths. However, with this algorithm the queue lengths are high,
which subsequently yields the high average end-to-end delay
and loss rate. Anyway, in comparison to those obtained by RR,
the JSQ jitter is lower (Fig. 8 - center). As for the evolution of
the OPI queues, (Fig. 7-right) clearly shows the online policy
improvement process. In the warm up period (approximately
first 500Kb of data), the evolution of the OPI queues is almost
the same as the evolution of the JSQ queues since the two
policies are in fact the same. However, after the OPI obtained
the optimal policy, its queue lengths start to decrease. As a
result, the OPI gives the lowest average end-to-end delay, with
the lowest variance as well as more stable jitter (Fig. 8 - right).
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Fig. 9. Probability of consecutive losses with RR, JSQ and OPI (3-paths).

Besides the end-to-end delay characteristics, the simulation
results also indicate that the OPI algorithm improves end-
to-end loss characteristics. Fig. 9 shows the distribution of
consecutive losses obtained with OPI in comparison with
those obtained by RR and JSQ. As shown, the probability of
suffering from 2 consecutive losses is 0.07 for OPI while this
probability is subsequently 0.12 and 0.20 for JSQ and RR. The
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probability of suffering from more than 2 consecutive losses
is 0.01 for OPI, 0.07 for JSQ and 0.10 for RR.

Although our approach is built to pursue the improvement
of delay and loss characteristics, it is also interesting to look
at the behavior of another relevant QoS parameter such the
throughput. Fig. 10 shows the average throughput obtained
by the algorithms using 2 paths with the average data rate
of 2Mbps. We can see the impact of the fading effect on the
JSQ algorithm, which gives a low and fluctuating throughput.
Due to the fading effect, throughput of the wireless channels
changes rapidly. As a result, greedy strategies like JSQ suffer
heavily from these rapid variations. On the other hand, the
OPI algorithm, which “learns” from the experience, obtains
a significantly better throughput. The RR algorithm, which
distributes packets equally to all paths also obtain a good
throughput. However, it suffers more losses and higher jitter,
since it does not take the dynamics of the channels into
account. Finally, we can conclude that OPI reaches the better
performance with respect to all QoS parameters.
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Fig. 10. RR, JSQ and OPI throughput computed in 1s interval (2 paths).

VII. CONCLUSION

In this paper we have proposed an approach to distribute
data over multiple wireless paths. In details, we designed a
simple path monitoring mechanism to obtain the loss and delay
information on each individual path. Moreover, by exploiting
the Imbedded Markov Chain, we formulated the multipath
data transmission problem as a MDP and an algorithm called
OPI was introduced to solve the MDP on the fly. We ver-
ified the proposed approach in a proof-of-concept network
scenario, obtaining encouraging results from ns-2 simulations
and using real data from operational wired/wireless networks.
The preliminary evaluation has shown the feasibility of the
proposed approach as well as a performance gain in terms of
both end-to-end delay and loss characteristics with respect to
classical schemes such as Round Robin and Join the Shortest
Queue. In future works, we will deeply investigate preliminary
results obtained in this study, and we will extend the approach
to cover the problems with multiple QoS objectives, e.g. to
minimize both loss rates and average transmission delay, while
bounding transmission powers and/or load balancing.
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