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Abstract

In this paper, we consider a cognitive radio (CR) network imich the unlicensed (secondary)
users are allowed to concurrently access the spectrumasgidto the licensed (primary) users provided
that their interference to the primary users (PUs) satisfer$ain constraints. We study a weighted
sum rate maximization problem for the secondary user (SUjiptai input multiple output (MIMO)
broadcast channel (BC), in which the SUs have not only the gonver constraint but also interference
constraints. We first transform this multi-constraint nmaiziation problem into its equivalent form, which
involves a single constraint with multiple auxiliary veblas. Fixing these multiple auxiliary variables,
we propose a duality result for the equivalent problem. Quality result can solve the optimization
problem for MIMO-BC with multiple linear constraints, anlkus can be viewed as an extension of the
conventional results, which rely crucially on a single suawpr constraint. Furthermore, we develop
an efficient sub-gradient based iterative algorithm to edhe equivalent problem and show that the
developed algorithm converges to a globally optimal sotutiSimulation results are further provided

to corroborate the effectiveness of the proposed algorithm
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. INTRODUCTION

Cognitive radio (CR), as a promising technology to advoedtfieient use of radio spectrum,
has been a topic of increasing research interest in recamns y&]-[7]. CR allows an unlicensed
(secondary) user topportunisticallyor concurrentlyaccess the spectrum initially allocated to the
licensed (primary) users provided that certain prescribaalstraints are satisfied, thus having
a potential to improve spectral utilization efficiency. Imst paper, we study a weighted sum
rate maximization problem for the secondary user (SU) mlgltinput multiple output (MIMO)
broadcast channel (BC) in a concurrent CR network, in whith$Us have not only the sum
power constraint but also interference constraints.

A. System Model and Problem Formulation

With reference to Fig. 1, we consider tlie-SU MIMO-BC with N; transmit antennas and
N, receive antennas in a CR network, where fie&sUs share the same spectrum with a single
primary user (PU) equipped with one transmitter and oneivece The transmit-receive signal
model from the BS to théth SU denoted by SQUfori =1,..., K, can be expressed as

y, = H,x + z;, (1)

wherey; is the NV, x 1 received signal vecto#?; is the N,. x N, channel matrix from the BS to
the SU, x is the N; x 1 transmitted signal vector, angl is the N, x 1 Gaussian noise vector
with entries being independent identically distributeddam variables (RVs) with mean zero
and variancer?. Considerh, as theN, x 1 channel gain vector between the transmitters of the
BS and the PU. We further assume thdt for i = 1,..., K, and h, remain constant during
a transmission block and change independently from blodkdok, andH; for i =1,..., K,
and h, are perfectly known to the BS and SUrhis requires that the SUs can “cognitively”
obtain the information of its neighboring environment. Iragtice, certain cooperation in terms
of parameter feedback between the PU and the BS is neededhieve that, the protocol for
the SU network can be designed as follows: every frame amhtsensing sub-frame and data
transmission sub-frame. During the sensing sub-frame, @8t@nsmit training sequences to
SUs as well as to the PU so that the SUs can estimate the chawatek H;, and the PU can
measure the vectdi,. After that, this information will be sent back to the BS videsdback
channel.

*Expect for explicitly stated, we restrict our attention tsiagle PU case in the rest of this paper for convenience afrghn.
The results derived for the single PU case can be readilyndgtkto the multiple PU case, which is discussed in Remark 4.
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We next consider the weighted sum rate maximization proldienthe K-SU MIMO-BC
in a CR network, simply called the CR MIMO-BC sum rate maxiatian problem, which,
mathematically, can be formulated as

Problem 1 (Main Problem):

K
b
max w;T; (2)
(RN, Q-0 ;

K K
subjectto > hIQPh, < P, and Y _tr(QY) < P,
i=1 =1
wherer? is the rate achieved by SUw; is the weight of SiJ Q? denotes theV, x N, transmit

signal covariance matrix for SUQ? = 0 denotes thaQ? is a semidefinite matrixf’ denotes the
interference threshold of the PU, ait) denotes the sum power constraint at the BS. In a non-
CR setting, similar weighted sum rate optimization protddior the multiple input single output
(MISO) BC and the MIMO-BC have been studied in [8] [9], resjpady. The key difference is
that in addition to the sum power constraint, an interfeeecgnstraint is applied to the SUs in
the CR MIMO-BC, i.e., the total received interference pm@j’i1 h!QPh, at the PU is below
the thresholdp,.

Remark 1:It has long been observed that the optimal sum rate for MIMOVBID a single
sum power constraint is equal to the optimal sum rate of tla BUMO multiple access channel
(MAC) with the same sum power constraint [10] [11] [12]. Hoxee thisconventional BC-MAC
duality can only be applied to the case with a single sum power cans{even not applicable
to an arbitrary linear power constraint). Hence, the addél interference power constraint in
Problem 1 makes the existing duality cannot be applied. Bwve duality result proposed in this
paper generalizes the previous results as special casasoWo, it is worth to note that any
boundary point of the capacity regions of the MIMO-MAC and MIMO-BC can be expressed
as a weighted sum rate for a certain choice of weights [13]. [THus, by varying the weights
of the SUs in Problem 1, the entire capacity region of the CRIRIBC can be obtained.

B. Related Work

The present paper is motivated by the previous work on trenmdtion-theoretic study of the
MIMO-BC under anon-CRsetting. It has been shown in [11] [12] [15] that under a Srgim
power constraint, the sum-capacity of the non-CR MIMO-B@ ba achieved by the dirty paper
coding (DPC) scheme. Furthermore, the paper [16] showstlieatate region achieved by the
DPC scheme is indeed the capacity region of such a channelewwo, the power allocation and
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beamforming strategies to achieve the capacity region baee not considered in these papers.
Moreover, it has been shown in [17] [18] that under the sirsglien power constraint, thequally
weighted sum rate maximization problem, simply called tna sate problem, for the MIMO-BC
can be solved by solving its dual MIMO MAC sum rate problemijchiiis also subject to a single
sum power constraint. In [17], a cyclic coordinate ascegoaihm was proposed to solve the dual
MIMO-MAC problem while in [18] this sum-power constrainedia problem was decoupled
into an individual-power constrained problem, which cansbl/ed by using an iterative water-
filling algorithm [19]. Even though these algorithms propdsn [17] [18] can solve the sum
rate optimization problem for the non-CR MIMO-BC via the MAL duality, they are not
applicable to the general weighted sum rate problem. Ing&Jeneralized iterative water-filling
was proposed to solve the weighted sum rate problem for tHeOVvBC where each user has a
single receive antenna. However, the proposed algorithmtigpplicable to the general MIMO-
BC case. Furthermore, an efficient algorithm was proposesbtee the MIMO-BC weighted
sum rate problem with a single sum power constraint in [9lesEhaforementioned results are
based on the conventional BC-MAC duality, which cannot bglied to solve the weighted sum
rate problem with multiple constraints (the case of inteireshis paper). Recently, the paper [20]
investigated a different MIMO-BC weighted sum rate maxiati@an problem which is subject
to per-antenna power constraints instead of the single smwepconstraint, and established a
new minimaxduality which is different from the conventional BC-MAC ditpg A Newton’s
method based algorithm was proposed to solve this minimalx@m. In this paper, we consider
a more general case where the power is subject to multipgadinonstraints instead of the sum
power constraint or per-antenna power constraints, andogea new BC-MAC duality result
to extend the conventional duality result so that it can esdhe problem with multiple arbitrary
linear constraints. A Karush-Kuhn-Tucker (KKT) conditibased algorithm is developed to solve
the problem.

C. Contribution

Throughout the paper, we consider the CR MIMO-BC weighteth sate maximization
problem as defined in Problem 1. As the main contribution @$ {maper, our solution is
summarized in the following.

1) We prove that in the CR MIMO-BC, the multi-constraint wieigd sum rate maximization

problem (Problem 1) is equivalent to a single-constrainigied sum rate maximization
problem with multiple auxiliary variables.
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2) For the equivalent problem, we establish a duality betwge MIMO-BC and a dual
MIMO-MAC when the multiple auxiliary variables are fixed asnstant. This duality is
applicable to MIMO-BC with arbitrary linear power constrgiand can be viewed as an
extension of the conventional MIMO MAC-BC duality resultQ11] [12], which is only
valid for the problem with a single sum power constraint.

3) For the weighted sum rate maximization problem of the ddlO MAC, the existing
iterative water-filling based algorithm [17], [18] is not@jzable. We propose a new primal
dual method based iterative algorithm [21] to solve it. Rartnore, we propose a sub-
gradient based iterative algorithm to solve the main probté the paper, Problem 1, and
show that the proposed algorithm converges to the globgitymal solution.

D. Organization and Notation

The rest of the paper is organized as follows. In Section d,tk@nsform the CR MIMO-BC
weighted sum rate maximization problem (Problem 1) inteegsivalent form, and introduce a
MAC-BC duality between a MIMO-BC and a dual MIMO-MAC. Seatidll presents an primal
dual method based iterative algorithm to solve the dual MIMBC weighted sum rate problem.
In Section 1V, a MAC-BC covariance matrix mapping algoritisrproposed. Section V presents
the complete algorithm to solve the CR MIMO-BC weighted swate rmaximization problem.
Section VI provides several simulation examples. Finélgction VIl concludes the paper.

The following notations are used in this paper. The boldiacesed to denote matrices and
vectors,(-)" and ()T denote the conjugate transpose and transpose, respgcfiveldenotes an
M x M identity matrix; t(-) denotes the trace of a matrix, apd* denotesmax(z,0); (-)° and
(-)™ denote the quantities associated with a broadcast chandeh anultiple access channel,
respectively;E|-] denotes the expectation operator.

[I. EQUIVALENCE AND DUALITY

Evidently, the MIMO-BC weighted sum rate maximization piexh under either a non-CR
or a CR setting is a non-convex optimization problem and figcdit to solve directly. Under a
single sum power constraint, the weighted sum rate probenvitMO BC can be transformed
to its dual MIMO MAC problem, which is convex and can be solvadan efficient manner
[8] [9]. In the CR setting, the problem (Problem 1) has notyoalsum power constraint but
also an interference constraint. The imposed multiple twaims render difficulty to formulate

November 2, 2018 DRAFT



an efficiently solvable dual problem. To overcome the diffiguwe first transform this multi-
constrained weighted sum rate problem (Problem 1) into gisvalent problem which has a
single constraint with multiple auxiliary variables, anexhdevelop a duality between a MIMO-
BC and a dual MIMO-MAC in the case where the multiple auxyliaariables are fixed.

A. An Equivalent MIMO-BC Weighted Sum Rate Problem

In the following proposition, we present an equivalent foomProblem 1 (see Appendix B
for the proof).
Proposition 1: Problem 1 shares the same optimal solution with
Problem 2 (Equivalent Problem):
K
.min ZO{Qf}ngég - ;wirf 3)
K K
subject to q,( Y hlQPh, — i) + ¢.( > _tr(QP) — P,) <0, (4)
where ¢; and ¢, are the auxili?rg/ dual variables for tiﬁé respective interfiee constraint and
sum power constraint.
It can be readily concluded from the proposition that thamoak solution to Problem 2 also
satisfiesy ., hiQPh, < P, and Y1, tr(QP) < P, simultaneously since it is also the optimal
solution to Problem 1. Finding an efficiently solvable duadlgem for Problem 2 directly is still

difficult. However, as we show later, whegp and ¢, are fixed as constants, Problem 2 reduces
to a simplified form, which we can solve by applying the follogy duality result.

B. CR MIMO BC-MAC Duality

For fixed ¢, andg,, Problem 2 reduces to the following form
Problem 3 (CR MIMO-BC):

K
b
{Q‘Z}E?XQ?EO ; o ©)
K K
subject to ¢, Y _ hiQPh, +qu Y _tr(QY) < P, (6)
whereP := ¢, P, + q,P,. Sinceq; and Zlare fixed,P isiglconstant in Problem 3. The constraint
(6) is not a single sum power constraint, and thus the dugdisylt established in [17] is not
applicable to Problem 3. Therefore, we formulate the follmwew dual MAC problem.
Proposition 2: The dual MAC problem of Problem 3 is
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Problem 4 (CR MIMO-MAC):

K
max w;r" 7
{Qrin}f(:l: tho ; ( )

K
subject to » tr(QMo” < P, (8)

where " is the rate achieved by thé&h uslg# of the dual MACQY is the transmit signal
covariance matrix of théth user, and the noise covariance at the B@h@hf + qu1 n, -

Remark 2: According to Proposition 2, for fixeq, andq,, the optimal weighted sum rate of
the dual MAC is equal to the optimal weighted sum rate of thenakBC. From the formulation
perspective, this duality result is quite similar to the wemtional duality in [10] [11] [12].
However, as shown in Fig. 2, one thing needs to highlight & the noise covariance matrix
of the dual MAC is a function of the auxiliary variablg and ¢,, instead of the identity matrix
[12]. This difference comes from the constraint (6), whismbt a sum power constraint as in
[12]. Note that wheny, = 0, the duality result reduces to the conventional BC-MAC dyah
[12].

As illustrated in Fig. 2, Proposition 2 describes a weigrgeoh rate maximization problem for
a dual MIMO-MAC. To prove the proposition, we first examine ttelation between thgignal
to interference plus noise rati(SINR) regions of the MIMO-BC and the dual MIMO-MAC.
Based on this relation, we will show that the achievable ratgons of the MIMO-BC and the
dual MIMO-MAC are the same.

In the sequel, we first describe the definition of the SINR fug MIMO-BC. It has been
shown in [16] that the DPC is a capacity achieving schemeh Eat of the transmit covariance
matrix determined by DPC scheme defines a set of transmit ecelve beamforming vectors,
and each pair of these transmit and receive beamformingorgeddbrms a data stream. In a

beamforming perspective, the BS transmitter haye< K beamformersy, ;, fori =1,--- | K,
andj =1,---,N;. Therefore, the transmit signal can be represented as
K N

T = § : § T U,

i=1 j=1

wherez; ; is a scalar representing the data stream transmitted iroé@isformer, ande[z? ] =
pi; denotes the power allocated to this beamformer. Af, 8t receive beamformer correspond-
ing to u; ; is denoted by, ;. The transmit beamformer; ; and the powep;, ; can be obtained
via the eigenvalue decomposition QI‘ZD i.e., Q? = UZT.PiUi, whereU ; is a unitary matrix, and
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P, is a diagonal matrix. The transmit beamformeyr; is the jth column ofU;, andp, ; is the
jth diagonal entry ofP;. With these notations, we express the S!’,I}uas

pijlul  Hlv, ;|
K N, N, ’
D ki1 2121 pk,l‘“L,zHI'Ui,jP + 2 mm pi,l|uz,1Hz'Ui,j‘2 + o2
It can be observed from (9) that the DPC scheme is applied ddm be interpreted as follows.

SINR?, = (9)

The signal from Sylis first encoded with the signals from other SUs being treasadterference.
The signal from SbYlis next encoded by using the DPC scheme. Signals from the Sthe will
be encoded sequentially in a similar manner. For the dagarsis within Si} the data stream 1
is also encoded first while the other data streams are treatéluke interference. The data stream
2 is encoded next. In a similar manner, the other data strealnise sequentially encoded. The
encoding order is assumed to be arbitrary at this moment teaptimal encoding order of
Problem 2 will be discussed in Section Ill.

To explore the relation of the SINR regions of the dual MAC dhd BC, we formulate a
following optimization problem

K K
@ g:i:nQ?EO G ; hiQh, + qu ; (@) — P
subject to SINI%J- 2 Yijs

where~, ; denotes the SINR threshold of thth data stream within the SUor the BC. Note
that the objective function in (10) is a function of signalvagance matrices and the constraints
are SINR constraints for th&'-SU MIMO-BC.

It has been shown in [20] and [22] that then-convexBC sum power minimization problem

(10)

under the SINR constraints can be solved efficiently via ital MAC problem, which is a
convex optimization problem. By following a similar line tfinking, the problem in (10) can
be efficiently solved via its dual MAC problem. Similar to tipgimal MIMO-BC, the dual
MIMO-MAC depicted in Fig. 2 consists of{ users each withV, transmit antennas, and one
BS with IV, receive antennas. By transposing the channel matrix aecchringing the input and
output signals, we obtain the dual MIMO-MAC from the primalMD-BC. For the covariance
matricesQ!" of the dual MIMO-MAC, we apply the eigenvalue decomposition

N,
Q;-n = Vz'AzVZT- = Zq@jvi,jv;ja (11)

j=1
where v, ; is the jth column of V;, andg;; is the jth diagonal entry ofA,. For useri, v, ;
is the transmit beamforming vector of theh data stream, the power allocated to ftie data
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stream equalg; ;, and the receive beamforming vector of tjth data stream at the BS s, .
The SINR of the dual MIMO-MAC is given by

gijlul ;Hlv; ;2
u; ; <Ek 12.0= 1‘1le "’kzl"’mI‘I/ﬂLZJ 1‘1le 'v”'v”H + R, )um-

SINR; = ., (12
whereR,, := ¢;R,+q.Iy, is the noise covariance matrix of the MIMO-MAC wilR, := hohi.
In the dual MIMO-MAC, R, depends om; andg, defined in (10) whereas the noise covariance
matrix in the primal MIMO-BC is an identity matrix. It can bebserved from (12) that the
successive interference cancelation (SIC) scheme is usédis dual MIMO-MAC, and the
decoding order is the reverse encoding order of the primal B signal from Sy is first
decoded with the signals from other users being treated tagference. After decoded at the
BS, the signals from S)J will be subtracted from the received signal. The signal fridby_;
is next decoded, and so on. Again, the data streams within eaBbe decoded in a sequential
manner.

For the dual MIMO-MAC, we consider the following minimizati problem similar to the
problem (10)

Q7 } Q =0 ;tr (13)
subject to SINR; > ; ;.
The following proposition describes the relation betwess problems (10) and (13).
Proposition 3: For fixed ¢; and g¢,,, the MIMO-MAC problem (13) is dual to the MIMO-BC

problem (10).
Proof: The constraints in (10) can be rewritten as

plj‘quH UZJ|2 S 2 T 2
> Z Zpkl\ule v; |+ Z pll\u”H v | + 02 (14)
Tirg k=i+1 =1 I=j+1

Thus, the Lagrangian function of the problem (10) is

Li(Q%...,Q% \ij)

E - S pijlul  Hlv, |
—a0 Y QMR +au Y Q) = P = D0 (=
i=1 i=1 =1 j—1 Vi
K N, N,
= pralul Hvi = Y pulul, Hlv, j* - 02) (15)
k=i+1 I=1 I=j+1
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Ny K N,
Z Z]U —P— Zzpzjuzj<)\”H ’U%J_’v H

i=1 j=1 Vig

||Mx

~1 N, i1
Z > NeHwgwl Hy =Y N Hlv vl H; - Rw)ui,j, (16)
b=l 1=1

=1
where ), ; is the Lagrangian multiplier. Eq. (16) is obtained by applythe eigenvalue decom-
position toQ® and rearranging the terms in (15). The optimal objectiveieaif (10) is

max_min Ly(QY, ..., Q% A:)). (17)
i
J Q1 ..... QK
On the other hand, the Lagrangian function of the problen) (43
K N, K N,
i 7 qZ H! Vi 'v H
LQ(ernv"-aQr[n(v(siJ):qui,] - P - ZZCSZJ zy J ]
=1 j=1 i=1 j=1 i
i—1 N Jj—1
- Z Z G H vy o) H o — Z guH vl H; — R,)u;;,  (18)
k=1 =1 =1

whered, ; is the Lagrangian multiplier. Eq. (18) is also obtained bplging eigenvalue decom-
position toQ!". The optimal objective value of (13) is

max mmirmeg(QT,...,QQ,éi,j). (19)

ig Qs K

Note that if we choose; ; = ), ;, 6;; = p; ;, and the same beamforming vecters; andv; ;
for both problems, (16) and (18) become identical. This reehat the optimal solutions of (17)
and (19) are the same. [ ]

Proposition 3 implies that under the SINR constraints, tloblems (10) and (13) can achieve
the same objective value, which is a function of the transmngihal covariance matrices. On the
other hand, under the corresponding constraints on thalsgpvariance matrix, the achievable
SINR regions of the MIMO-BC and its dual MIMO-MAC are the sanMathematically, we
define the respective achievable SINR regions for the priviiO-BC and the dual MIMO-
MAC as follows.

Definition 1: A SINR vectory = (vi1,...,7.n5,---7k.N,) 1S Said to be achievable for
the primal BC if and only if there exists a set 6%, ..., Q% such thatg, >.% hiQPh, +
g I, tr(QP) — P < C for a constanC’ and the corresponding Sllﬁﬁz 7i,;- An achievable
BC SINR region denoted bRg¢, is a set containing all the BC achievabje

Definition 2: A SINR vectory = (y1.1,- .-, 7.z - - -, Yi,N,) IS Said to be achievable for the
dual MAC if and only if there exists a set @}7", ..., Q% such thathi1 tr(Q"o?— P < C for
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10

a constantC' and the corresponding SINR> ~; ;. An achievable MAC SINR region denoted
by Rmac, is @ set containing all the MAC achievabie

In the following corollary, we will showRysc = Resc.

Corollary 1: For fixed ¢; and ¢,, and a constant’, the MIMO-BC under the constraint
@K hIQPh, + ¢, 35 tr(Q°) — P < C and the dual MIMO-MAC under the constraint
S F (@™o — P < C achieve the same SINR region.

Proof: For any~ € Ruac, by Definition 2, there exists a set @}7", ..., Q% such that
Zfil tr(Q")o* — P < C and the corresponding SINR> ~; ;. It can be readily concluded from
Proposition 3 that there exists a set@f, . . ., Q' such thay, S5 hlQ h,+q¢, S5 tr(QP) —

P < C and the corresponding Sllﬁﬁz 7ij- This impliesy € Rgc. Since« is an arbitrary
element iNRyac, we haveRyac € Ree. In a similar manner, we havBgc € Rmac. The
proof follows. [ |

We are now in the position to prove Proposition 2.

Proof of Proposition 2:According to Corollary 1, ifC' = 0, then under the constraint
@8 hiQPh, + ¢, 8  tr(QP) < P for the BC and the constraint., tr(QM¢?> < P
for the dual MAC, the two channels have the same SINR regiamceSthe achievable rates
of user: in the MIMO-MAC and the MIMO-BC arer!” = Z;.V;‘l log(1 + SINR",) andr} =
Z;.V;‘l log(1 +SINR§J), the rate regions of the two channels are the same. Theré&torposition
2 follows. [

Note that due to the additional interference constraimbpm 2 cannot be solved by using
the established duality result in [11] and [12], in whichyal single sum power constraint was
considered. Our duality result in Proposition 2 can be thowgs an extension of the duality
results in [11] [12] to a multiple linear constraint case. iglover, as will be shown in the
following section, our duality result formulates a MIMO-MAproblem (Problem 4), which can
be efficiently solved.

[Il. DUAL MAC WEIGHTED SUM RATE MAXIMIZATION PROBLEM
In this section, we propose an efficient algorithm to solvebsm 4. With the SIC scheme,
the achievable rate of thieth user in the dual MIMO-MAC is given by
Bt > H;QTH |
[R, + 257 H,QTH|
For the MIMO-MAC, theequallyweighted sum rate maximization is irrespective of the deapd

mo__
ry = lo

(20)

order. However, in general the weighted sum rate maxinurat the MIMO-MAC is affected
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11

by the decoding order. We thus need to consider the optinwdileg order of the SIC for the
dual MIMO-MAC, and further need to consider the correspogdoptimal encoding order of
the DPC for the primal BC.

Let = be the optimal decoding order, which is a permutation on theér8lex set{1,--- , K'}.

It follows from [14] that the optimal user decoding ordefor Problem 4 is the order such that
Wr(1) = Wr2) > -+ > Wr(k) IS satisfied. The following lemma presents the optimal dewpd
order of the SIC for the data streams within a SU (see Appe@diar the proof).

Lemma 1:The optimal data stream decoding order for a particular Sarbgrary.

Due to the duality between the MIMO-BC and the MIMO-MAC, foroBlem 3, the optimal
encoding order for the DPC is the reversemofBecause of the arbitrary encoding order for the
data streams within a SU, if we choose a different encodinigrofor the BC, the MAC-to-BC
mapping algorithm can give different results which yiel@ ttame objective value. Hence, the
matrix Q° achieving the optimal objective value are not unique. Withiass of generality, we
assumew; > wsy > - -- > wyg for notational convenience.

According to (20), the objective function of Problem 4 canrberitten as

K 7
@7+, Q%) =) Ailog|R, +> H;QTH|, (21)
=1

j=1
whereA,; := w; — w;41, andwg 1 := 0. Clearly, Problem 4 is a convex problem, which can be
solved through standard convex optimization software agek directly. However, the standard
convex optimization software does not exploit the spedialcture of the problem, and thus is
computationally expensive. An efficient algorithm was deped to solve a weighted sum rate
maximization problem for the SIMO-MAC in [8]. However, sichis algorithm just consider
the case where each users has a single data stream, it ispliebfe to our problem. In the
following, we develop a primal dual method based algoriti21] [to solve this problem.
We next rewrite Problem 4 as
K
(o, QT+ QR) subject to;tr@?‘) <P (22)
Recall that the positive semi-definiteness@f' is equivalent to the positiveness of the eigen-
values of@QY", i.e., ¢;; > 0. Correspondingly, the Lagrangian function is

K M;

K
L@, Q. A\ 6ij) = f(QT, -+, QF) — )\(Ztr(Q;“) - P) + Z Z(Si,j%‘,j? (23)
i=1

i=1 j=1
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12

where\ andJ; ; are Lagrangian multipliers. According to the KKT conditsoof (22), we have

m PR m J\/[’L
af(QM, - QR My, + Y 6,E;; =0, (24)
0Q; =
K
A (@)~ P) =0, ()
=1
0i,ji; = 0, (26)

whereE, ; := 0¢; ;/0Q". Notice that it is not necessary to compute the actual valug cand
E, ;, because ib, ; # 0, theng,; ; = 0. Thus, the semi-definite constraint turns igtg = [¢; ;]*.
Thus, we can assumg; = 0.

The dual objective function of (22) is
g(A) = { Q?}g%?zoucz'{“, L QRN (27)
Because the problem (22) is convex, it is equivalent to thievfiang minimization problem

mAin g(\) subjectto A > 0. (28)

We outline the algorithm to solve the problem (28). We choaseinitial A and compute the
value of g(\) (27), and then updat& according to the descent direction ¢f\). The process
repeats until the algorithm converges.

It is easy to observe that all the users share the sgra@d thus\ can be viewed as a water
level in the water filling principle. Once is fixed, the unique optimal séQT, ..., Q% } can be
obtained through the gradient ascent algorithm. In eacétite stepQ!" is updated sequentially
according to its gradient direction of (23). Denote @Y'(n) the matrix@Q!" at thenth iteration
step. The gradient of each step is determined by

e oQ™(n — 1)
Thus,QT(n) can be updated according to

Qr(n) = [@M(n — )+ 19 GhL]

wheret is the step size, and the notatipA|™ is defined agA]™ := >, [)\j]+vjfu§ with \; and

v; being thejth eigenvalue and the corresponding eigenvectaAakspectively. The gradient

— My, (29)

in (29) can be readily computed as

of (@Y, ---,Qk)
oQy

K
=S A (HFQY. QR HY) (30)

J=k
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where F;(QT,---, QW) == R, + >._, HIQ™H,. We next need to determine the optimal
Since the Lagrangian function()\) is convex over)\, the optimal\ can be obtained through
the one-dimensional search. However, becais¢ is not necessarily differentiable, the gradient
algorithm cannot be applied. Alternatively, the subgratimethod can be used to find the optimal
solution. In each iterative step, is updated according to the subgradient direction.

Lemma 2: The sub-gradient aj(\) is P— >, tr(Q™), where\ > 0, and@Q™, i=1,..., K,
are the corresponding optimal covariance matrices for a fixen (27).

Proof: The proof is provided in Appendix D. [ |

Lemma 2 indicates that the value dfshould increase, i, tr(Q™) > P, and vice versa.
We are now ready to present our algorithm for solving Probfem
Decoupled Iterative Power Allocation (DIPA) Algorithm :

1) Initialize A\ and A\ ay;
2) repeat
2) A = (Aumin + )2
b) repeat, initializeQ7'(0),--- ,Q%(0), n =1
fori=1,--- | K
Qrn) = [@P(n— 1) + VL],
end for
n=n+1,
c) until Q7 for k =1,--- , K converge, i.e.HVS?LHQ < ¢ for a small preset.
d) if S5, tr(Q™) > P, then Ay, = A, elseif 5 tr(QM) < P, then\pay = A;
3) until [Apin — Amax| < €,
wheree > 0 is a constant. The following proposition shows the convecgeproperty of the
DIPA algorithm.
Proposition 4: The DIPA algorithm converges to an optimal set of the MAC srait signal
covariance matrices.

Proof: The DIPA algorithm consists of the inner and outer loops. Trreer loop is to
computeQ!" fori = 1,--- , K. In each iterative step of the inner loop, we upd@® by fixing
other Q7" with j # 4, and compute the corresponding gradient. The inner loop teegradient
ascent algorithm, which converges to the optimal value duistnondecreasing property and
the convexity of the objective function. The outer loop iscmmpute the optimal Lagrangian
multiplier A\ in (28). Due to the convexity of the dual objective functi@8], there is a unique
A achieving the optimal solution in (28). Hence, we can use facient one dimensional line
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bisection search ( [19], [18]). [ |

Remark 3:In the previous work on the sum rate maximization [19] [1][lthe covariance
matrix of each user is the same as the single user wategfitiavariance matrix in a point-to-
point link with multiuser interference being treated assediz4]. However, for the weighted sum
rate maximization problem, the optimal solution does nasgss a water-filling structure. Thus,
our DIPA algorithm does not obey the water-filling principle Section VI, Example 1 compares
the water-filling algorithm with the DIPA algorithm. Notablthe formulation of Problem 4 is
similar to the weighted sum rate problem for the dual MIMO M#&(9]. The algorithm proposed
therein to handle the dual MIMO MAC problem is based on gnaidf@ojection method [21].
The difference between our DIPA algorithm and the algoriihnf9] is just like the difference
between the algorithms in [17] and [18].

The DIPA algorithm is an efficient algorithm to obtain the iogdl transmit covariance matrix
of the dual MIMO MAC (Problem 4). Moreover, the optimal satut to Problem 3 can be
obtained via the MAC-to-BC covariance matrix mapping aldpon presented in the next section.

IV. MAC-T0-BC COVARIANCE MATRIX MAPPING

A covariance matrix mapping algorithm was developed in [Hjwever, this algorithm works
for the sum rate maximization problem under a single sum poaestraint, and is not applicable
to a weighted sum rate problem under multiple constraintsthe following, we develop a
covariance matrix mapping algorithm, which computes the d®ariance matriceé)? via the
dual MAC covariance matrice®!" such that two channels yield a same weighted sum rate.

In the MIMO-MAC, according to (11), the transmit beamformivectorsv; ; can be obtained
by the eigenvalue decomposition. The corresponding redeamforming vector at the B4, ;,
is obtained by using the minimum mean square error (MMSE)réhgn:

i—1 N, j—1

Ui = Cl( Z Z Qk,lHL’Uk,z’ULlHk + Z q@',zH,T’Uz',zULHz + Rw)_lHj—’Ui,j, (31)

k=1 1=1 =1

wherea is a normalized factor such thdu, ;|| = 1. Throughout the proof of Proposition 3, we
can see that when the same optimal solutions are achievedithal BC and the dual MAC share
the same beamforming vectaus; andv; ;. Hence, the transmit beamforming vectors of the BC
are just the receive beamforming vectors of the dual MAC, thedeceive beamforming vectors
of the BC are the transmit beamforming vectors of the dual MABuUS, to obtain the transmit
signal covariance matrix of SWor the BC, we only need to compute the power allocated to each
data stream. Due to Corollary 1, the dual MAC and the BC caimeselthe same SINR region,
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i.e., SINI'{J. = SINI—‘Q‘j. Thus, for the BC, the power allocated to the beamformingationw;
can be obtained by

SINRY; (Ek —i+1 PO 1pkl‘ule viP+ 30 g+1pzl|uz,le'Ui,j‘2+U2)
\'u,HHT'UZ,jP '

For the BC, the encoding order is the reverse of the decodidgr®f the MAC. Thuspg n,

Dij = (32)

is computed firstpx n,—1 IS computed second, and so on, in the decreasing order ofétiae d
stream index and the user index.

After computing the power for all the beamforming vectors wabtain the signal covari-
ance matrix from the BS to SUQ? = Z; lpwu”u” The aforedescribed process can be
summarized as the following algorithm.

MAC-to-BC Covariance Matrix Mapping Algorithm:

1) Computey, ; andw; ; through eigenvalue decompositia@™ = VA,V = Z; lqu”v;f],
2) Use the MMSE algorithm to obtain the optimal receiver bfaming vectorw;; and
SINR;

3) Computep; ; through (32) according to the duality between the BC and teCM

4) ComputeQ® = EJ 1p”u”ujJ
It should be noted that even though an explicit algorithm as given, the paper [20] has
mentioned the idea behind the above algorithm. The MAC@-d®variance matrix mapping
allows us to obtain the optimal BC covariance matrices fablm 3 by solving Problem 4.

V. A COMPLETE SOLUTION TO THE CR MIMO-BC WEIGHTED SUM RATE PROBLEM

We are now ready to present a complete algorithm to solvel@&roB. The Lagrangian dual
objective function of Problem 2 can be rewritten as follows

9(qt,qu) =  max wyr? (33)
QK Q-0 ;

where the maximization is subject to the constraifty "~ | hlQ%h, — P,) +¢.( 31, tr(QY) —
Pu) < 0. Problem 2 is equivalent to the following problem

min g(¢:, q.), Subjectto ¢ >0 andg, > 0.
qt,qu

Applying the BC-MAC duality in Section II-B and the DIPA algthm in Section Ill,g(q, ¢.)
can be obtained. The remaining task is to determine the aptinand¢,. Sinceg(q;, g.) iS not
necessarily differentiable, we search the optimaand ¢, through the subgradient algorithm;
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that is, in each iterative step, we update the veptor;,| according to the subgradient direction

s = [s1, 52| of g(q, qu).
Lemma 3:The subgradient ofi(¢., ¢.) is [P, — Y., hlQPh,, P, — 3-8 tr(QP)], where

¢ >0,q, > 0, and Q? .1 =1,..., K, are the corresponding optimal covariance matrices for
the problem (33).
Proof: The proof is given in Appendix E. [ |

It has been shown in [25] that with a constant step size, thgradient algorithm converges
to a value that is within a small range of the optimal value.,, i.

lim g™ — /| <e, and lim |¢ — ¢}| < e, (34)

wheregq; and ¢’ denote the optimal values, atq{:l” and q&") denote the values af; and ¢, at

thenth step of the subgradient algorithm, respectively. Thiplies that the subgradient method

finds ane-suboptimal point within a finite number of steps. The numibiera decreasing function

of the step size. Moreover, if the diminishing step size relg., the square summable but not

summable step size, is applied, the algorithm is guararteednverge to the optimal value.
We next describe the algorithm to solve Problem 2 as follows.

Subgradient Iterative Power Allocation (SIPA) Algorithm :

1) Initialization: ¢!”, ¢\, n =1,
2) repeat
2a) Find the optimal solution of the dual MAC Problem 4 thrbuge DIPA algorithm;
2b) Find the solution of the BC problem (33) through the MAEBC mapping algorithm;
2c) Update;™ andq™ through a subgradient algorithgi"™" = ¢ +¢(>5  hiQ h, —
P), Qz(LHH) = @h(tn) + t(Zf; tr(QY) — P.),
2d) n=n+1
3) Stop when|g!™ (3% hiQ°h, — P)| < e and |¢{" (32K tr(QP) — P,)| < ¢ are satisfied
simultaneously,
wheret denotes the step size of the subgradient algorithm. As a suyrthe flow chart of
the SIPA algorithm is depicted in Fig. 3. We shows that theASiRjorithm converges to the
optimal solution of Problem 1 in the following proposition.
Proposition 5: The SIPA algorithm converges to the globally optimal santof Problem 1.

Proof: The Lagrangian function of Problem 1 is given by
K

K K
L@ Q% M, h) =D wir? = M (D hIQh, — P) — Ao ( D _tr(QP) — P),  (35)
i=1 i=1

1=1
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and the Lagrangian function of Problem 2 is given by
K

K K
Ll(Q?? ) Q?{? )\7 qt, QU> = Zwlrzb - )\(Qt(z h’lQ?ho - Pt) - QU(Ztr<QE) - PU)) (36)
i=1 i=1 i=1

Let G, Gu, A, andQ; be the optimal values of,(Q", ..., Q"%, X\, ¢, ¢.), when the algorithm
converges. We thus have
OL1(Q1, ., Q. A 41, 4u)
QP QY | A
G( K, hiQ:h, — P)| =0, and 7,325, tr(Q,) — P,)| = 0. This means tha@, is a locally
optimal solution.
According to (35), if we seleck; = AG;, A» = A\, andQ, = Q,, then);, ., andQ, satisfy
the KKT conditions of Problem 1 and thus are the locally oplivariables.

=0,

Suppose that there exists an optimal seAgf\,, andQ, such thatZL(Q,, ..., Q. A1, As) >
L(Q,,...,Qx, M\, \s). Clearly, this optimal set of;, \,, and Q, satisfy the KKT conditions
of Problem 1. In the sequel, we will derive a contradiction.

First, we can write

L(le' o v@KaS\le‘Z) > L(le T 7@[(75‘175‘2)' (37)

Suppose that (37) does not hold, iB(Q,, -, Qx. A\, As) < L(Q,, -+, Qg, A1, Xo). Then,
according to the BC-MAC duality in Section II-B, an objedivalue of (7) which is larger than
L(Q,. - ,Q, M\, \2), can be found for the fixeq, andg,. However, from Proposition 4, the
DIPA algorithm converges the optimal solution. It is a caaiction.

Secondly, according to the KKT conditions of Problem 1, wegeha

A ( i hiQih, — P) =0, (38)
T
LS W@ - R) =0 (39)
=1
We thus can write:
L@, Qu My ha) = L(Qy, -+, Qe h, As). (40)
Combining (40) and (37), we have
LQy Qe My o) > L(Qy, -+, Qe vy Ao). (41)
This contradicts with our previous assumption. [ ]
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Remark 4:The algorithm can be extended to the multiple PU case in thewimg manner.
Assume that there ar& PUs. Problem 2 becomes
K
min max Y wirp,

Qt,jZOﬂI’uZO{Q?}iKzlz Q?EO P

(42)

N K K
subject to > " qi; (D k! ;QPho; — Prj) + ¢ (D tr(@Q) — P.) <0,

j=1 i=1 i=1
whereg, ; is the auxiliary variable for thgth PU, h, ; is the channel response from the BS to
the jth PU, andPF, ; is the interference threshold of théh PU. The role of auxiliary variables
q.,; 1s similar to that ofg, in the single PU case. It is thus straightforward to modifg 8IPA
algorithm to solve the problem for the multiple PU case. Mweg, it should be noted that the
multiple interference constraints of the problem (42) cartrbnsformed to the per-antenna power
constraints [20] by setting, ;, j = 1,---, V;, to be thejth column of the identity matrix. Not
limited by the sum rate maximization problem with interféce power constraints, the method
proposed in this paper can be easily applied to solve therrdter optimization problem (e.g.

beamforming optimization) for MIMO BC with multiple arbéry linear power constraints.

VI. SIMULATION RESULTS

In this section, we provide the simulation results to shoes éfffectiveness of the proposed
algorithm. In the simulations, for simplicity, we assumattthe BS is at the same distante,to
all SUs, and the same distanttg,), to PU,. In the single PU case, we will drop the superscript
and simply use notatiofy. Suppose that the same path loss model can be used to daberibe
transmissions from the BS to the SUs and to the PUs, and the lpss exponent is 4. The
elements of matrixd are assumed to be circularly symmetric complex Gaussia€@GIRVs
with mean zero and variance 1, ahg can be modeled as, = (/,/1>)%a,,, wherea,, is aN; x 1
vector whose elements are CSCG RVs with mean zero and varibnthe noise covariance
matrix at the BS is assumed to be the identity matrix, and tine gower and interference power
are defined in dB relative to the noise power, afdis chosen to bé dB. For all cases, we
choosel; = [,, except for explicitly stated.

Example 1:In Fig. 4, we examine the validity of the DIPA algorithm. Inighexample, we
chooseK = 1 (a single SU case)N; = 4, N, = 4, and P, = 10 dB. It is well known that
the optimal transmit signal covariance matrix can be olkthitnrough the water-filling principle
[24]. As can be observed from Fig. 4, in several iterations,DIPA algorithm converges to the
optimal solution obtained by using the water-filling priple.
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Example 2:In Fig. 5, we show the convergence property of the DIPA atbari In this
example, we choos& = 20 and P, = 10 dB. It can be observed from this figure that the
algorithm converges to the optimal solution within sevetalation steps.

Example 3:In Figs. 6 and 7, we consider a SU MIMO-BC network with = 5, N; = 5,
N, = 3, and P, = 13 dB. In this example, the SUs withh, =5 andw; =1, i =2,..., K
are assumed to share the same spectrum band with two PUS jBliots the weighted sum rate
versus the number of iterations of the SIPA algorithm fopstezest = 0.1 andt = 0.01. As
can be seen from the figure, the step size affects the accaratyconvergence speed of the
algorithm. Fig. 7 plots the sum power at the BS and the interfee power at the PUs versus
the number of iterations. It can be seen from the figure thatstim power and the interference
power approach t@&, = 13 dB and P, = 0 dB respectively when the SIPA algorithm converges.
This implies that the sum power and interference conssant satisfied with equalities when
the SIPA algorithm converges.

Example 4:Fig. 8 plots the achievable sum rates versus the sum powhkeisibgle PU case
and the case with no PU. We chooke= 5, N; = 5, and N, = 3. As can be seen from Fig.
8, in the low sum power regime, the achievable sum rate in #se evith no PU is quite close
to the one in the single PU case while in the high sum powemnregthe achievable sum rate
in the case with no PU is much higher than the one in the singledse. This is because the
additional constraint reduces the degrees of freedom ofsyktem.

Example 5:1n this example, we consider the influence of the interfegecmnstraint on the
achievable sum rate of the SUs. In this exampNe= 5, K = 5, and N,, = 3. The sum power
constraint for the BS is assumed to be 15 dB and 20 dB. Fig. $aoes the sum rate achieved
in a PU case with one achieved in the case with no PW, ds varies from 1 to 12. It can be
observed from the figure that the achievable sum rate ineseas the PU moves away from the
BS, and the influence of the PU reduces to zero afteis{He is larger than a certain threshold.

VIlI. CONCLUSIONS

In this paper, we developed a new BC-MAC duality result, wihdan be viewed as an extension
of existing dual results developed under either a sum powastecaint or per-antenna power
constraints. Exploiting this duality result, we proposededficient algorithm to solve the CR
MIMO-BC weighted sum rate maximization problem. We furttsdrowed that the proposed
algorithm converges to the globally optimal solution.
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APPENDIX

A. Lemma 4 and its proof: The following lemma describes an important property thdk be
used in the proof of other lemmas.

Lemma 4:For fixed ¢, and ¢,, the maximum weighted sum rate in (5) is achieved when the
constraint (6) is satisfied with equality.

Proof: We here adopt the DPC scheme, which is a capacity achieviategy for the
MIMO-BC [16]. Let the permutationr represent the encoding order when the optimal solution
is achieved. Assume that $ly, is encoded first such that the signal of S is noncausally
known to the BS before the signals from the other SUs are etothus, in the DPC scheme
the signal from SyJ,) has no impact on the rates achieved by the other SUs. We piis/e t
lemma by contradiction.

Suppose thaQQ(l) is the optimal signal covariance matrix of S4J. Assume that the con-
straint (6) is satisfied with a strict inequality when theioytl solution is achieved. Thus, we
can always find am > 0 such that

K
Z hi(Q2 ) o + RL(Q2 ) + el)h, — Py) + Qu(ztr(QEr(i)> +tr(QYy + eI) — P,)
=2

= qt(z h(Q%)ho + Ri(eD)h, — Pr) + qu( Ztr ® ) +tr(el) — P,) < 0. (43)

i=1

Moreover, the rate achieved by usefl) in the MIMO-BC can be written as
’I+ZZ VHo Qb H

}I+ZMH ‘

TT('(l
Due to the positive semi-definiteness propert)fo, we have

b T
IOg I+ Z H 7r(2 7r(1) + Hﬂ'(l)(Qﬂ'(l) + EI)Hw(l)‘

:logI+ZH Q> ﬂ(l)

+log | I+ (I+ Z H.0) Q2 H! ) H 1) (Q2y+ el H! | (T + Z H Fa)?
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—log I+ZH7T(1 H | +log| I+ G(Q + )G

log I+Z H) Q0 H | +log| T+ A+ €3 (44)
> log I—i—ZHW(l 7r(1 + log I—i—A‘

=log I—i—ZHﬂ(l ﬂ(l ; (45)

whereG = eru)(I +3F, Hw(l)Qw(l)H;(l))—l/z, and A and X are diagonal matrices. Eq.
(44) is due to the fact that the optimal covariance matrix @MIMO has the water-filling
structure [19] [24], i.e., if we apply singular value decamsjpion toG, G = V. SU, whereV
andU are unitary matrices, anfl is a diagonal matrix, then the optimQQ(l) can be written
as Qf’r(l) = U'RU, whereR is a diagonal matrix. Thus, we have= SRS andX = SS.
According to (45) and (43)Qb + eI is a better solution for the sum rate problem than
Qﬂ(l which contradicts with the assumptlon Therefore, thest@mt must be satisfied with
equality. [ ]

B. Proof of Proposition 1: The proof consists of two parts. In the first part, we show #itduer
optimal solution is feasible for both problems. In the setpart, we show that Problem 1 and
Problem 2 have the same solution.

The Lagrangian function of Problem 1 is

K
Li(Q% -, Q% M\, A\, Zwr —\ Zh* Pho — P) — (D _tr(QY) — P,), (46)
i=1

where \; and )\, are the Lagrangian multipliers. The optimal objective eaisi

min - max Li(Q% -, Q% X\, \.). (47)
AnduQl e Qf
Assume the optimal variables akg, X, and@", - - -, Q>, and the corresponding optimal value

is C.
The Lagrangian function of Problem 2 is:

Lo(QP, - 7Q?(,qt7qu7)\):Zwi7‘lb (qt ZhTQbh —P)+q, Ztr (Q°) — )) (48)
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where ) is the Lagrangian multiplier. The optimal objective valge i

min  max LQ(QE’,W 7Q?{7Qt>QU7)‘)' (49)
qt7qu7>\Qk1)7"'7Qt;{

Suppose that the optimal variables &reg,, A, andQ? ,i=1,..., K, and the corresponding
optimal objective value i€'. We just need to prové = C.
We now present the first part of the proof. According to the Keéohdition of Problem 2, we

have
OLs(\, Q" Q. s ) - b

20 Wy W Qu) T —
=\ E h!Q.h,— P,) =0, 50
Oq (2:1 o t) )

~ ~b ~b _ . K

8L2<)\7Q17‘“7 K7Qt7qu) Y =D o _

o Q _)\(2 tr(Q;) — P.) = 0. (51)

Recall that the Lagrangian multipliaris non-negative. Furthermore Jf= 0, we havej, (3%, hiQ,h,—
P) 4G, (35, tr(Q,) — P,) < 0 from the KKT conditions. This contradicts with Lemma 4. Thus
we always havé\ > 0 and can readily conclude thit ™, hiQ"h, = P, and 2% tr(Q}) = P,
are satisfied simultaneously. The optimal solution of Reobl2 is also a feasible solution of
Problem 1. On the other hand, it is obvious that the feasiblatisn for Problem 1 is also the
feasible solution for Problem 2.

We next prove the second part by using contradiction. Letrss $uppose” > C'. For (48),
if we selectQ® = Q" fori =1,...,K, A\=1, ¢ = \s andg, = A, thenL, = C > C. It
contradicts to the fact thaf' is the optimal objective value for (49).

We now assumé’ < (.. Recall that\ # 0, for (48). If we seleciQ® = Q- fori=1,..., K,
A = AG, and )\, = \G,, thenZ; = C' > C, which contradicts with the fact that is the optimal
objective value for (47).

Therefore, the optimal solutions for Problem 2 and Problearelthe same. [ |

C. Proof of Lemma 1: According to previous discussions, the signal from each SUtivided
into several data streams. We now show that the optimal émgaxtder of these data streams
are arbitrary. It is well known that the optimal objectivduaof the MAC equally weighted sum
rate problem can be achieved by adopting any ordering [18][[8]; that is, when all the users
have the same weights, the optimal solution of the weightsd sate maximization problem is
independent of the decoding order. Analogously, the da&asts within a SU share the same
weight. Thus, an arbitrary encoding order of those dataastsewithin a SU can achieve the
optimal solution. [ |
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D. Proof of Lemma 2: Let s be the sub-gradient Q;f(S\). For a given\ > 0, the subgradient
of g()\) satisfiesg(A) > g(A) + s(A — \), where) is any feasible value. LD, i =1,..., K,
be the optimal covariance matrices in (27) for= ), and Q;n, i=1,..., K, be the optimal
covariance matrices in (27) for= . We expresg/(\) as

o) = max. (f(@QF Q) - A m(@n - P))

_ O™ ’Qg)—S\(itr(Q?)—P)+5\<itr(é?)—P)—X<itr(Q?) - p)

wheres .= P — S8 tr(Q;n) is the subgradient of()\). This concludes the proof. |

E. Proof of Lemma 3: The subgradiens of ¢(q, G.) satisfiesg(q, G.) > 9(G, Gu) + ([@, Gu) —
G, 4u)) - 8T, where[g;, g, is any feasible vector. Led_)? i=1,..., K, be the optimal matrices
of the problem (33) for;, = ¢, and ¢, = ., and Iet@? i=1,..., K, be the optimal matrices
of the problem (33) fok; = ¢, andq, = ¢.. We express)(q, q,) as

M
Gi,Gy) = Mmax P 52
9(t: Gu) Q?”"Q%;wr (52)
M - K B K _
=> wirt =G (DY hiQ%h — P) + qu( > _tr(Q°) — P.)) (53)
=1 i=1 =1
M K b K b
>3 wi = M@ (X riQih, — P) + 0> (@) - ) (54)
=1 =1 =1

M K K
:szf?— X(gt(zhlé?ho - Pt) +67u(ztr(@?) o Pu))
i=1 i=1 i=1

£ M@ (O PR P) (3 (@0-P.)) =@ (3 QT heP ). (3 t(@0)-P.))
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K K b
1=1 =1
K
9(Gt5 Gu) <Z hl@?h’o - Pt) (S\C]t — AG + MG — Aqy)

K
i=1

9(a, ) (ZhTQh P) (0 — Aa) + (Zh*@h P) (i - )

+ (Z tr(@Q)) - Pu) (AN — Adu) + (itr(@?) - Pu> (M — Ad)
9(ii @) (Z hiQh, — P) (N = A@) + (itr(@?) = P) (i~ Aa)  (55)

:g(Qta(JU) + X([@tv@u] - [Cjta(ju]) "S,

wheres = [P, — X hiQ h,, P, — K (@) Eq (53) is due to the fact that the dual
objective function of the problem (33), and, ), andQ are the optimal variables for the fixed

¢; and g,. The inequality (54) is becaui@i .1 =1,..., K, are the optimal signal covariance
matrices for the fixed; andg,. The equality (55) is due to Lemma 4. Thusis the subgradient
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Fig. 1. The system model for MIMO-BC based cognitive radidwaeks. There areK’ SUs. The BS of the SUs ha¥;
transmit antennas, and each SU is equipped Withreceive antennas.
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Fig. 2. The system models for Problem 3 and Problem 4, wheand ¢, are constant, andR, = hoh/.
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Fig. 3. The flow chart for the SIPA algorithm, whe@?,(") andQ? ,, denote the transmit signal covariance matrices of SU
for the BC and MAC at the:uth step, respectively.
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Fig. 4. Comparison of the optimal achievable rates obtamethe DIPA and the water-filling algorithm in a MIMO channel
(Nt = N, =4, K =1 and P,=10 dB).
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Fig. 7. The convergence behavior of the sum power at the BShanihterference at the PU for the SIPA algorithi; (= 5,
K =5, N, =3, w; =5, andw; = 1 with ¢ # 1).
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