
ar
X

iv
:0

80
4.

34
53

v1
  [

cs
.IT

]  
22

 A
pr

 2
00

8

Weighted Sum Rate Optimization for Cognitive

Radio MIMO Broadcast Channels

Lan Zhang†, Yan Xin†∗, and Ying-Chang Liang‡

Abstract

In this paper, we consider a cognitive radio (CR) network in which the unlicensed (secondary)

users are allowed to concurrently access the spectrum allocated to the licensed (primary) users provided

that their interference to the primary users (PUs) satisfiescertain constraints. We study a weighted

sum rate maximization problem for the secondary user (SU) multiple input multiple output (MIMO)

broadcast channel (BC), in which the SUs have not only the sumpower constraint but also interference

constraints. We first transform this multi-constraint maximization problem into its equivalent form, which

involves a single constraint with multiple auxiliary variables. Fixing these multiple auxiliary variables,

we propose a duality result for the equivalent problem. Our duality result can solve the optimization

problem for MIMO-BC with multiple linear constraints, and thus can be viewed as an extension of the

conventional results, which rely crucially on a single sum power constraint. Furthermore, we develop

an efficient sub-gradient based iterative algorithm to solve the equivalent problem and show that the

developed algorithm converges to a globally optimal solution. Simulation results are further provided

to corroborate the effectiveness of the proposed algorithm.
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I. INTRODUCTION

Cognitive radio (CR), as a promising technology to advocateefficient use of radio spectrum,

has been a topic of increasing research interest in recent years [1]–[7]. CR allows an unlicensed

(secondary) user toopportunisticallyor concurrentlyaccess the spectrum initially allocated to the

licensed (primary) users provided that certain prescribedconstraints are satisfied, thus having

a potential to improve spectral utilization efficiency. In this paper, we study a weighted sum

rate maximization problem for the secondary user (SU) multiple input multiple output (MIMO)

broadcast channel (BC) in a concurrent CR network, in which the SUs have not only the sum

power constraint but also interference constraints.

A. System Model and Problem Formulation

With reference to Fig. 1, we consider theK-SU MIMO-BC with Nt transmit antennas and

Nr receive antennas in a CR network, where theK SUs share the same spectrum with a single

primary user (PU) equipped with one transmitter and one receiver1. The transmit-receive signal

model from the BS to theith SU denoted by SUi, for i = 1, . . . , K, can be expressed as

yi = H ix+ zi, (1)

whereyi is theNr ×1 received signal vector,H i is theNr ×Nt channel matrix from the BS to

the SUi, x is theNt × 1 transmitted signal vector, andzi is theNr × 1 Gaussian noise vector

with entries being independent identically distributed random variables (RVs) with mean zero

and varianceσ2. Considerho as theNt × 1 channel gain vector between the transmitters of the

BS and the PU. We further assume thatH i for i = 1, . . . , K, andho remain constant during

a transmission block and change independently from block toblock, andH i for i = 1, . . . , K,

andho are perfectly known to the BS and SUi. This requires that the SUs can “cognitively”

obtain the information of its neighboring environment. In practice, certain cooperation in terms

of parameter feedback between the PU and the BS is needed. To achieve that, the protocol for

the SU network can be designed as follows: every frame contains sensing sub-frame and data

transmission sub-frame. During the sensing sub-frame, BS can transmit training sequences to

SUs as well as to the PU so that the SUs can estimate the channelmatrix H i, and the PU can

measure the vectorho. After that, this information will be sent back to the BS via afeedback

channel.

1Expect for explicitly stated, we restrict our attention to asingle PU case in the rest of this paper for convenience of description.

The results derived for the single PU case can be readily extended to the multiple PU case, which is discussed in Remark 4.

November 2, 2018 DRAFT



2

We next consider the weighted sum rate maximization problemfor the K-SU MIMO-BC

in a CR network, simply called the CR MIMO-BC sum rate maximization problem, which,

mathematically, can be formulated as

Problem 1 (Main Problem):

max
{Qb

i}
K
i=1: Q

b
i�0

K
∑

i=1

wir
b
i (2)

subject to
K
∑

i=1

h†
oQ

b
iho ≤ Pt, and

K
∑

i=1

tr(Qb
i ) ≤ Pu,

whererb
i is the rate achieved by SUi, wi is the weight of SUi, Q

b
i denotes theNt ×Nt transmit

signal covariance matrix for SUi, Q
b
i � 0 denotes thatQb

i is a semidefinite matrix,Pt denotes the

interference threshold of the PU, andPu denotes the sum power constraint at the BS. In a non-

CR setting, similar weighted sum rate optimization problems for the multiple input single output

(MISO) BC and the MIMO-BC have been studied in [8] [9], respectively. The key difference is

that in addition to the sum power constraint, an interference constraint is applied to the SUs in

the CR MIMO-BC, i.e., the total received interference power
∑K

i=1 h
†
oQ

b
iho at the PU is below

the thresholdPt.

Remark 1: It has long been observed that the optimal sum rate for MIMO BCwith a single

sum power constraint is equal to the optimal sum rate of the dual MIMO multiple access channel

(MAC) with the same sum power constraint [10] [11] [12]. However, thisconventional BC-MAC

duality can only be applied to the case with a single sum power constraint (even not applicable

to an arbitrary linear power constraint). Hence, the additional interference power constraint in

Problem 1 makes the existing duality cannot be applied. The new duality result proposed in this

paper generalizes the previous results as special cases. Moreover, it is worth to note that any

boundary point of the capacity regions of the MIMO-MAC and the MIMO-BC can be expressed

as a weighted sum rate for a certain choice of weights [13] [14]. Thus, by varying the weights

of the SUs in Problem 1, the entire capacity region of the CR MIMO-BC can be obtained.

B. Related Work

The present paper is motivated by the previous work on the information-theoretic study of the

MIMO-BC under anon-CRsetting. It has been shown in [11] [12] [15] that under a single sum

power constraint, the sum-capacity of the non-CR MIMO-BC can be achieved by the dirty paper

coding (DPC) scheme. Furthermore, the paper [16] shows thatthe rate region achieved by the

DPC scheme is indeed the capacity region of such a channel. However, the power allocation and
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beamforming strategies to achieve the capacity region havebeen not considered in these papers.

Moreover, it has been shown in [17] [18] that under the singlesum power constraint, theequally

weighted sum rate maximization problem, simply called the sum rate problem, for the MIMO-BC

can be solved by solving its dual MIMO MAC sum rate problem, which is also subject to a single

sum power constraint. In [17], a cyclic coordinate ascent algorithm was proposed to solve the dual

MIMO-MAC problem while in [18] this sum-power constrained dual problem was decoupled

into an individual-power constrained problem, which can besolved by using an iterative water-

filling algorithm [19]. Even though these algorithms proposed in [17] [18] can solve the sum

rate optimization problem for the non-CR MIMO-BC via the MAC-BC duality, they are not

applicable to the general weighted sum rate problem. In [8],a generalized iterative water-filling

was proposed to solve the weighted sum rate problem for the MISO-BC where each user has a

single receive antenna. However, the proposed algorithm isnot applicable to the general MIMO-

BC case. Furthermore, an efficient algorithm was proposed tosolve the MIMO-BC weighted

sum rate problem with a single sum power constraint in [9]. These aforementioned results are

based on the conventional BC-MAC duality, which cannot be applied to solve the weighted sum

rate problem with multiple constraints (the case of interest in this paper). Recently, the paper [20]

investigated a different MIMO-BC weighted sum rate maximization problem which is subject

to per-antenna power constraints instead of the single sum power constraint, and established a

new minimaxduality which is different from the conventional BC-MAC duality. A Newton’s

method based algorithm was proposed to solve this minimax problem. In this paper, we consider

a more general case where the power is subject to multiple linear constraints instead of the sum

power constraint or per-antenna power constraints, and propose a new BC-MAC duality result

to extend the conventional duality result so that it can solve the problem with multiple arbitrary

linear constraints. A Karush-Kuhn-Tucker (KKT) conditionbased algorithm is developed to solve

the problem.

C. Contribution

Throughout the paper, we consider the CR MIMO-BC weighted sum rate maximization

problem as defined in Problem 1. As the main contribution of this paper, our solution is

summarized in the following.

1) We prove that in the CR MIMO-BC, the multi-constraint weighted sum rate maximization

problem (Problem 1) is equivalent to a single-constraint weighted sum rate maximization

problem with multiple auxiliary variables.
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2) For the equivalent problem, we establish a duality between the MIMO-BC and a dual

MIMO-MAC when the multiple auxiliary variables are fixed as constant. This duality is

applicable to MIMO-BC with arbitrary linear power constraint, and can be viewed as an

extension of the conventional MIMO MAC-BC duality result [10] [11] [12], which is only

valid for the problem with a single sum power constraint.

3) For the weighted sum rate maximization problem of the dualMIMO MAC, the existing

iterative water-filling based algorithm [17], [18] is not applicable. We propose a new primal

dual method based iterative algorithm [21] to solve it. Furthermore, we propose a sub-

gradient based iterative algorithm to solve the main problem of the paper, Problem 1, and

show that the proposed algorithm converges to the globally optimal solution.

D. Organization and Notation

The rest of the paper is organized as follows. In Section II, we transform the CR MIMO-BC

weighted sum rate maximization problem (Problem 1) into itsequivalent form, and introduce a

MAC-BC duality between a MIMO-BC and a dual MIMO-MAC. Section III presents an primal

dual method based iterative algorithm to solve the dual MIMO-MAC weighted sum rate problem.

In Section IV, a MAC-BC covariance matrix mapping algorithmis proposed. Section V presents

the complete algorithm to solve the CR MIMO-BC weighted sum rate maximization problem.

Section VI provides several simulation examples. Finally,Section VII concludes the paper.

The following notations are used in this paper. The boldfaceis used to denote matrices and

vectors,(·)† and(·)T denote the conjugate transpose and transpose, respectively; IM denotes an

M ×M identity matrix; tr(·) denotes the trace of a matrix, and[x]+ denotesmax(x, 0); (·)b and

(·)m denote the quantities associated with a broadcast channel and a multiple access channel,

respectively;E[·] denotes the expectation operator.

II. EQUIVALENCE AND DUALITY

Evidently, the MIMO-BC weighted sum rate maximization problem under either a non-CR

or a CR setting is a non-convex optimization problem and is difficult to solve directly. Under a

single sum power constraint, the weighted sum rate problem for MIMO BC can be transformed

to its dual MIMO MAC problem, which is convex and can be solvedin an efficient manner

[8] [9]. In the CR setting, the problem (Problem 1) has not only a sum power constraint but

also an interference constraint. The imposed multiple constraints render difficulty to formulate
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an efficiently solvable dual problem. To overcome the difficulty, we first transform this multi-

constrained weighted sum rate problem (Problem 1) into its equivalent problem which has a

single constraint with multiple auxiliary variables, and next develop a duality between a MIMO-

BC and a dual MIMO-MAC in the case where the multiple auxiliary variables are fixed.

A. An Equivalent MIMO-BC Weighted Sum Rate Problem

In the following proposition, we present an equivalent formof Problem 1 (see Appendix B

for the proof).

Proposition 1: Problem 1 shares the same optimal solution with

Problem 2 (Equivalent Problem):

min
qt≥0, qu≥0

max
{Qb

i}
K
i=1: Q

b
i�0

K
∑

i=1

wir
b
i (3)

subject to qt
(

K
∑

i=1

h†
oQ

b
iho − Pt

)

+ qu
(

K
∑

i=1

tr(Qb
i )− Pu

)

≤ 0, (4)

whereqt and qu are the auxiliary dual variables for the respective interference constraint and

sum power constraint.

It can be readily concluded from the proposition that the optimal solution to Problem 2 also

satisfies
∑K

i=1 h
†
oQ

b
iho ≤ Pt and

∑K
i=1 tr(Qb

i ) ≤ Pu simultaneously since it is also the optimal

solution to Problem 1. Finding an efficiently solvable dual problem for Problem 2 directly is still

difficult. However, as we show later, whenqt andqu are fixed as constants, Problem 2 reduces

to a simplified form, which we can solve by applying the following duality result.

B. CR MIMO BC-MAC Duality

For fixedqt andqu, Problem 2 reduces to the following form

Problem 3 (CR MIMO-BC):

max
{Qb

i}
K
i=1: Q

b
i�0

K
∑

i=1

wir
b
i (5)

subject to qt

K
∑

i=1

h†
oQ

b
iho + qu

K
∑

i=1

tr(Qb
i ) ≤ P, (6)

whereP := qtPt+ quPu. Sinceqt andqu are fixed,P is a constant in Problem 3. The constraint

(6) is not a single sum power constraint, and thus the dualityresult established in [17] is not

applicable to Problem 3. Therefore, we formulate the following new dual MAC problem.

Proposition 2: The dual MAC problem of Problem 3 is
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Problem 4 (CR MIMO-MAC):

max
{Qm

i }
K
i=1: Q

m
i �0

K
∑

i=1

wir
m
i (7)

subject to
K
∑

i=1

tr(Qm
i )σ

2 ≤ P, (8)

where rm
i is the rate achieved by theith user of the dual MAC,Qm

i is the transmit signal

covariance matrix of theith user, and the noise covariance at the BS isqthoh
H
o + quINt

.

Remark 2:According to Proposition 2, for fixedqt andqu, the optimal weighted sum rate of

the dual MAC is equal to the optimal weighted sum rate of the primal BC. From the formulation

perspective, this duality result is quite similar to the conventional duality in [10] [11] [12].

However, as shown in Fig. 2, one thing needs to highlight is that the noise covariance matrix

of the dual MAC is a function of the auxiliary variableqt andqu, instead of the identity matrix

[12]. This difference comes from the constraint (6), which is not a sum power constraint as in

[12]. Note that whenqt = 0, the duality result reduces to the conventional BC-MAC duality in

[12].

As illustrated in Fig. 2, Proposition 2 describes a weightedsum rate maximization problem for

a dual MIMO-MAC. To prove the proposition, we first examine the relation between thesignal

to interference plus noise ratio(SINR) regions of the MIMO-BC and the dual MIMO-MAC.

Based on this relation, we will show that the achievable rateregions of the MIMO-BC and the

dual MIMO-MAC are the same.

In the sequel, we first describe the definition of the SINR for the MIMO-BC. It has been

shown in [16] that the DPC is a capacity achieving scheme. Each set of the transmit covariance

matrix determined by DPC scheme defines a set of transmit and receive beamforming vectors,

and each pair of these transmit and receive beamforming vectors forms a data stream. In a

beamforming perspective, the BS transmitter haveNt×K beamformers,ui,j, for i = 1, · · · , K,

and j = 1, · · · , Nt. Therefore, the transmit signal can be represented as

x =
K
∑

i=1

Nt
∑

j=1

xi,jui,j,

wherexi,j is a scalar representing the data stream transmitted in thisbeamformer, andE[x2
i,j] =

pi,j denotes the power allocated to this beamformer. At SUi, the receive beamformer correspond-

ing to ui,j is denoted byvi,j. The transmit beamformerui,j and the powerpi,j can be obtained

via the eigenvalue decomposition ofQb
i , i.e.,Qb

i = U
†
iP iU i, whereU i is a unitary matrix, and
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P i is a diagonal matrix. The transmit beamformerui,j is thejth column ofU i, andpi,j is the

jth diagonal entry ofP i. With these notations, we express the SINRb
i,j as

SINRb
i,j =

pi,j|u
†
i,jH

†
ivi,j|

2

∑K
k=i+1

∑Nr

l=1 pk,l|u
†
k,lH

†
ivi,j|2 +

∑Nr

l=j+1 pi,l|u
†
i,lH

†
ivi,j|2 + σ2

. (9)

It can be observed from (9) that the DPC scheme is applied. This can be interpreted as follows.

The signal from SU1 is first encoded with the signals from other SUs being treatedas interference.

The signal from SU2 is next encoded by using the DPC scheme. Signals from the other SUs will

be encoded sequentially in a similar manner. For the data streams within SUi, the data stream 1

is also encoded first while the other data streams are treatedas the interference. The data stream

2 is encoded next. In a similar manner, the other data streamswill be sequentially encoded. The

encoding order is assumed to be arbitrary at this moment, andthe optimal encoding order of

Problem 2 will be discussed in Section III.

To explore the relation of the SINR regions of the dual MAC andthe BC, we formulate a

following optimization problem

min
{Qb

i}
K
i=1: Q

b
i�0

qt

K
∑

i=1

h†
oQ

b
iho + qu

K
∑

i=1

tr(Qb
i )− P

subject to SINRbi,j ≥ γi,j,

(10)

whereγi,j denotes the SINR threshold of thejth data stream within the SUi for the BC. Note

that the objective function in (10) is a function of signal covariance matrices and the constraints

are SINR constraints for theK-SU MIMO-BC.

It has been shown in [20] and [22] that thenon-convexBC sum power minimization problem

under the SINR constraints can be solved efficiently via its dual MAC problem, which is a

convex optimization problem. By following a similar line ofthinking, the problem in (10) can

be efficiently solved via its dual MAC problem. Similar to theprimal MIMO-BC, the dual

MIMO-MAC depicted in Fig. 2 consists ofK users each withNr transmit antennas, and one

BS withNt receive antennas. By transposing the channel matrix and interchanging the input and

output signals, we obtain the dual MIMO-MAC from the primal MIMO-BC. For the covariance

matricesQm
i of the dual MIMO-MAC, we apply the eigenvalue decomposition,

Qm
i = V iΛiV

†
i =

Nr
∑

j=1

qi,jvi,jv
†
i,j, (11)

wherevi,j is the jth column ofV i, and qi,j is the jth diagonal entry ofΛi. For useri, vi,j

is the transmit beamforming vector of thejth data stream, the power allocated to thejth data

November 2, 2018 DRAFT
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stream equalsqi,j, and the receive beamforming vector of thejth data stream at the BS isui,j.

The SINR of the dual MIMO-MAC is given by

SINRm
i,j =

qi,j|u
†
i,jH

†
ivi,j |2

u
†
i,j

(

∑i−1
k=1

∑Nr

l=1 qk,lH
†
kvk,lv

†
k,lHk +

∑j−1
l=1 qi,lH

†
ivi,lv

†
i,lH i +Rw

)

ui,j

, (12)

whereRw := qtRo+quINt
is the noise covariance matrix of the MIMO-MAC withRo := hoh

†
o.

In the dual MIMO-MAC,Rw depends onqt andqu defined in (10) whereas the noise covariance

matrix in the primal MIMO-BC is an identity matrix. It can be observed from (12) that the

successive interference cancelation (SIC) scheme is used in this dual MIMO-MAC, and the

decoding order is the reverse encoding order of the primal BC. The signal from SUK is first

decoded with the signals from other users being treated as interference. After decoded at the

BS, the signals from SUK will be subtracted from the received signal. The signal fromSUK−1

is next decoded, and so on. Again, the data streams within a SUcan be decoded in a sequential

manner.

For the dual MIMO-MAC, we consider the following minimization problem similar to the

problem (10)

min
{Qm

i }
K
i=1: Q

m
i �0

K
∑

i=1

tr(Qm
i )σ

2 − P

subject to SINRmi,j ≥ γi,j.

(13)

The following proposition describes the relation between the problems (10) and (13).

Proposition 3: For fixed qt andqu, the MIMO-MAC problem (13) is dual to the MIMO-BC

problem (10).

Proof: The constraints in (10) can be rewritten as

pi,j |u
†
i,jH

†
ivi,j|2

γi,j
≥

K
∑

k=i+1

Nr
∑

l=1

pk,l|u
†
k,lH

†
ivi,j|

2+

Nr
∑

l=j+1

pi,l|u
†
i,lH

†
ivi,j|

2 + σ2. (14)

Thus, the Lagrangian function of the problem (10) is

L1(Q
b
1, . . . ,Q

b
K , λi,j)

=qt

K
∑

i=1

h†
oQ

b
iho + qu

K
∑

i=1

tr(Qb
i )− P −

K
∑

i=1

Nr
∑

j=1

λi,j

(pi,j|u
†
i,jH

†
ivi,j|

2

γi,j

−
K
∑

k=i+1

Nr
∑

l=1

pk,l|u
†
k,lH

†
ivi,j |

2 −
Nr
∑

l=j+1

pi,l|u
†
i,lH

†
ivi,j|

2 − σ2
)

(15)
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=

K
∑

i=1

Nr
∑

j=1

λi,jσ
2 − P −

K
∑

i=1

Nr
∑

j=1

pi,ju
†
i,j

(λi,jH
†
ivi,jv

†
i,jH i

γi,j

−
i−1
∑

k=1

Nr
∑

l=1

λk,lH
†
kvk,lv

†
k,lHk −

j−1
∑

l=1

λi,lH
†
ivi,lv

†
i,lH i −Rw

)

ui,j, (16)

whereλi,j is the Lagrangian multiplier. Eq. (16) is obtained by applying the eigenvalue decom-

position toQb
i and rearranging the terms in (15). The optimal objective value of (10) is

max
λi,j

min
Qb

1,...,Q
b
K

L1(Q
b
1, . . . ,Q

b
K , λi,j). (17)

On the other hand, the Lagrangian function of the problem (13) is

L2(Q
m
1 , . . . ,Q

m
K , δi,j) =

K
∑

i=1

Nr
∑

j=1

qi,jσ
2 − P −

K
∑

i=1

Nr
∑

j=1

δi,ju
†
i,j(

qi,jH
†
ivi,jv

†
i,jH i

γi,j

−
i−1
∑

k=1

Nr
∑

l=1

qk,lH
†
kvk,lv

†
k,lHk −

j−1
∑

l=1

qi,lH
†
ivi,lv

†
i,lH i −Rw)ui,j, (18)

whereδi,j is the Lagrangian multiplier. Eq. (18) is also obtained by applying eigenvalue decom-

position toQm
i . The optimal objective value of (13) is

max
δi,j

min
Qm

1 ,...,Q
m
K

L2(Q
m
1 , . . . ,Q

m
K , δi,j). (19)

Note that if we chooseqi,j = λi,j, δi,j = pi,j, and the same beamforming vectorsui,j andvi,j

for both problems, (16) and (18) become identical. This means that the optimal solutions of (17)

and (19) are the same.

Proposition 3 implies that under the SINR constraints, the problems (10) and (13) can achieve

the same objective value, which is a function of the transmitsignal covariance matrices. On the

other hand, under the corresponding constraints on the signal covariance matrix, the achievable

SINR regions of the MIMO-BC and its dual MIMO-MAC are the same. Mathematically, we

define the respective achievable SINR regions for the primalMIMO-BC and the dual MIMO-

MAC as follows.

Definition 1: A SINR vector γ = (γ1,1, . . . , γ1,Nt
, . . . , γK,Nt

) is said to be achievable for

the primal BC if and only if there exists a set ofQb
1, . . . ,Q

b
K such thatqt

∑K
i=1 h

†
oQ

b
iho +

qu
∑K

i=1 tr(Qb
i )− P ≤ C for a constantC and the corresponding SINRb

i,j ≥ γi,j. An achievable

BC SINR region denoted byRBC , is a set containing all the BC achievableγ.

Definition 2: A SINR vectorγ = (γ1,1, . . . , γ1,Nt
, . . . , γK,Nt

) is said to be achievable for the

dual MAC if and only if there exists a set ofQm
1 , . . . ,Q

m
K such that

∑K
i=1 tr(Qm

i )σ
2−P ≤ C for

November 2, 2018 DRAFT
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a constantC and the corresponding SINRm
i,j ≥ γi,j. An achievable MAC SINR region denoted

by RMAC , is a set containing all the MAC achievableγ.

In the following corollary, we will showRMAC = RBC .

Corollary 1: For fixed qt and qu, and a constantC, the MIMO-BC under the constraint

qt
∑K

i=1 h
†
oQ

b
iho + qu

∑K
i=1 tr(Qb

i ) − P ≤ C and the dual MIMO-MAC under the constraint
∑K

i=1 tr(Qm
i )σ

2 − P ≤ C achieve the same SINR region.

Proof: For anyγ ∈ RMAC , by Definition 2, there exists a set ofQm
1 , . . . ,Q

m
K such that

∑K
i=1 tr(Qm

i )σ
2−P ≤ C and the corresponding SINRm

i,j ≥ γi,j. It can be readily concluded from

Proposition 3 that there exists a set ofQb
1, . . . ,Q

b
K such thatqt

∑K
i=1 h

†
oQ

b
iho+qu

∑K
i=1 tr(Qb

i )−

P ≤ C and the corresponding SINRb
i,j ≥ γi,j. This impliesγ ∈ RBC . Sinceγ is an arbitrary

element inRMAC , we haveRMAC ⊆ RBC . In a similar manner, we haveRBC ⊆ RMAC . The

proof follows.

We are now in the position to prove Proposition 2.

Proof of Proposition 2:According to Corollary 1, ifC = 0, then under the constraint

qt
∑K

i=1 h
†
oQ

b
iho + qu

∑K
i=1 tr(Qb

i ) ≤ P for the BC and the constraint
∑K

i=1 tr(Qm
i )σ

2 ≤ P

for the dual MAC, the two channels have the same SINR region. Since the achievable rates

of user i in the MIMO-MAC and the MIMO-BC arermi =
∑Nr

j=1 log(1 + SINRm
i,j) and rbi =

∑Nr

j=1 log(1+SINRb
i,j), the rate regions of the two channels are the same. Therefore, Proposition

2 follows. �

Note that due to the additional interference constraint, Problem 2 cannot be solved by using

the established duality result in [11] and [12], in which only a single sum power constraint was

considered. Our duality result in Proposition 2 can be thought as an extension of the duality

results in [11] [12] to a multiple linear constraint case. Moreover, as will be shown in the

following section, our duality result formulates a MIMO-MAC problem (Problem 4), which can

be efficiently solved.

III. D UAL MAC WEIGHTED SUM RATE MAXIMIZATION PROBLEM

In this section, we propose an efficient algorithm to solve Problem 4. With the SIC scheme,

the achievable rate of thekth user in the dual MIMO-MAC is given by

rmk = log
|Rw +

∑k
j=1H jQ

m
j H

†
j |

|Rw +
∑k−1

j=1 HjQ
m
j H

†
j|
. (20)

For the MIMO-MAC, theequallyweighted sum rate maximization is irrespective of the decoding

order. However, in general the weighted sum rate maximization in the MIMO-MAC is affected
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by the decoding order. We thus need to consider the optimal decoding order of the SIC for the

dual MIMO-MAC, and further need to consider the corresponding optimal encoding order of

the DPC for the primal BC.

Let π be the optimal decoding order, which is a permutation on the SU index set{1, · · · , K}.

It follows from [14] that the optimal user decoding orderπ for Problem 4 is the order such that

wπ(1) ≥ wπ(2) ≥ · · · ≥ wπ(K) is satisfied. The following lemma presents the optimal decoding

order of the SIC for the data streams within a SU (see AppendixC for the proof).

Lemma 1:The optimal data stream decoding order for a particular SU isarbitrary.

Due to the duality between the MIMO-BC and the MIMO-MAC, for Problem 3, the optimal

encoding order for the DPC is the reverse ofπ. Because of the arbitrary encoding order for the

data streams within a SU, if we choose a different encoding order for the BC, the MAC-to-BC

mapping algorithm can give different results which yield the same objective value. Hence, the

matrix Qb
i achieving the optimal objective value are not unique. With no loss of generality, we

assumew1 ≥ w2 ≥ · · · ≥ wK for notational convenience.

According to (20), the objective function of Problem 4 can berewritten as

f(Qm
1 , · · · ,Q

m
K) :=

K
∑

i=1

∆i log |Rw +
i

∑

j=1

HjQ
m
j H

†
j |, (21)

where∆i := wi −wi+1, andwK+1 := 0. Clearly, Problem 4 is a convex problem, which can be

solved through standard convex optimization software packages directly. However, the standard

convex optimization software does not exploit the special structure of the problem, and thus is

computationally expensive. An efficient algorithm was developed to solve a weighted sum rate

maximization problem for the SIMO-MAC in [8]. However, since this algorithm just consider

the case where each users has a single data stream, it is not applicable to our problem. In the

following, we develop a primal dual method based algorithm [21] to solve this problem.

We next rewrite Problem 4 as

max
{Qm

i }
K
i=1: Q

m
i �0

f(Qm
1 , · · · ,Q

m
K) subject to

K
∑

i=1

tr(Qm
i ) ≤ P. (22)

Recall that the positive semi-definiteness ofQm
i is equivalent to the positiveness of the eigen-

values ofQm
i , i.e., qi,j ≥ 0. Correspondingly, the Lagrangian function is

L(Qm
1 , · · · ,Q

m
K , λ, δi,j) = f(Qm

1 , · · · ,Q
m
K)− λ

(

K
∑

i=1

tr(Qm
i )− P

)

+

K
∑

i=1

Mi
∑

j=1

δi,jqi,j , (23)
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whereλ andδi,j are Lagrangian multipliers. According to the KKT conditions of (22), we have

∂f(Qm
1 , · · · ,Q

m
K)

∂Qm
i

− λINr
+

Mi
∑

j=1

δi,jEi,j = 0, (24)

λ
(

K
∑

i=1

tr(Qm
i )− P

)

= 0, (25)

δi,jqi,j = 0, (26)

whereEi,j := ∂qi,j/∂Q
m
i . Notice that it is not necessary to compute the actual value of δi,j and

Ei,j, because ifδi,j 6= 0, thenqi,j = 0. Thus, the semi-definite constraint turns intoqi,j = [qi,j ]
+.

Thus, we can assumeδi,j = 0.

The dual objective function of (22) is

g(λ) = max
{Qm

i }
K
i=1: Q

m
i ≥0

L(Qm
1 , · · · ,Q

m
K , λ). (27)

Because the problem (22) is convex, it is equivalent to the following minimization problem

min
λ

g(λ) subject to λ ≥ 0. (28)

We outline the algorithm to solve the problem (28). We choosean initial λ and compute the

value of g(λ) (27), and then updateλ according to the descent direction ofg(λ). The process

repeats until the algorithm converges.

It is easy to observe that all the users share the sameλ, and thusλ can be viewed as a water

level in the water filling principle. Onceλ is fixed, the unique optimal set{Qm
1 , . . . ,Q

m
K} can be

obtained through the gradient ascent algorithm. In each iterative step,Qm
i is updated sequentially

according to its gradient direction of (23). Denote byQm
i (n) the matrixQm

i at thenth iteration

step. The gradient of each step is determined by

∇(n)

Qm

i

L :=
∂f

(

Qm
1 (n), · · · ,Q

m
i−1(n),Q

m
i (n− 1), . . . ,Qm

K(n− 1)
)

∂Qm
i (n− 1)

− λINr
. (29)

Thus,Qm
i (n) can be updated according to

Qm
i (n) =

[

Qm
i (n− 1) + t∇(n)

Qm

k

L
]+

,

wheret is the step size, and the notation[A]+ is defined as[A]+ :=
∑

j [λj]
+vjv

†
j with λj and

vj being thejth eigenvalue and the corresponding eigenvector ofA respectively. The gradient

in (29) can be readily computed as

∂f(Qm
1 , · · · ,Q

m
K)

∂Qm
k

=

K
∑

j=k

∆j

(

HkF j(Q
m
1 , · · · ,Q

m
K)

−1H
†
k

)

, (30)
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whereF j(Q
m
1 , · · · ,Q

m
K) := Rw +

∑j
i=1H

†
iQ

m
i H i. We next need to determine the optimalλ.

Since the Lagrangian functiong(λ) is convex overλ, the optimalλ can be obtained through

the one-dimensional search. However, becauseg(λ) is not necessarily differentiable, the gradient

algorithm cannot be applied. Alternatively, the subgradient method can be used to find the optimal

solution. In each iterative step,λ is updated according to the subgradient direction.

Lemma 2:The sub-gradient ofg(λ) is P−
∑K

i=1 tr(Qm
i ), whereλ ≥ 0, andQm

i , i = 1, . . . , K,

are the corresponding optimal covariance matrices for a fixed λ in (27).

Proof: The proof is provided in Appendix D.

Lemma 2 indicates that the value ofλ should increase, if
∑K

i=1 tr(Qm
i ) > P , and vice versa.

We are now ready to present our algorithm for solving Problem4.

Decoupled Iterative Power Allocation (DIPA) Algorithm :

1) Initialize λmin andλmax;

2) repeat

a) λ = (λmin + λmax)/2

b) repeat, initializeQm
1 (0), · · · ,Q

m
K(0), n = 1

for i = 1, · · · , K

Qm
i (n) =

[

Qm
i (n− 1) + t∇(n)

Qm
i
L
]+

,

end for

n = n+ 1,

c) until Qm
k for k = 1, · · · , K converge, i.e.,‖∇(n)

Qm

i

L‖2 ≤ ǫ̂ for a small preset̂ǫ.

d) if
∑K

i=1 tr(Qm
i ) > P , thenλmin = λ, elseif

∑K
i=1 tr(Qm

i ) < P , thenλmax = λ;

3) until |λmin − λmax| ≤ ǫ,

where ǫ > 0 is a constant. The following proposition shows the convergence property of the

DIPA algorithm.

Proposition 4: The DIPA algorithm converges to an optimal set of the MAC transmit signal

covariance matrices.

Proof: The DIPA algorithm consists of the inner and outer loops. Theinner loop is to

computeQm
i for i = 1, · · · , K. In each iterative step of the inner loop, we updateQm

i by fixing

otherQm
j with j 6= i, and compute the corresponding gradient. The inner loop uses the gradient

ascent algorithm, which converges to the optimal value due to its nondecreasing property and

the convexity of the objective function. The outer loop is tocompute the optimal Lagrangian

multiplier λ in (28). Due to the convexity of the dual objective function [23], there is a unique

λ achieving the optimal solution in (28). Hence, we can use an efficient one dimensional line
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bisection search ( [19], [18]).

Remark 3: In the previous work on the sum rate maximization [19] [17] [18], the covariance

matrix of each user is the same as the single user water-filling covariance matrix in a point-to-

point link with multiuser interference being treated as noise [24]. However, for the weighted sum

rate maximization problem, the optimal solution does not possess a water-filling structure. Thus,

our DIPA algorithm does not obey the water-filling principle. In Section VI, Example 1 compares

the water-filling algorithm with the DIPA algorithm. Notably, the formulation of Problem 4 is

similar to the weighted sum rate problem for the dual MIMO MACin [9]. The algorithm proposed

therein to handle the dual MIMO MAC problem is based on gradient projection method [21].

The difference between our DIPA algorithm and the algorithmin [9] is just like the difference

between the algorithms in [17] and [18].

The DIPA algorithm is an efficient algorithm to obtain the optimal transmit covariance matrix

of the dual MIMO MAC (Problem 4). Moreover, the optimal solution to Problem 3 can be

obtained via the MAC-to-BC covariance matrix mapping algorithm presented in the next section.

IV. MAC- TO-BC COVARIANCE MATRIX MAPPING

A covariance matrix mapping algorithm was developed in [12]. However, this algorithm works

for the sum rate maximization problem under a single sum power constraint, and is not applicable

to a weighted sum rate problem under multiple constraints. In the following, we develop a

covariance matrix mapping algorithm, which computes the BCcovariance matricesQb
i via the

dual MAC covariance matricesQm
i such that two channels yield a same weighted sum rate.

In the MIMO-MAC, according to (11), the transmit beamforming vectorsvi,j can be obtained

by the eigenvalue decomposition. The corresponding receive beamforming vector at the BS,ui,j,

is obtained by using the minimum mean square error (MMSE) algorithm:

ui,j = a
(

i−1
∑

k=1

Nr
∑

l=1

qk,lH
†
kvk,lv

†
k,lHk +

j−1
∑

l=1

qi,lH
†
ivi,lv

†
i,lH i +Rw

)−1
H

†
ivi,j, (31)

wherea is a normalized factor such that||ui,j|| = 1. Throughout the proof of Proposition 3, we

can see that when the same optimal solutions are achieved theprimal BC and the dual MAC share

the same beamforming vectorsui,j andvi,j. Hence, the transmit beamforming vectors of the BC

are just the receive beamforming vectors of the dual MAC, andthe receive beamforming vectors

of the BC are the transmit beamforming vectors of the dual MAC. Thus, to obtain the transmit

signal covariance matrix of SUi for the BC, we only need to compute the power allocated to each

data stream. Due to Corollary 1, the dual MAC and the BC can achieve the same SINR region,
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i.e., SINRb
i,j = SINRm

i,j . Thus, for the BC, the power allocated to the beamforming directionui.j

can be obtained by

pi,j =
SINRm

i,j

(

∑K
k=i+1

∑Nr

l=1 pk,l|u
†
k,lH

†
ivi,j |

2 +
∑Nr

l=j+1 pi,l|u
†
i,lH

†
ivi,j|

2 + σ2
)

|uH
i,jH

†
ivi,j|2

. (32)

For the BC, the encoding order is the reverse of the decoding order of the MAC. Thus,pK,Nr

is computed first,pK,Nr−1 is computed second, and so on, in the decreasing order of the data

stream index and the user index.

After computing the power for all the beamforming vectors, we obtain the signal covari-

ance matrix from the BS to SUi, Q
b
i =

∑Nr

j=1 pi,jui,ju
†
i,j. The aforedescribed process can be

summarized as the following algorithm.

MAC-to-BC Covariance Matrix Mapping Algorithm:

1) Computeqi,j andvi,j through eigenvalue decomposition:Qm
i = V iΛiV

†
i =

∑Nr

j=1 qi,jvi,jv
†
i,j;

2) Use the MMSE algorithm to obtain the optimal receiver beamforming vectorui,j and

SINRm
i,j;

3) Computepi,j through (32) according to the duality between the BC and the MAC;

4) ComputeQb
i =

∑Nr

j=1 pi,jui,ju
†
i,j.

It should be noted that even though an explicit algorithm is not given, the paper [20] has

mentioned the idea behind the above algorithm. The MAC-to-BC covariance matrix mapping

allows us to obtain the optimal BC covariance matrices for Problem 3 by solving Problem 4.

V. A COMPLETE SOLUTION TO THE CR MIMO-BC WEIGHTED SUM RATE PROBLEM

We are now ready to present a complete algorithm to solve Problem 2. The Lagrangian dual

objective function of Problem 2 can be rewritten as follows

g(qt, qu) = max
{Qb

i}
K
i=1:Q

b
i�0

K
∑

i=1

wir
b
i , (33)

where the maximization is subject to the constraintqt
(
∑K

i=1 h
†
oQ

b
iho−Pt

)

+ qu
(
∑K

i=1 tr(Qb
i )−

Pu

)

≤ 0. Problem 2 is equivalent to the following problem

min
qt,qu

g(qt, qu), subject to qt ≥ 0 andqu ≥ 0.

Applying the BC-MAC duality in Section II-B and the DIPA algorithm in Section III,g(qt, qu)

can be obtained. The remaining task is to determine the optimal qt andqu. Sinceg(qt, qu) is not

necessarily differentiable, we search the optimalqt and qu through the subgradient algorithm;
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that is, in each iterative step, we update the vector[qt, qu] according to the subgradient direction

s = [s1, s2] of g(qt, qu).

Lemma 3:The subgradient ofg(qt, qu) is
[

Pt −
∑K

i=1h
†
oQ

b
iho, Pu −

∑K
i=1 tr(Qb

i )
]

, where

qt ≥ 0, qu ≥ 0, andQb
i , i = 1, . . . , K, are the corresponding optimal covariance matrices for

the problem (33).

Proof: The proof is given in Appendix E.

It has been shown in [25] that with a constant step size, the subgradient algorithm converges

to a value that is within a small range of the optimal value, i.e.,

lim
n→∞

|q(n)t − q∗t | < ǫ, and, lim
n→∞

|q(n)u − q∗u| < ǫ, (34)

whereq∗t and q∗u denote the optimal values, andq(n)t and q
(n)
u denote the values ofqt and qu at

thenth step of the subgradient algorithm, respectively. This implies that the subgradient method

finds anǫ-suboptimal point within a finite number of steps. The numberǫ is a decreasing function

of the step size. Moreover, if the diminishing step size rule, e.g., the square summable but not

summable step size, is applied, the algorithm is guaranteedto converge to the optimal value.

We next describe the algorithm to solve Problem 2 as follows.

Subgradient Iterative Power Allocation (SIPA) Algorithm :

1) Initialization: q(1)t , q(1)u , n = 1,

2) repeat

2a) Find the optimal solution of the dual MAC Problem 4 through the DIPA algorithm;

2b) Find the solution of the BC problem (33) through the MAC-to-BC mapping algorithm;

2c) Updateq(n)t andq(n)u through a subgradient algorithmq(n+1)
t = q

(n)
t + t(

∑K
i=1 h

†
oQ

b
iho−

Pt), q
(n+1)
u = q

(n)
u + t(

∑K
i=1 tr(Qb

i )− Pu),

2d) n = n + 1

3) Stop when|q(n)t (
∑K

i=1h
†
oQ

b
iho − Pt)| ≤ ǫ and |q(n)u (

∑K
i=1 tr(Qb

i ) − Pu)| ≤ ǫ are satisfied

simultaneously,

where t denotes the step size of the subgradient algorithm. As a summary, the flow chart of

the SIPA algorithm is depicted in Fig. 3. We shows that the SIPA algorithm converges to the

optimal solution of Problem 1 in the following proposition.

Proposition 5: The SIPA algorithm converges to the globally optimal solution of Problem 1.

Proof: The Lagrangian function of Problem 1 is given by

L(Qb
1, . . . ,Q

b
K , λ1, λ2) =

K
∑

i=1

wir
b
i − λ1

(

K
∑

i=1

h†
oQ

b
iho − Pt

)

− λ2

(

K
∑

i=1

tr(Qb
i )− Pu

)

, (35)
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and the Lagrangian function of Problem 2 is given by

L1(Q
b
1, . . . ,Q

b
K , λ, qt, qu) =

K
∑

i=1

wir
b
i − λ

(

qt
(

K
∑

i=1

h†
oQ

b
iho − Pt

)

− qu
(

K
∑

i=1

tr(Qb
i )− Pu

))

. (36)

Let q̄t, q̄u, λ̄, andQ̄i be the optimal values ofL1(Q
b
1, . . . ,Q

b
K , λ, qt, qu), when the algorithm

converges. We thus have

∂L1(Q
b
1, . . . ,Q

b
K , λ, qt, qu)

∂Qb
i

∣

∣

∣

{Q̄
b

i}
K
i=1,λ̄,q̄t,q̄u

= 0,

|q̄t(
∑K

i=1 h
†
oQ̄iho − Pt)| = 0, and |q̄u(

∑K
i=1 tr(Q̄i) − Pu)| = 0. This means that̄Qi is a locally

optimal solution.

According to (35), if we select̃λ1 = λ̄q̄t, λ̃2 = λ̄q̄u, andQ̃i = Q̄i, thenλ̃1, λ̃2, andQ̃i satisfy

the KKT conditions of Problem 1 and thus are the locally optimal variables.

Suppose that there exists an optimal set ofλ̂1, λ̂2, andQ̂i such thatL(Q̂1, . . . , Q̂K , λ̂1, λ̂2) >

L(Q̃1, . . . , Q̃K , λ̃1, λ̃2). Clearly, this optimal set of̂λ1, λ̂2, andQ̂i satisfy the KKT conditions

of Problem 1. In the sequel, we will derive a contradiction.

First, we can write

L(Q̃1, · · · , Q̃K , λ̃1, λ̃2) ≥ L(Q̂1, · · · , Q̂K , λ̃1, λ̃2). (37)

Suppose that (37) does not hold, i.e.,L(Q̃1, · · · , Q̃K , λ̃1, λ̃2) < L(Q̂1, · · · , Q̂K , λ̃1, λ̃2). Then,

according to the BC-MAC duality in Section II-B, an objective value of (7) which is larger than

L(Q̃1, · · · , Q̃K , λ̃1, λ̃2), can be found for the fixed̄qt and q̄u. However, from Proposition 4, the

DIPA algorithm converges the optimal solution. It is a contradiction.

Secondly, according to the KKT conditions of Problem 1, we have

λ̂1

(

K
∑

i=1

h†
oQ̂

b

iho − Pt

)

= 0, (38)

λ̂2

(

K
∑

i=1

tr(Q̂
b

i )− Pu

)

= 0. (39)

We thus can write:

L(Q̂1, · · · , Q̂K , λ̃1, λ̃2) ≥ L(Q̂1, · · · , Q̂K , λ̂1, λ̂2). (40)

Combining (40) and (37), we have

L(Q̃1, · · · , Q̃K , λ̃1, λ̃2) ≥ L(Q̂1, · · · , Q̂K , λ̂1, λ̂2). (41)

This contradicts with our previous assumption.
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Remark 4:The algorithm can be extended to the multiple PU case in the following manner.

Assume that there areN PUs. Problem 2 becomes

min
qt,j≥0,qu≥0

max
{Qb

i}
K
i=1: Q

b
i�0

K
∑

i=1

wir
b
i ,

subject to
N
∑

j=1

qt,j
(

K
∑

i=1

h
†
o,jQ

b
iho,j − Pt,j

)

+ qu
(

K
∑

i=1

tr(Qb
i )− Pu

)

≤ 0,

(42)

whereqt,j is the auxiliary variable for thejth PU,ho,j is the channel response from the BS to

the jth PU, andPt,j is the interference threshold of thejth PU. The role of auxiliary variables

qt,j is similar to that ofqt in the single PU case. It is thus straightforward to modify the SIPA

algorithm to solve the problem for the multiple PU case. Moreover, it should be noted that the

multiple interference constraints of the problem (42) can be transformed to the per-antenna power

constraints [20] by settingho,j, j = 1, · · · , Nt, to be thejth column of the identity matrix. Not

limited by the sum rate maximization problem with interference power constraints, the method

proposed in this paper can be easily applied to solve the transmitter optimization problem (e.g.

beamforming optimization) for MIMO BC with multiple arbitrary linear power constraints.

VI. SIMULATION RESULTS

In this section, we provide the simulation results to show the effectiveness of the proposed

algorithm. In the simulations, for simplicity, we assume that the BS is at the same distance,l1, to

all SUs, and the same distance,l
(n)
2 , to PUn. In the single PU case, we will drop the superscript

and simply use notationl2. Suppose that the same path loss model can be used to describethe

transmissions from the BS to the SUs and to the PUs, and the pass loss exponent is 4. The

elements of matrixH are assumed to be circularly symmetric complex Gaussian (CSCG) RVs

with mean zero and variance 1, andho can be modeled asho = (l1/l2)
2an, wherean is aNt×1

vector whose elements are CSCG RVs with mean zero and variance 1. The noise covariance

matrix at the BS is assumed to be the identity matrix, and the sum power and interference power

are defined in dB relative to the noise power, andPt is chosen to be0 dB. For all cases, we

choosel1 = l2, except for explicitly stated.

Example 1: In Fig. 4, we examine the validity of the DIPA algorithm. In this example, we

chooseK = 1 (a single SU case),Nt = 4, Nr = 4, andPu = 10 dB. It is well known that

the optimal transmit signal covariance matrix can be obtained through the water-filling principle

[24]. As can be observed from Fig. 4, in several iterations, the DIPA algorithm converges to the

optimal solution obtained by using the water-filling principle.
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Example 2: In Fig. 5, we show the convergence property of the DIPA algorithm. In this

example, we chooseK = 20 and Pu = 10 dB. It can be observed from this figure that the

algorithm converges to the optimal solution within severaliteration steps.

Example 3: In Figs. 6 and 7, we consider a SU MIMO-BC network withK = 5, Nt = 5,

Nr = 3, andPu = 13 dB. In this example, the SUs withw1 = 5 andwi = 1, i = 2, . . . , K

are assumed to share the same spectrum band with two PUs. Fig.6 plots the weighted sum rate

versus the number of iterations of the SIPA algorithm for step sizest = 0.1 and t = 0.01. As

can be seen from the figure, the step size affects the accuracyand convergence speed of the

algorithm. Fig. 7 plots the sum power at the BS and the interference power at the PUs versus

the number of iterations. It can be seen from the figure that the sum power and the interference

power approach toPu = 13 dB andPt = 0 dB respectively when the SIPA algorithm converges.

This implies that the sum power and interference constraints are satisfied with equalities when

the SIPA algorithm converges.

Example 4:Fig. 8 plots the achievable sum rates versus the sum power in the single PU case

and the case with no PU. We chooseK = 5, Nt = 5, andNr = 3. As can be seen from Fig.

8, in the low sum power regime, the achievable sum rate in the case with no PU is quite close

to the one in the single PU case while in the high sum power regime, the achievable sum rate

in the case with no PU is much higher than the one in the single PU case. This is because the

additional constraint reduces the degrees of freedom of thesystem.

Example 5: In this example, we consider the influence of the interference constraint on the

achievable sum rate of the SUs. In this example,Nt = 5, K = 5, andNr = 3. The sum power

constraint for the BS is assumed to be 15 dB and 20 dB. Fig. 9 compares the sum rate achieved

in a PU case with one achieved in the case with no PU asl2/l1 varies from 1 to 12. It can be

observed from the figure that the achievable sum rate increases as the PU moves away from the

BS, and the influence of the PU reduces to zero after thel2/l1 is larger than a certain threshold.

VII. CONCLUSIONS

In this paper, we developed a new BC-MAC duality result, which can be viewed as an extension

of existing dual results developed under either a sum power constraint or per-antenna power

constraints. Exploiting this duality result, we proposed an efficient algorithm to solve the CR

MIMO-BC weighted sum rate maximization problem. We furthershowed that the proposed

algorithm converges to the globally optimal solution.
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APPENDIX

A. Lemma 4 and its proof:The following lemma describes an important property that will be

used in the proof of other lemmas.

Lemma 4:For fixedqt andqu, the maximum weighted sum rate in (5) is achieved when the

constraint (6) is satisfied with equality.

Proof: We here adopt the DPC scheme, which is a capacity achieving strategy for the

MIMO-BC [16]. Let the permutationπ represent the encoding order when the optimal solution

is achieved. Assume that SUπ(1) is encoded first such that the signal of SUπ(1) is noncausally

known to the BS before the signals from the other SUs are encoded. Thus, in the DPC scheme

the signal from SUπ(1) has no impact on the rates achieved by the other SUs. We prove this

lemma by contradiction.

Suppose thatQb
π(1) is the optimal signal covariance matrix of SUπ(1). Assume that the con-

straint (6) is satisfied with a strict inequality when the optimal solution is achieved. Thus, we

can always find anǫ > 0 such that

qt
(

K
∑

i=2

h†
o(Q

b
π(i))ho + h†

o(Q
b
π(1) + ǫI)ho − Pt

)

+ qu
(

K
∑

i=2

tr(Qb
π(i)) + tr(Qb

π(1) + ǫI)− Pu

)

= qt
(

K
∑

i=1

h†
o(Q

b
π(i))ho + h†

o(ǫI)ho − Pt

)

+ qu
(

K
∑

i=1

tr(Qb
π(i)) + tr(ǫI)− Pu

)

< 0. (43)

Moreover, the rate achieved by userπ(1) in the MIMO-BC can be written as

rb
π(1) = log

∣

∣

∣
I +

∑K
i=1Hπ(1)Q

b
π(i)H

†
π(1)

∣

∣

∣

∣

∣

∣
I +

∑K
i=2Hπ(1)Q

b
π(i)H

†
π(1)

∣

∣

∣

.

Due to the positive semi-definiteness property ofQb
i , we have

log
∣

∣

∣
I +

K
∑

i=2

Hπ(1)Q
b
π(i)H

†
π(1) +Hπ(1)(Q

b
π(1) + ǫI)H†

π(1)

∣

∣

∣

= log
∣

∣

∣
I +

K
∑

i=2

Hπ(1)Q
b
π(i)H

†
π(1)

∣

∣

∣

+ log
∣

∣

∣
I+ (I+

K
∑

i=2

Hπ(1)Q
b
π(i)H

†
π(1))

−1/2Hπ(1)(Q
b
π(1)+ ǫI)H†

π(1)(I+

K
∑

i=2

Hπ(1)Q
b
π(i)H

†
π(1))

−1/2
∣

∣

∣
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= log
∣

∣

∣
I +

K
∑

i=2

Hπ(1)Q
b
π(i)H

†
π(1)

∣

∣

∣
+ log

∣

∣

∣
I +G†(Qb

π(1) + ǫI)G
∣

∣

∣

= log
∣

∣

∣
I +

K
∑

i=2

Hπ(1)Q
b
π(i)H

†
π(1)

∣

∣

∣
+ log

∣

∣

∣
I +Λ+ ǫΣ

∣

∣

∣
(44)

> log
∣

∣

∣
I +

K
∑

i=2

Hπ(1)Q
b
π(i)H

†
π(1)

∣

∣

∣
+ log

∣

∣

∣
I +Λ

∣

∣

∣

= log
∣

∣

∣
I +

K
∑

i=1

Hπ(1)Q
b
π(i)H

†
π(1)

∣

∣

∣
, (45)

whereG = H
†
π(1)(I +

∑K
i=2Hπ(1)Q

b
π(i)H

†
π(1))

−1/2, andΛ andΣ are diagonal matrices. Eq.

(44) is due to the fact that the optimal covariance matrix fora MIMO has the water-filling

structure [19] [24], i.e., if we apply singular value decomposition toG, G = V SU , whereV

andU are unitary matrices, andS is a diagonal matrix, then the optimalQb
π(1) can be written

asQb
π(1) = U †RU , whereR is a diagonal matrix. Thus, we haveΛ = SRS andΣ = SS.

According to (45) and (43),Qb
π(1) + ǫI is a better solution for the sum rate problem than

Qb
π(1), which contradicts with the assumption. Therefore, the constraint must be satisfied with

equality.

B. Proof of Proposition 1: The proof consists of two parts. In the first part, we show thateither

optimal solution is feasible for both problems. In the second part, we show that Problem 1 and

Problem 2 have the same solution.

The Lagrangian function of Problem 1 is

L1(Q
b
1, · · · ,Q

b
K , λt, λu) =

K
∑

i=1

wir
b
i − λt

(

K
∑

i=1

h†
oQ

b
iho − Pt

)

− λu

(

K
∑

i=1

tr(Qb
i )− Pu

)

, (46)

whereλt andλu are the Lagrangian multipliers. The optimal objective value is

min
λt,λu

max
Qb

1,··· ,Q
b
K

L1(Q
b
1, · · · ,Q

b
K , λt, λu). (47)

Assume the optimal variables areλ̄t, λ̄u andQ̄
b
1, · · · , Q̄

b
K , and the corresponding optimal value

is C̄.

The Lagrangian function of Problem 2 is:

L2(Q
b
1, · · · ,Q

b
K , qt, qu, λ) =

∑

i

wir
b
i −λ

(

qt
(

K
∑

i=1

h†
oQ

b
iho−Pt

)

+ qu
(

K
∑

i=1

tr(Qb
i )−Pu

)

)

, (48)
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whereλ is the Lagrangian multiplier. The optimal objective value is

min
qt,qu,λ

max
Qb

1,··· ,Q
b
K

L2(Q
b
1, · · · ,Q

b
K , qt, qu, λ). (49)

Suppose that the optimal variables areq̃t, q̃u, λ̃, andQ̃
b
i , i = 1, . . . , K, and the corresponding

optimal objective value is̃C. We just need to provēC = C̃.

We now present the first part of the proof. According to the KKTcondition of Problem 2, we

have

∂L2(λ̃, Q̃
b
1, · · · , Q̃

b
K , q̃t, q̃u)

∂qt
= λ̃

(

K
∑

i=1

h†
oQ̃

b
iho − Pt

)

= 0, (50)

∂L2(λ̃, Q̃
b
1, · · · , Q̃

b
K , q̃t, q̃u)

∂qu
= λ̃

(

K
∑

i=1

tr(Q̃
b
i )− Pu

)

= 0. (51)

Recall that the Lagrangian multiplierλ̃ is non-negative. Furthermore, ifλ̃ = 0, we havẽqt(
∑K

i=1 h
†
oQ̃iho−

Pt)+ q̃u(
∑K

i=1 tr(Q̃i)−Pu) < 0 from the KKT conditions. This contradicts with Lemma 4. Thus,

we always havẽλ > 0 and can readily conclude that
∑K

i=1 h
†
oQ̃

b
iho = Pt and

∑K
i=1 tr(Q̃

b
i ) = Pu

are satisfied simultaneously. The optimal solution of Problem 2 is also a feasible solution of

Problem 1. On the other hand, it is obvious that the feasible solution for Problem 1 is also the

feasible solution for Problem 2.

We next prove the second part by using contradiction. Let us first supposēC > C̃. For (48),

if we selectQb
i = Q̄

b
i for i = 1, . . . , K, λ = 1, qt = λ̄t and qu = λ̄u, thenL2 = C̄ > C̃. It

contradicts to the fact that̃C is the optimal objective value for (49).

We now assumēC < C̃. Recall that̃λ 6= 0, for (48). If we selectQb
i = Q̃

b
i for i = 1, . . . , K,

λt = λ̃q̃t andλu = λ̃q̃u, thenL1 = C̃ > C̄, which contradicts with the fact that̄C is the optimal

objective value for (47).

Therefore, the optimal solutions for Problem 2 and Problem 1are the same. �

C. Proof of Lemma 1: According to previous discussions, the signal from each SU is divided

into several data streams. We now show that the optimal encoding order of these data streams

are arbitrary. It is well known that the optimal objective value of the MAC equally weighted sum

rate problem can be achieved by adopting any ordering [19] [17] [18]; that is, when all the users

have the same weights, the optimal solution of the weighted sum rate maximization problem is

independent of the decoding order. Analogously, the data streams within a SU share the same

weight. Thus, an arbitrary encoding order of those data streams within a SU can achieve the

optimal solution. �
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D. Proof of Lemma 2: Let s be the sub-gradient ofg(λ̃). For a givenλ̃ ≥ 0, the subgradients

of g(λ̃) satisfiesg(λ̌) ≥ g(λ̃) + s(λ̌− λ̃), whereλ̌ is any feasible value. LeťQ
m
i , i = 1, . . . , K,

be the optimal covariance matrices in (27) forλ = λ̌, and Q̃
m
i , i = 1, . . . , K, be the optimal

covariance matrices in (27) forλ = λ̃. We expressg(λ̌) as

g(λ̌) = max
Qm

1 ,··· ,Q
m
K

(

f(Qm
1 , · · · ,Q

m
K)− λ̌(

K
∑

i=1

tr(Qm
i )− P )

)

= f(Q̌
m
1 , · · · , Q̌

m
K)− λ̌

(

K
∑

i=1

tr(Q̌
m
i )− P

)

≥ f(Q̃
m
1 , · · · , Q̃

m
K)− λ̌

(

K
∑

i=1

tr(Q̃
m
i )− P

)

= f(Q̃
m
1 , · · · , Q̃

m
K)−λ̃

(

K
∑

i=1

tr(Q̃
m
i )−P

)

+λ̃
(

K
∑

i=1

tr(Q̃
m
i )−P

)

−λ̌
(

K
∑

i=1

tr(Q̃
m
i )− P

)

= g(λ̃) +
(

P −
K
∑

i=1

tr(Q̃
m
i )
)

(λ̌− λ̃),

wheres := P −
∑K

i=1 tr(Q̃
m
i ) is the subgradient ofg(λ̃). This concludes the proof. �

E. Proof of Lemma 3: The subgradients of g(q̃t, q̃u) satisfiesg(q̄t, q̄u) ≥ g(q̃t, q̃u) + ([q̄t, q̄u]−

[q̃t, q̃u]) · sT , where[q̄t, q̄u] is any feasible vector. Let̄Qb
i i = 1, . . . , K, be the optimal matrices

of the problem (33) forqt = q̄t and qu = q̄u, and letQ̃
b
i i = 1, . . . , K, be the optimal matrices

of the problem (33) forqt = q̃t andqu = q̃u. We expressg(q̄t, q̄u) as

g(q̄t, q̄u)= max
Qb

1,··· ,Q
b
K

M
∑

i=1

wir
b
i (52)

=
M
∑

i=1

wir̄
b
i −λ̄

(

q̄t
(

K
∑

i=1

h†
oQ̄

b
iho − Pt

)

+ q̄u
(

K
∑

i=1

tr(Q̄b
i)− Pu

))

(53)

≥
M
∑

i=1

wir̃
b
i − λ̄

(

q̄t
(

K
∑

i=1

h†
oQ̃

b
iho − Pt

)

+ q̄u
(

K
∑

i=1

tr(Q̃
b
i )− Pu

)

)

(54)

=
M
∑

i=1

wir̃
b
i − λ̃

(

q̃t
(

K
∑

i=1

h†
oQ̃

b
iho − Pt

)

+ q̃u
(

K
∑

i=1

tr(Q̃
b
i )− Pu

)

)

+ λ̃
(

q̃t
(

K
∑

i=1

h†
oQ̃

b
iho−Pt

)

+q̃u
(

K
∑

i=1

tr(Q̃
b
i )−Pu

)

)

−λ̄
(

q̄t
(

K
∑

i=1

h†
oQ̃

b
iho−Pt

)

+q̄u
(

K
∑

i=1

tr(Q̃
b
i )−Pu

)

)
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=g(q̃t, q̃u) +
(

K
∑

i=1

h†
oQ̃

b
iho − Pt

)

(λ̃q̃t − λ̄q̄t) +
(

K
∑

i=1

tr(Q̃
b
i )− Pu

)

(λ̃q̃u − λ̄q̄u)

=g(q̃t, q̃u) +
(

K
∑

i=1

h†
oQ̃

b
iho − Pt

)

(λ̃q̃t − λ̄q̃t + λ̄q̃t − λ̄q̄t)

+
(

K
∑

i=1

tr(Q̃
b
i )− Pu

)

(λ̃q̃u − λ̄q̃u + λ̄q̃u − λ̄q̄u)

=g(q̃t, q̃u) +
(

K
∑

i=1

h†
oQ̃

b
iho − Pt

)

(λ̃q̃t − λ̄q̃t) +
(

K
∑

i=1

h†
oQ̃

b
iho − Pt

)

(λ̄q̃t − λ̄q̄t)

+
(

∑

i

tr(Q̃
b
i )− Pu

)

(λ̃q̃u − λ̄q̃u) +
(

K
∑

i=1

tr(Q̃
b
i )− Pu

)

(λ̄q̃u − λ̄q̄u)

=g(q̃t, q̃u) +
(

K
∑

i=1

h†
oQ̃

b
iho − Pt

)

(λ̄q̃t − λ̄q̄t) +
(

K
∑

i=1

tr(Q̃
b
i )− Pu

)

(λ̄q̃u − λ̄q̄u) (55)

=g(qt, qu) + λ̄([q̄t, q̄u]− [q̃t, q̃u]) · s
T ,

wheres := [Pt −
∑K

i=1h
†
oQ̃

b
iho, Pu −

∑K
i=1 tr(Q̃

b
i )]. Eq. (53) is due to the fact that the dual

objective function of the problem (33), and̄rb
i , λ̄, andQ̄b

i are the optimal variables for the fixed

q̄t and q̄u. The inequality (54) is becausēQ
b
i , i = 1, . . . , K, are the optimal signal covariance

matrices for the fixed̄qt and q̄u. The equality (55) is due to Lemma 4. Thus,s is the subgradient

of g(q̃t, q̃u). �
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Fig. 7. The convergence behavior of the sum power at the BS andthe interference at the PU for the SIPA algorithm (Nt = 5,
K = 5, Nr = 3, w1 = 5, andwi = 1 with i 6= 1).
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Fig. 8. Achievable sum rates versus sum power in the single PUcase and the case with no PU (Nt = 5, K = 5, Nr = 3).
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Fig. 9. Achievable sum rates versus the ratio ofl2/l1 using the SIPA algorithm (Nt = 5, K = 5, Nr = 3).

November 2, 2018 DRAFT


