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SINR Analysis of Opportunistic MIMO-SDMA
Downlink Systems with Linear Combining

Man-On Pun, Visa Koivunen and H. Vincent Poor

Abstract— Opportunistic scheduling (OS) schemes have been
proposed previously by the authors for multiuser MIMO-SDMA
downlink systems with linear combining. In particular, it h as been
demonstrated that significant performance improvement can
be achieved by incorporating low-complexity linear combining
techniques into the design of OS schemes for MIMO-SDMA.
However, this previous analysis was performed based on the effec-
tive signal-to-interference ratio (SIR), assuming an interference-
limited scenario, which is typically a valid assumption in SDMA-
based systems. It was shown that the limiting distribution
of the effective SIR is of the Frechet type. Surprisingly, the
corresponding scaling laws were found to followǫ logK with
0 < ǫ < 1, rather than the conventional log logK form.

Inspired by this difference between the scaling law forms,
in this paper a systematic approach is developed to derive
asymptotic throughput and scaling laws based on signal-to-
interference-noise ratio (SINR) by utilizing extreme value theory.
The convergence of the limiting distribution of the effective SINR
to the Gumbel type is established. The resulting scaling law
is found to be governed by the conventionallog logK form.
These novel results are validated by simulation results. The
comparison of SIR and SINR-based analysis suggests that the
SIR-based analysis is more computationally efficient for SDMA-
based systems and it captures the asymptotic system performance
with higher fidelity.

I. I NTRODUCTION

Opportunistic scheduling (OS) has recently attracted consid-
erable research interest as a promising technique to improve
system throughput by exploiting multi-user diversity with
limited channel feedback [10]. Generally speaking, existing
OS schemes can be classified into two categories, namely
the time-sharing (TS) [10] and space-division multiple access-
based (SDMA)-based [9] OS schemes. In TS-OS, only the
mobile terminal (MT) with the best instantaneous channel
conditions is scheduled in one slot, regardless of the number of
beams employed by the base station (BS). In contrast, SDMA-
based OS serves multiple MTssimultaneously with multiple
orthonormal beams in each slot. Denote byM and N the
number of transmit and receive antennas, respectively. It has
been shown recently that the sum-rate of SDMA-based OS
grows linearly withM whereas that of TS-OS increases only
linearly with min(M,N) [8]. In addition to the more rapidly
growing scaling law, SDMA-based OS is particularly attractive
for practical systems with stringent latency requirements.
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The SDMA-based OS in [9] was originally developed for
systems with single-antenna MTs. For MTs with multiple
receive antennas, [9] proposes to let each antenna compete for
its desired beam as if it were an individual MT. As a result,
each beam is assigned to a specific receive antenna of a chosen
MT. Since signals received from the undesignated antennas of
a chosen MT are discarded, this leads to inefficient utilization
of multiple receive antennas. In [4], various linear combining
techniques exploiting signals received by all receive antennas
were proposed. The enhanced effective SINR is employed as a
scheduling metric. Both analytical and simulation resultsin [4]
have demonstrated that the system sum-rate performance can
be significantly improved by using such combining techniques.
For instance, the optimal combining technique can provide
over 40% sum-rate improvement compared to the selection
combining technique forM = 4 andN = 2 [4].

The theoretical analysis in [4] has been conducted based
on SIR, assuming an interference-limited environment. The
resulting scaling laws have a distinctive form, i.e.ǫ logK with
0 < ǫ < 1, which is very different from the conventional
form log logK derived based on signal-to-noise-ratio (SNR)
[10] or SINR [8], [9] in the literature. Similar results have
been independently developed for multicell systems in [2].In
this work, we introduce a systematic approach for deriving
asymptotic throughput and scaling laws using SINR. The
proposed approach stems from extreme value theory [3]. We
prove that the cumulative distribution functions (CDFs) ofthe
effective SINR obtained with linear combining converge to the
Gumbel-type limiting distribution. Furthermore, we show that
the SINR-based scaling laws for the proposed opportunistic
beamforming and scheduling schemes follow the conventional
log logK form. Through comparison between the SIR and
SINR-based analysis, it is argued that the SIR-based analysis
is more computationally efficient for SDMA-based systems,
and subsequently more effective in capturing the high-order
behavior of the asymptotic system performance. To make
comparison with our previous SIR-based analysis reported in
[4], we concentrate on a practical system withM = 4 and
N = 2 in this work. However, it should be emphasized that the
analysis can be easily generalized for systems with arbitrary
M andN .

Notation: Vectors and matrices are denoted by boldface
letters. ‖·‖ represents the Euclidean norm of the enclosed
vector and|·| denotes the amplitude of the enclosed complex-
valued quantity.IN is the N × N identity matrix. We use
E {·} for expectation. Finally,log and ln are the logarithms
to the base2 ande, respectively.
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II. SIGNAL MODEL
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Fig. 1. A block diagram of the opportunistic MIMO SDMA downlink system
under consideration.

We consider the opportunistic MIMO-SDMA downlink
system depicted in Fig. 1 where the BS is equipped with
M transmit antennas and each of theK MTs hasN receive
antennas withN ≤ M . Let {am;m = 1, 2, · · · ,M} be a
vector set containingM orthornormal beamforming vectors
of lengthM . We focus on a particular time slot during which
a beamforming vector set{am} has been chosen from a
common codebook shared by the BS and MTs. During the
p-th slot, the transmitted signal can be expressed as

x(p) =

M
∑

m=1

amsm(p) = As(p), (1)

whereA = [a1,a2, · · · ,aM ] is the unitary beamforming ma-
trix with AHA = IM ands(p) = [s1(p), s2(p), · · · , sM (p)]T

with E
{

|sm(p)|2
}

= 1 is the data vector transmitted in the
p-th slot. The corresponding received signal by thek-th MT
can be written as

yk(p) =
√
ρkHk(p)x(p) + nk(p), (2)

whereHk is the channel gain matrix between the BS and
the k-th MT with independent and identically-distributed
(i.i.d.) Rayleigh-distributed complex entries. Furthermore, the
noise term nk(p) is modeled asCN (0, IN ) and ρk is
a constant related to the average received SNR given by
E
{

ρk ‖Hk(p)x(p)‖2
}

= ρkM .

To keep our following analysis tractable, we concentrate
on a homogenous system withρk = ρ in this work. For
notational simplicity, we drop the temporal indexp in the
sequel. Furthermore, we refer to the SINR obtained by linearly
combining signals from all receive antennas as theeffective
SINR in order to distinguish it from theobserved SINR
without combining.

III. OS WITH L INEAR COMBINING

In this section, we briefly review the beamforming and
scheduling schemes for MIMO-SDMA systems with linear
combining techniques proposed in [4]. As shown in Fig. 1, in
the beginning of a time slot, each MT evaluates the effective
SINR for each beam by linearly combining the received signals
with one of the following three combining techniques, namely
selection combining (SC), maximum ratio combining (MRC)
and optimum combining (OC) before returning the information
aboutM effective SINRs to the BS. Note that OC performs
active interference suppression by exploiting the interference
structure, whereas MRC and SC simply intend to amplify the
desired signal. It will be shown later that this characteristic
interference-suppression feature of OC enables the scheduling
scheme with OC to considerably outperform those with SC
and MRC.

Upon receiving the effective SINR information from all
MTs, the BS schedules and starts data transmission to multiple
MTs with the largest effective SINRs on different beams
until the end of the current time slot. At each chosen MT,
received signals from all antennas are linearly combined using
one of the above linear combining techniques, followed by
data detection. It is worth noting that the probability of
awarding multiple beams to the same MT is rather small, as the
number of MTs is large. Furthermore, recall that the minimum
mean squared error (MMSE) and zero-forcing (ZF) receiver
structures for MIMO receivers amount to combiners using OC
and MRC for each beam, respectively. As a result, for an MT
assigned with multiple beams, it can focus on one assigned
beam at a time using the chosen combining technique while
regarding all other beams as interfering sources.

IV. SINR ANALYSIS

Define γ∗

m = max (γ1,m, γ2,m, · · · , γK,m), for m =
1, 2, · · · ,M . Assumingγk,m for k = 1, 2, · · · ,K, are i.i.d.
with CDFFX(x), the resulting average system throughput can
be computed as [9]:

C = E

{

M
∑

m=1

log (1 + γ∗

m)

}

= M

∫

∞

0

log (1 + x) d [FX(x)]K . (3)

In the following, we first deriveFX(x) based on dif-
ferent linear combining techniques before establishing their
corresponding limiting distributions, i.e.lim

K→∞

[FX(x)]
K . By

exploiting the limiting distributions, we derive the asymptotic
throughput and the corresponding scaling laws. In the sequel,
we focus on a practical system withM = 4 and N = 2.
However, it has been shown in [5] that the analysis can be
easily generalized for systems with arbitraryM andN .

A. Selection Combining (SC)

We begin with the selection combining. Denote byx the
maximum of the two SINR values of thei-th beam perceived



by the two antennas at thek-th MT. The CDF ofx can be
derived based on the results in [9] and reads

F (SC)
X (x) =

[

1− e−x/ρ

(1 + x)3

]2

. (4)

DifferentiatingF (SC)
X (x) with respect tox, we can obtain

the corresponding probability density function (PDF).

f (SC)
X (x) = 2

[

1− e−x/ρ

(1 + x)
3

]

(1 + x) 1ρe
−x/ρ + 3e−x/ρ

(1 + x)4
. (5)

It is straightforward to show thatF (SC)
X (x) and f (SC)

X (x)
satisfy the following equation

lim
x→∞

1− F (SC)
X (x)

f (SC)
X (x)

= ρ > 0, (6)

which is the necessary and sufficient condition for the lim-

iting distribution of
[

F (SC)
X (x)

]K

being of the Gumbel type

[3]. Consequently,FX(K)
(x) = [FX(x)]

K converges to the
following Gumbel-type distribution [3].

F (SC)
X(K)

(a(SC)

K x+ b(SC)

K ) = e−e−x

, x ≥ 0 (7)

or equivalently,

F (SC)
X(K)

(x) = e−e

−

x

a
(SC)
K

+
b

(SC)
K

a
(SC)
K , x ≥ 0, (8)

where a(SC)

K and b(SC)

K are normalizing factors affecting the
shape and location of the limiting distribution, respectively.
From extreme value theory,b(SC)

K can be computed from the
characteristic extreme of (4) as [3]

1− F (SC)
X (b(SC)

K ) =
1

K
. (9)

Since (9) is an exponential-linear equation ofb(SC)

K , it is non-
trivial to obtain the exact solution ofb(SC)

K in closed form.
Fortunately, since1 − F (SC)

X(K)
monotonically decreases from

1 to 0 whereas1/K ∈ [1, 0) for K = 1, 2, · · · ,∞, there
always exists a unique solution of (9). Thus, we can resort to
numerical methods to compute the numerical solution ofb(SC)

K .
It should be emphasized that1− F (SC)

X (b(SC)

K ) tends to1 asK
approaches infinity, which implies thatb(SC)

K increases withK.
Furthermore,a(SC)

K can be obtained from solving the follow-
ing equation.

a(SC)

K = F (SC)
X

−1
(

1− 1

Ke

)

− b(SC)

K . (10)

Similar to b(SC)

K , we can show that there always exists a unique
solution ofa(SC)

K . Therefore, the numerical solution ofa(SC)

K can
be found by resorting to numerical methods.

Finally, the throughput obtained with SC can be computed
by substituting (8) into (3) and reads

C(SC) =
4

ln 2

∫

∞

0

1− e−e

−

x

a
(SC)
K

+
b

(SC)
K

a
(SC)
K

1 + x
dx. (11)

Let z = e
−

x

a
(SC)
K and ξ = exp (b(SC)

K /a(SC)

K ). We havex =

−a(SC)

K ln z and dx = −a(SC)
K

z dz. Thus, (11) can be rewritten as

C(SC) =
4

ln 2

∫ 1

0

1− e−z·ξ

1− a(SC)

K ln z
· a

(SC)

K

z
dz, (12)

=
4

ln 2

[

∫ 4
ξ

0

1− e−z·ξ

(1− a(SC)

K ln z)

a(SC)

K

z
dz+

∫ 1

4
ξ

a(SC)

K dz

(1− a(SC)

K ln z) z

]

. (13)

The limit of the first term on the right-hand-side (R.H.S)

of (13) becomes negligibly small aslim
K→∞

4

ξ
= 0 while the

limit of the second term can be computed by exploiting the
approximation ofa(SC)

K ≈ ρ as follows.

lim
K→∞

4

ln 2

∫ 1

4
ξ

a(SC)

K dz

(1− a(SC)

K ln z) z
= lim

K→∞

4 log (b(SC)

K ) . (14)

Thus, the corresponding scaling law is given by

lim
K→∞

C(SC)

4 log (b(SC)

K )
= 1. (15)

In particular, forρ = 1, we can approximateb(SC)

K anda(SC)

K as

b(SC)

K ≈ ln 2K − 2 ln (1 + ln 2K) , (16)

a(SC)

K ≈ 1, (17)

respectively.
Subsequently, the scaling law can be written as follows.

lim
K→∞

C(SC)
ρ=1

4 log (ln 2K − 2 ln (1 + ln 2K))
= 1, (18)

which stands for a typical scaling law in thelog logK form.

B. Maximum Ratio Combining (MRC)

The effective SINR obtained with MRC can be expressed as
a ratio of two random variables given byx = z

1/ρ+y , where
z and y are χ2 distributed random variables with2N and
2M−2 degrees of freedom corresponding to the instantaneous
signal power of the desired signal and the interfering signal,
respectively. In particular, forM = 4 andN = 2, we have
[6], [7]

f (MRC)
X (x) =

xe−x/ρ

ρ2(1 + x)3
+

6xe−x/ρ

ρ(1 + x)4
+

12xe−x/ρ

(1 + x)5
(19)

and the corresponding CDF can be expressed as

F (MRC)
X (x) = 1− e−x/ρ

(1 + x)
3 − xe−x/ρ

ρ (1 + x)
3 − 3xe−x/ρ

(1 + x)
4 . (20)

It can be shown that

lim
x→∞

1− F (MRC)
X (x)

f (MRC)
X (x)

= ρ > 0. (21)

Therefore, the limiting distribution of
[

F (MRC)
X (x)

]K

is also
of the Gumbel type.



Following similar steps as in the previous section, we have

C(MRC) =
4

ln 2

∫

∞

0

1− e−e

−

x

a
(MRC)
K

+
b

(MRC)
K

a
(MRC)
K

1 + x
dx. (22)

and

lim
K→∞

C(MRC)

4 log (b(MRC)

K )
= 1, (23)

where a(MRC)

K and b(MRC)

K are the corresponding normalizing
factors. In particular forρ = 1, we can show that

b(MRC)

K ≈ ln 3K − 2 ln (1 + lnK) , (24)

a(MRC)

K ≈ 1 (25)

and the scaling law has the followinglog logK form.

lim
K→∞

C(MRC)
ρ=1

4 log (ln 3K − 2 ln (1 + lnK))
= 1. (26)

C. Optimal Combining (OC)

The CDF of the effective SINR obtained OC usingN
receive antennas in the presence ofM − 1 interfering sources
has been derived in [1]. ForM = 4 and N = 2, the
corresponding CDF takes the following form.

F (OC)
X (x) = 1− e−x/ρ

(1 + x)
3 − 3xe−x/ρ

(1 + x)
3 − xe−x/ρ

ρ (1 + x)
3 , (27)

and the corresponding PDF is

f (OC)
X (x) =

xe−x/ρ

ρ2 (1 + x)
4

[

(3ρ+ 1)x+
(

6ρ2 + 6ρ+ 1
)]

.

(28)

Since lim
x→∞

1− F (OC)
X (x)

f (OC)
X (x)

= ρ > 0, the limiting distribution

of
[

F (OC)
X (x)

]K

is also of the Gumbel type. Similar to the
cases of SC and MRC, we can show that

C(OC) =
4

ln 2

∫

∞

0

1− e−e

−

x

a
(OC)
K

+
b

(OC)
K

a
(OC)
K

1 + x
dx. (29)

and

lim
K→∞

C(OC)

4 log (b(OC)

K )
= 1, (30)

whereb(OC)

K andb(OC)

K are the corresponding normalizing factors.
In particular forρ = 1, we can show that

b(OC)

K ≈ ln 4K − 2 ln lnK, (31)

a(OC)

K ≈ 1 (32)

and the sum-rate scales like the followinglog logK form.

lim
K→∞

C(OC)
ρ=1

4 log (ln 4K − 2 ln lnK)
= 1. (33)
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V. SIMULATION RESULTS

In this section, simulation is performed to confirm our SINR
analysis derived in Sec. IV. Unless otherwise specified, we set
M = 4 andN = 2.

We first compare the asymptotic throughput shown in (11),
(22) and (29) against their corresponding simulation results.
Figure 2 shows the asymptotic throughput curves using the
numerical normalizing factors obtained by numerical methods
for ρ = 1 and5. Inspection of Fig. 2 reveals that the analytical
results shown in (11), (22) and (29) are in accord with the
simulation results. Despite that the asymptotic analysis is
achieved by assuming a largeK, Fig. 2 indicates that the
asymptotic analysis is also very accurate for smallerK values.
Furthermore, Fig. 2 confirms that the scheduling scheme with
OC can substantially outperform those with MRC and SC
whereas the improvement provided by MRC is more apparent
in the presence of stronger noise. This is because the scheme
with OC is designed to maximize SINR whereas MRC intends
to maximize SNR.
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Next, rather than the numerical solutions, Fig. 3 depicts the



average sum-rates using theapproximated normalizing factors
computed in (16), (24) and (31) together withaK ≈ 1 for
ρ = 1. Since the approximation expressions have been derived
by assuming a largeK, the analytical curves shown in Fig. 3
approach the simulated curves only whenK becomes large.
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Finally, to inspect the approximation accuracy of (16), (24)
and (31), Fig. 4 shows the numerical and approximated nor-
malizing factors as a function of the number of MTs,K. Since
solving the exact solutions to the normalizing factors involves
the linear-exponential functions, it is in general non-trivial to
obtain accurate closed-form expressions for the normalizing
factors, which compromises the accuracy of the subsequently
derived scaling laws.

VI. COMPARISON BETWEENSIR AND SINR ANALYSIS

It is interesting to compare the SINR analysis derived in
this work with our previous SIR analysis reported in [4].
1.) On the one hand, it is easy to verify that the CDFs
of the effective SINR in (4), (20) and (27) converge the
corresponding CDFs of the effective SIR reported in [4] asρ
tends to infinity, respectively. On the other hand, our SIR and
SINR-based analysis suggests that the limiting distributions
of the effective SIR and SINR do not belong to the same
domain of attraction. Instead, they are of the Frechet-typeand
Gumbel-type, respectively. It is natural to conjecture that the
limiting distribution function of SINR might also convergeto
the Frechet-type if the noise power becomes zero. However,
our results reveal that this intuition is not true. This is because
that the limit operator isnot commutative in general.
2.) It is generally more difficult to obtain the normalizing fac-
tors in the SINR analysis than the SIR analysis since the SINR-
based analysis involves exponential-type CDFs and requires
solving exponential-linear equations such as (9). Therefore, it
is more computationally advantageous to derive the scaling
laws in the SIR-based analysis compared to the SINR-based
analysis in the presence of strong interference.
3.) When computing the normalizing factors in the SINR-
based analysis, we have to carefully take into account the

high-order terms inFX(x). For instance, if the high-order
terms inFX(x) in (4), (20) and (27) are ignored, the resulting
simplified CDFs for different schemes will all lead to the
same set of normalizing factors, i.ee

−bK/ρ

(1+bK)3
= 1

K . Thus,
the performance of OS schemes with different combining
techniques cannot be distinguished based on their scaling laws.
Since it is generally much easier to compute the normalizing
factors with high accuracy in the SIR-based analysis [4], we
argue that the SIR-based scaling laws can better characterize
the actual performance of different OS schemes by focusing
on the interference-limited scenarios.

VII. C ONCLUSION

In this paper, we have developed a systematic approach to
derive the SINR-based asymptotic throughput and scaling laws
for OS schemes by utilizing extreme value theory. In particular,
we have investigated the asymptotic throughput and scaling
laws of the OS schemes proposed for MIMO-SDMA systems
with different linear combining techniques. Our analytical
results have shown that the limiting distribution of the effective
SINR is of the Gumbel type and the scaling laws follow
the log logK form. Simulation results have confirmed the
effectiveness in improving system throughput by incorporating
low-complexity linear combining techniques in OS schemes.
Finally, based on the comparison of SIR-based and SINR-
based analysis, we have argued that the SIR-based analysis is
more advantageous in providing insights into the scheduling
performance for SDMA-based systems.
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