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Abstract—In [1], antenna selection for multiple antenna sys-
tems that employ unitary space-time (ST) signaling has been
studied under the assumption of an independent Rayleigh fading
channel. In this paper, the performance of such a system is
investigated for spatially correlated-fading channels. The channel
state information (CSI) is not known at the receiver nor at the
transmitter. Antenna selection is thus performed at the receiver
based on the instantaneous received signal power. By deriving
the Chernoff bound on the pairwise error probability (PEP), we
quantify the effects of channel correlation on the diversity order
and coding gain at high signal-to-noise ratio (SNR). Analytical
results indicate that the full diversity order is preserved in such
a channel as long as the unitary signals are full rank. However,
spatial correlations result in a loss of the coding gain.

I. INTRODUCTION

UNITARY space time modulation (USTM) is a multiple-
input multiple-output (MIMO) signaling technique for

the case where neither the transmitter nor the receiver knows
the channel state information (CSI) [2], [3]. In this case,
USTM performs well and achieves full spatial diversity gains
over the fast-fading channels. Most previous USTM studies
assumed that all the available antennas are utilized for signal
transmission and reception [3], [4]. However, since each active
transmit/receive antenna pair requires an RF (radio frequency)
chain, which is expensive, antenna selection, where a subset
of all available antennas are selected at the transmitter and/or
receiver, has been extensively considered [5], [6]. Neverthe-
less, most previous antenna selection studies focus on coherent
multi-antenna systems in which perfect CSI is available at the
receiver [7].

The only study that dealt with USTM and receive antenna
selection (RAS) without CSI is [1]. However, it considered
only the case of independent Rayleigh-fading channels and
showed that the diversity order is preserved if USTM and RAS
are used. In practical systems, insufficient antenna spacing,
angle spread or the lack of rich scattering may cause spatial
correlation among antennas, particularly at the transmitter side
[8]. Moreover, channel measurements reveal that in some
propagation environments, a fixed (possibly line of sight
(LoS)) component is present, [9]. In this case, the mean of
the channel matrix is not zero and the Ricean fading model is
used to formulate the channel matrix,

In this paper, the analysis of [1] is extended to the

correlated-fading channels. RAS is based on the instantaneous
received signal power. The optimal decoders based on this
selection rule is presented and the Chernoff bound on the
pairwise error probability (PEP) is derived. The channel corre-
lation is modeled by using the exponential correlation model.
Extension of our work for other correlation models and Ricean
channels is presented in a forthcoming journal version of this
paper. Our analytical results indicate that the full diversity is
preserved in correlated Rayleigh channels when USTM and
RAS are employed. However, as might be expected, the spatial
correlations result in a loss of the coding gain.

The reminder of this paper is organized as follows: Sec-
tion II describes the system model and presents a brief
overview of USTM and differential USTM. In Section III,
we present the selection rule and the Chernoff bound on PEP
for the correlated-fading channel. The exponential correlation
model is defined, and the diversity order and coding gain
associated with that model are derived. The Chernoff-bound
expression is simplified for a 2 × 2 MIMO system with
single antenna selection. The numerical results are shown in
Section IV and concluding remarks are given in Section V.

Notation: the Hermitian, transpose, trace, determinant and
Frobenius norm of matrix A is denoted by AH, AT, tr (A),
det (A), ‖A‖F , respectively. A circularly symmetric complex
Gaussian random variable (RV) with mean µ and variance σ2

is denoted by z ∼ CN (µ, σ2). maxJ
n Xn selects the J largest

Xn’s.

II. SYSTEM MODEL AND USTM SCHEME

Consider a MIMO system with M transmit and N receive
antennas signaling over a frequency flat-fading channel. The
channel coefficient between the i-th transmit antenna and the
j-th receive antenna is denoted by hij ∼ CN (0, 1). For blocks
of T consecutive time samples, the input-output relationship
is [2]

Yτ =
√

ρ

M
SτH + Wτ (1)

where Yτ = [y1, . . . ,yN ] is a T × N complex received
signal matrix, Sτ is a T × M complex transmitted signal
matrix and Wτ denotes a T × N additive noise matrix with
i.i.d. CN (0, 1) elements, and the block-time index is τ . The
transmitted energy on all M antennas at any time slot is
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normalized to unity ensuring that ρ is the average SNR per
receiver.

The M × N random channel-matrix H consists of a fixed
component and a random component. It is generally modeled
as

H =

√
K

K + 1
H̄ +

√
1

K + 1
R1/2

T Hw. (2)

where the first and second terms of (2) are the mean (line of
sight (LoS) component) and the diffuse part of the channel,
respectively. In (2) Hw is an M×N matrix composed of i.i.d.
CN (0, 1) RVs and RT is an M ×M positive definite matrix
denoting the spatial transmit correlation. The matrix RT is
normalized so that [RT ]i,i = 1 (i = 1, 2, . . . ,M), resulting
in E{|hi,j |2} = 1. In this paper, the correlated channel model
without a LOS component (K = 0) is considered. USTM
employs a codebook of matrix signals V at both the transmitter
and receiver sides, which contains L unitary matrix space-time
signals [2] S1 =

√
TΦ1, . . . ,SL =

√
TΦL, where the T ×M

matrix Φl satisfies ΦH
l Φl = IM for 0 ≤ l < L. To transmit a

data sequence of integers z1, z2, . . . with zτ ∈ {0, . . . , L − 1},
each zτ is mapped to a distinct unitary matrix signal Φzτ

drawn from the codebook V and ultimately Sτ =
√

TΦzτ
is

transmitted over multiple antennas. In differential USTM [10],
dzτ

is mapped to an M × M differential unitary matrix Vzτ

and transmitted signal Sτ at time τ is generated by

Sτ =
{

Vzτ
Sτ−1 τ = 1, 2, . . . ,

IM τ = 0.
(3)

From [10], differential USTM can be viewed as a special
case of the general USTM scheme by defining an equiv-
alent T × M unitary matrix Φzτ

of the form Φzτ
=

1/
√

2[IM ,Vzτ
]T , where T = 2M . As a result, to cover the

general case, only the USTM scheme is considered.

III. ERROR PROBABILITY OF USTM RAS IN

CORRELATED FADING

In this section, the performance of the USTM and RAS in
a correlated channel is analyzed. The antenna selection rule
and the decoding algorithm are described, and based on the
Chernoff bound on the PEP, the diversity order and coding
gain are derived.

The selection rule here is a commonly used way of se-
lecting a receive antenna which is implemented by a simple
maximum-norm detection circuit. This rule does not require
the receiver to know the CSI or even the correlation matrix.
The rule is that the J antennas whose received signal norms
are the largest among all the antennas are selected [1]; i.e,

[n1, · · · , nJ ] = arg
J

max
n=1,2,··· ,N

zn, (4)

where zn = ‖yn‖2. Based on the argument in [1], the
following inequality for the Chernoff bound on the PEP of
mistaking Φl for Φl′ can be derived that changes to equality

when J = 1;

PCB(µ) ≤ π−TJN !

2 det (Rl)
J(N − J)!J !J

J∑
i=1

∫
CT

Fz(‖yi‖2)N−J × exp

(
−

J∑
k=1

yH
k{µR−1

l′ + (1 − µ)R−1
l︸ ︷︷ ︸

Ω(µ)

}yk

)
dy1 · · · dyJ , (5)

where CT is the T-dimensional complex space and 0 ≤ µ ≤ 1
is a free parameter that is chosen to minimize PCB(µ). In (5),
Fz(.) denotes the cumulative density function (CDF) of ‖y‖2,
and Rl and Rl′ are the T ×T covariance matrices conditioned
on Φl and Φl′ transmitted, respectively. The covariance matrix
Rl can be written as

Rl = IT +
ρT

M
ΦlRT ΦH

l . (6)

Note that each antenna at the receiver observes independently
correlated-fading gains from the transmitter antennas provided
that no correlation between the receive antennas exists. As
a result, all the columns of the received signal Y are i.i.d..
Since the received signal vector at each receiver, say receiver
i, is a Gaussian RV vector with not necessarily zero mean,
Fz(‖yi‖2) is also called the CDF of the quadratic form of
Gaussian RVs. By using the matrix inversion and determinant
lemmas in [2], one can derive

R−1
l = IT − Φl

(
IM + (

ρT

M
RT )−1

)−1
ΦH

l (7)

and

det(Rl) = det(IM +
ρT

M
D), (8)

where the diagonal matrix D = diag{λ1, . . . , λM} is obtained
from the singular value decomposition of RT .

Using the similar technique as in [1] and considering the
fact that Fz(‖y‖2) is independent of the transmitted signal Φl

(this independence will be proved shortly), the ML detection
is expressed as

ΦML = arg max
Φl∈{Φ1,...,ΦL}

tr

{
ŶHΦl

(
IM +

M

ρT
D−1

)−1

ΦH
l Ŷ

}
,

(9)
where Ŷ = [yn1 , · · · ,ynJ

]. If we assume that the receiver
knows the correlation matrix, the ML detector requires search-
ing over the codebook V in order to find the optimum signal
by maximizing (9). Although the RAS criterion in (4) does not
require the correlation matrix RT , this information is needed
in (9) to extract the most likely transmitted signal. One popular
transmit-correlation model of RT is exponential correlation
model. This model, which is a M × M matrix with entries

[RT ]i,j = γ|i−j| (10)

may hold for the practical case of the equispaced linear array
of antennas [11]. The authors of [12] have proved that the
matrix (10) has M distinct eigenvalues that can be expressed
as the functions of the correlation coefficient γ.
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First, we will briefly outline the derivation procedure. To
compute PCB in (5), Fz(‖y‖2) is required. Since the diversity
order and coding gain are meaningful only in the asymptoti-
cally high SNR region, to find them, the Chernoff bound on
the error probability is derived as a power series of the SNR.
The diversity order and coding gain are then extracted from
this power series. For example, at asymptotically high SNRs,
if the following relation [13],

PCB = (Gcρ)−Gd + o(ρ−Gd), (11)

holds for the error probability or the Chernoff bound, then
Gd and Gc represent the diversity order and coding gain,
respectively. In order to evaluate PCB at high SNR (ρ → ∞),
the dominant term in the power series expansion of Fz(a)
in terms of ρ is required. This CDF can be obtained by
inverting the Laplace transform of the moment generating
function (MGF) of zi = ‖yi‖2 given by [14, page 595]. With
the use of partial fractions, it is straightforward to show that
the characteristic function of zi is obtained as

G(s) =
1

(1 + s)T−M
∏M

i=1

[
1 + s(

ρT

M
λi + 1︸ ︷︷ ︸
ri

)
]

=
T−M∑
k=1

Ak

(1 + s)k
+

M∑
k=1

Bk[
1 + s(

ρT

M
λk + 1︸ ︷︷ ︸
rk

)
] , (12)

where

AT−M−k =
1
k!

∂k

∂sk

(
M∏
i=1

[1 + sri]−1

)∣∣∣∣
s=−1

(13a)

Bk =

(
1

1 − 1
rk

)T−M M∏
i=1,i�=k

(
1 − ri

rk

)−1

. (13b)

The PDF of zi can be obtained by taking the inverse Laplace
transform of (12) as follows:

fz(u) = L−1{G(s)}

=
T−M∑
k=1

Ak
1

(k − 1)!
uk−1e−u +

M∑
k=1

Bk

rk
e−u/rk . (14)

By integrating (14), the CDF of zi is obtained as

Fz(a) =
T−M∑
k=1

Ak

(
1 − e−a

K−1∑
i=0

ai

i!

)
+

M∑
k=1

Bk

(
1 − e−a/rk

)
.

(15)
Notice that the CDF expression of Fz(a) in (15) is independent
of the transmitted signal Φl. By inserting (13b) into (15) and
after some manipulations, the second term of the right side of

(15) approaches to

M∑
k=1

Bk

(
1 − e−a/rk

)
→ −

∞∑
j=1

(−aM)j

(ρT )jj!

×
M∑

k=1

λ−j
k

M∏
i=1,i�=k

(
1 − λi

λk

)−1

, (16)

when ρ → ∞. Upon cursory examination of (16), one might
conclude that the dominant term occurs at j = 1 as ρ → ∞.
However, the most dominant term in the power series of Fz(a)
is the term ρ−M because the coefficient of any power term ρj ,
j < M , is zero.

Theorem 1: For any M distinct eigenvalues λ1, . . . , λM and
0 < j < M , the following holds:

M∑
k=1

(λk)−j+M−1
M∏

i=1,i�=k

(λk − λi)
−1 = 0. (17)

Proof: With the common denominator∏
1≤i<j≤M (λi − λj), the numerator of the left side of

(17) would be

M∑
k=1

(−1)k−1λ−j+M−1
k

∏
1≤i<j≤M

i,j �=k

(λi − λj) =

det




λ−j+M−1
1 λ−j+M−1

2 · · · λ−j+M−1
M

1 1 · · · 1
λ1 λ2 · · · λM

λ2
1 λ2

2 · · · λ2
M

...
... · · · ...

λM−2
1 λM−2

2 · · · λM−2
M




.

(18)

The right side of (18) arises from the use of the rotational
properties of the Vandermonde Matrix (see Section 6.1 [15])
and the general definition of the determinant as well. The left
side of (18) is now equal to zero for all integers 1 ≤ j ≤ M−1
because if j is in this interval, the introduced matrix (18) has
two equal rows, so its determinant clearly must be zero.
Thus, the second term of (15) is expanded as

M∑
k=1

Bk

(
1 − e−a/rk

)
= − (−aM)M

ρMTMM !

M∑
k=1

λ−M
k

M∏
i=1
i�=k

(
1 − λi

λk

)−1

+ o(ρ−M ). (19)

Similarly, the dominant term of the first term of (15) is ρ−M

as ρ → ∞.
Theorem 2: For any integer k, and for large ρ, the following

holds:

∂k

∂sk

(
M∏
i=1

[1 + sri]−1

)∣∣∣∣
s=−1

= Ckρ−M + o(ρ−M ), (20)

where Ck is a constant value, independent of ρ, and uniquely
determined for each k. In other words, the left side of (20)
behaves as Ckρ−M when ρ is sufficiently large.
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Proof: See Appendix A.
In the high-SNR region, Fz(a)N−J can be approximated by
retaining the first term in the power series expansion of Fz(a);
thus,

Fz(a)N−J =
1

ρM(N−J)

[ T−M∑
k=1

Dk(1 − e−a
K−1∑
i=0

ai

i!
) + aME

]N−J

+o(ρ−M(N−J)), (21)

where

Dk = CT−M−k
(−1)T−M−k

(T − M − k)!

E =


 M∑

k=1

(−1)M+1 MM

TMM !λM
k

M∏
i=1
i�=k

(
1 − λi

λk

)−1


 . (22)

Therefore, by substituting (8) and (21) in (5), we obtain

PCB(µ) ≤
N !
∏M

i=1

(
1 + ρT

M λi

)−J

2πTJ(N − J)!J !J

J∑
i=1

∫
CT

[
e−

∑J
k=1 yH

k Ω(µ)yk

× 1
ρM(N−J)

( T−M∑
k=1

Dk(1 − e−yH
i yi

K−1∑
i=0

(yH
i yi)i

i!
)

+ (yH
i yi)ME

)N−J]
dy1 · · · dyJ + o(ρ−MN ). (23)

From (7), Ω(µ) may be rewritten as

Ω(µ) = IT − µΦl′(IM +
M

ρT
R−1

T )−1ΦH
l′ − (1 − µ)Φl

× (IM +
M

ρT
R−1

T )−1ΦH
l ⇒

lim
ρ→∞Ω(µ) = IT − µΦl′ΦH

l′ − (1 − µ)ΦlΦH
l . (24)

We assume for all Φl and Φl′ drawn from the unitary
constellation V , rank(Ω(µ)) = T for all l 	= l′ (i.e. the
full diversity constellation). In the case of single antenna
selection, by using the singular value decomposition Ω(µ) =
Qdiag{α1, . . . , αT }QH in (24) and changing the variables
xt = |ȳt|2, where ȳt is the t-th element of vector QHy, the
Chernoff bound on PEP from (23) is obtained. Therefore, the
diversity and coding gain of USTM and RAS are

Gd = MN (25a)

Gc =

(
NMM

2TM det (RT)

∫ ∞

0

· · ·
∫ ∞

0

[
e−

∑T
t=1 αtxt

( T−M∑
k=1

Dk

×
(

1 − e−
∑T

t=1 xt

k−1∑
i=0

(∑T
t=1 xt

)i

i!

)
+ (

T∑
t=1

xt)ME
)N−1]

× dx1 · · · dxT

)−1/(MN)

. (25b)

We observe that for high SNR and full rank space-time codes,
the full diversity order remains when a single antenna selected.

This result can be generalized to the multiple antenna selection
case from Eq. (23). Depending on the determinant of RT ,
some loss in the coding gain occurs. The equations (25a) and
(25b) can be more simplified for the case of a 2 by 2 MIMO
system when the differential USTM scheme with T = 4 is
employed. Without providing the details of the proof, PCB for
such system is obtained as

PCB =
1

16ρ4
(1 − γ2)−2

∫ ∞

0

e−
∑4

t=1 αtxt

[
2(1 − e−

∑4
t=1 xt)

+ 1 −
(

1 +
4∑

t=1

xt

)
e−

∑4
t=1 xt +

(
∑4

t=1 xt)2

2
+ 2

4∑
t=1

xt

]

× dx1 · · · dx4 =
1

16ρ4
(1 − γ2)−2

[
−
∑4

t=1(αt + 1)−1 + 3∏4
t=1(αt + 1)

+
1∏4

t=1(αt)

(
3 +

4∑
t=1

1
α2

t

+
∑

1≤t<p≤4

1
αtαp

−
4∑

t=1

2
αt

)]
+ o(ρ−4),

(26)

where a transmit correlation matrix RT =
[
1 γ
γ 1

]
is assumed.

IV. SIMULATION RESULTS

In this section, we examine the correctness of our theoretical
analysis through computer simulation and study the influence
of the transmit correlation on the error performance of USTM
and RAS. To exploit the benefits of differential USTM, the
optimized parametric codes in [1] are used in our simulations.
For antenna selection, we select the best receive antenna based
on the maximum received norm.

In Fig. 1, we compare the Chernoff bound on PEP presented
in (26) with simulated PEP for a differential USTM system
with M = 2, N = 2 when a single antenna is selected, J = 1.
Our theoretical bound is almost 1.5dB away from the exact
PEP at PEP equal to 10−5 for both the γ = 0.3 and γ = 0.9
cases and it gets tighter at a higher SNR. From Fig. 2, we
observe that even for a high level of correlation, e.g. γ = 0.9,
although some loss occurs in the coding gain, both the full-
complexity system and a system employing antenna selection
exhibit the same diversity order (Gd = 4). To illustrate the
advantage of RAS over no antenna selection subject to the
same power consumption, we plot the performance of a system
with a single receive antenna. As expected, its diversity order
is equal to 2.

V. CONCLUSION

In this paper, we analyzed the performance of USTM and
RAS over the spatially-correlated Rayleigh fading channel.
The popular exponential correlation model is used to describe
the correlation among transmit antennas. The antenna selec-
tion performed at the receiver is based on the instantaneous
received signal power. Our analysis uses the Chernoff bound
on the PEP. The simulations and analysis showed that although
the antenna correlation degrades the coding gain of the system,
the diversity order remains the same as a that of the same sys-
tem over an independent fading channel as long as the unitary
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Fig. 1. Comparison of the Chernoff bound and the simulated PEP with
M = 2, N = 2 J = 1
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Fig. 2. Performance comparison of parametric codes for the system with
or without antenna selection and M = 2, L = 16 over spatially correlated
channel

signals are of full rank. For a simple 2× 2 differential USTM
system with single receive antenna selection, we presented a
simple expression of the Chernoff bound and provided the
simulation results.

APPENDIX A
PROOF OF THEOREM 2

By Induction theorem, let f(s) =
(∏M

i=1[1 + sri]−1
)

. For

k = 0, it is clear that f(s)
∣∣∣∣
s=−1

= C0ρ
−M + o(ρ−M ), where

C0 = (−M/T )M det−1(RT ). Similarly, for k = 1, 2, we have

f ′(s)
∣∣∣∣
s=−1

=
M∑
i=1

−ri(1 + ris)−1f(s)
∣∣∣∣
s=−1

= C1ρ
−M + o(ρ−M )

f
′′
(s)
∣∣∣∣
s=−1

=
M∑
i=1

r2
i (1 + ris)−2f(s)

∣∣∣∣
s=−1

+
M∑
i=1

−ri(1 + ris)−1

× f ′(s)
∣∣∣∣
s=−1

= C2ρ
−M + o(ρ−M ), (27)

where C1 = MC0, and C2 = M(M + 1)C0. Assuming that
for all k < n, f (k)(s)

∣∣
s=−1

= Ckρ−M + o(ρ−M ), we show
that for k = n the same relation is held. i.e. f (n)(s)

∣∣
s=−1

=
Cnρ−M + o(ρ−M ). By using the same extension procedure
used in (27), the nth derivative of f(s) is expressed as a series
of lower order derivatives:

f (n)(s) = βn

M∑
i=1

rn
i (1+ris)−nf(s)+· · ·+β1

M∑
i=1

ri(1+ris)−1f (n−1)(s),

where β1, . . . , βn are independent of ρ and can be obtained
from: βi = (−1)i(n − 1)!/(n − i)!. For any k, Ck can be
recursively calculated.
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