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Abstract—The downlink transmission in multi-user multiple-
input multiple-output (MIMO) systems has been extensivelystud-
ied from both communication-theoretic and information-theoretic
perspectives. Most of these papers assume perfect/imperfect
channel knowledge. In general, the problem of channel training
and estimation is studied separately. However, in interference-
limited communication systems with high mobility, this problem
is tightly coupled with the problem of maximizing throughput of
the system. In this paper, scheduling and pre-conditioningbased
schemes in the presence of reciprocal channel are considered
to address this. In the case of homogeneous users, a scheduling
scheme is proposed and an improved lower bound on the sum
capacity is derived. The problem of choosing training sequence
length to maximize net throughput of the system is studied. In the
case of heterogeneous users, a modified pre-conditioning method
is proposed and an optimized pre-conditioning matrix is derived.
This method is combined with a scheduling scheme to further
improve net achievable weighted-sum rate.

I. I NTRODUCTION

Downlink transmission in a multiple antenna setting is both
a well studied and a complex problem with myriad parameters.
A natural problem to be studied in this setting is to maximize
throughput on the downlink while constraining the complexity
at the terminals to be minimal. The problem of multi-antenna
downlink transmission has been previously studied from many
different perspectives [1], [2], [3], [4]. In many of these
papers, the channel is assumed to be known a-priori either
perfectly or imperfectly at the base-station and/or terminals.
The distinguishing feature of this paper is that we study the
problem with no assumptions on channel knowledge both at
the base-station and terminals (users). In addition, we consider
very realistic and difficult communication regime when the
forward SINRs are low (≈ 0 dB). We consider this regime
since interference from neighboring base-stations does not
allow one to make SINRs larger. Specifically, the scenario
we study is the following: anM -element antenna array at the
base-station, and single antennas at theK(≤M) autonomous
terminals as shown in Fig. 1. The channel is assumed to
undergo block fading with a coherence interval ofT symbols.
A time-division duplex (TDD) operation is considered. In a
TDD system, the reverse channel and forward channel share a
reciprocity relationship. Our system model is a generalization
of the system model considered in [5]. We look at the net
impact of training, estimation, scheduling and pre-conditioning
on the throughput of the system.

Fig. 1. Multi-User MIMO TDD System Model

The use of multiple antennas instead of single antennas at
the transmitter and receiver in a point-to-point communication
system has been shown to greatly improve the capacity of
the wireless channels [6], [7]. Later, the sum capacity of the
multiple-input multiple-output (MIMO) Gaussian broadcast
channel has been shown to be achieved by dirty paper coding
(DPC) [8], [2], [9]. Recently, it was shown that DPC actually
characterizes the full capacity region of the MIMO Gaussian
broadcast channel [10]. In addition to the assumption that
channel is perfectly known at the transmitter and the receivers,
DPC scheme requires enormous computational power making
it challenging to implement in practice. Motivated by this,
many precoding and scheduling schemes have been proposed
to obtain near-optimal performance with low complexity in
certain scenarios [11], [12], [13], [14]. However, these schemes
are not applicable to the scenario we consider.

We first look at the homogeneous users scenario, where
all users have same forward and same reverse signal to
interference-plus-noise ratios (SINRs), and obtain a rigorous
lower bound on the sum capacity. The lower bound obtained
in this paper is tighter than the lower bound given in [5]. The
improvement comes from the scheduling strategy used which
is simple, and in fact even considerably reduces the computa-
tional complexity of pre-conditioning. In this context, wealso
study the problem of optimizing the training sequence length
and the number of users to maximize net throughput of the
system. Next, we look at the more general heterogeneous users
scenario and study the problem of maximizing achievable
weighted-sum rate. We propose a modified pre-conditioning
method and obtain an optimized pre-conditioning matrix under
M -large assumption. We combine this method with a simple
scheduling strategy to take advantage of instantaneous channel

http://arxiv.org/abs/0709.4513v2


variations.
We organize the remaining sections of this paper as follows.

Section II describes the system model and Section III explains
the reciprocal training used. Section IV and Section V describe
the schemes proposed to increase achievable sum/weighted-
sum rate in homogeneous and heterogeneous scenarios, re-
spectively. We provide numerical results in Section VI and
discuss our conclusions in Section VII.

A. Notations

In this paper, bold font variables denote vectors or matrices.
All vectors are column vectors.(·)T , (·)∗, (·)† andtr(·) denote
transpose, conjugate, Hermitian and trace, respectively.E[·]
and var{·} stand for expectation and variance operations,
respectively.diag{a} stands for theL × L diagonal matrix
with diagonal entries equal to theL components ofa.

II. M ODEL DESCRIPTION

The base-station withM antennas communicates with the
K independent users on both forward and reverse links as
shown in Fig. 1. The forward channel is characterized by
K × M propagation matrixH. We assume independent
Rayleigh fading channels, which remains constant over a
duration of T symbols called the coherence interval. The
entries of the channel matrixH are independent and identically
distributed (i.i.d.) zero-mean, circularly-symmetric complex
GaussianCN(0, 1) random variables. Our model incorporates
frequency selectivity of fading by using orthogonal frequency-
division multiplexing (OFDM). Note that the duration of the
coherence interval in symbols is chosen for the OFDM sub-
band. Due to reciprocity, we assume that the reverse channel
at any instant is the transpose of the forward channel.

Let the forward and reverse SINRs associated withkth user
beρfk andρrk, respectively. These forward and reverse SINRs
remain fixed throughout the channel uses. On the forward link,
the signal received by thekth user is

xfk =
√
ρfk h

T
k sf + wfk (1)

wherehT
k is the kth row of the channel matrixH and sf

is the M × 1 vector in which information symbols to be
communicated are embedded. The components of the additive
noise vector[wf1wf2 · · · wfK ] are i.i.d.CN(0, 1). The aver-
age power constraint at the base-station during transmission
is E[‖sf‖2] = 1 so that the total transmit power is fixed
irrespective of its number of antennas. On the reverse link,
the vector received at the base-station is

xr = HTErsr +wr (2)

wheresr is the signal-vector transmitted by the users andEr =
diag{[√ρr1

√
ρr2 · · · √ρrK ]T }. The components of the addi-

tive noisewr are i.i.d.CN(0, 1). There is power constraint at
every user during transmission given byE[‖srk‖2] = 1 where
srk is thekth component ofsr.

III. C HANNEL ESTIMATION

Channel reciprocity is one of the key advantages of TDD
systems over frequency-division duplex (FDD) systems. We
exploit this property to perform channel estimation by trans-
mitting training sequences on the reverse link. Every user
transmits a sequence of training signals ofτrp symbols dura-
tion in every coherence interval. We assume that these training
sequences are known a-priori to the base-station. Thekth

user transmits the training sequence vector
√
τrp ψ

†
k. We use

orthonormal sequences which impliesψ†
iψj = δij whereδij is

the Kronecker delta. The use of orthogonal sequences restricts
the maximum number of users toτrp, i.e.,K ≤ τrp.

The corrupted training signals received at the base-station
is

Yr =
√
τrp H

TErΨ
† +Vr (3)

whereτrp ×K matrix Ψ = [ψ1 ψ2 · · · ψK ] and the compo-
nents ofM×τrp additive noise matrixVr are i.i.d.CN(0, 1).
The base-station obtains the LMMSE (linear minimum-mean-
square-error) estimate of the channel

Ĥ = diag

{

[ √
ρr1τrp

1 + ρr1τrp
· · ·

√
ρrKτrp

1 + ρrKτrp

]T
}

ΨTYT
r . (4)

This estimateĤ is the conditional mean ofH and hence,
the MMSE estimate as well. By the properties of condi-
tional mean and joint Gaussian distribution, the estimateĤ

is independent of the estimation error̃H = H − Ĥ. The
components ofĤ are independent and the elements of its
kth row areCN

(

0,
ρrkτrp

1+ρrkτrp

)

. In addition, the components

of H̃ are independent and the elements of itskth row are
CN

(

0, 1
1+ρrkτrp

)

.

IV. H OMOGENEOUSUSERS

In this section, we focus on the special case where forward
SINRs from the base-station to all users are equal and also
reverse SINRs from all users to the base-station are equal,
i.e., ρf1 = · · · = ρfK = ρf andρr1 = · · · = ρrK = ρr.

A. Scheduling and Pre-Conditioning on Forward Link

The base-station selectsN(≤ K) users among theK users
and pre-condition the information signals to be transmitted
to theseN users. The scheduling strategy used to select
the users is explained in Section IV-C. Let the set of users
selected beS ⊆ {1, 2, · · · ,K} with N distinct entries. The
base-station forms theM × 1 transmission signal-vectorsf ,
which drives the antennas, from the information symbol-vector
q = [q1 q2 · · · qN ]T for the selected users by pre-multiplying
it with a pre-conditioning matrix. We use the pre-conditioning
matrix

AS =
Ĥ

†
S

(

ĤSĤ
†
S

)−1

√

tr

[

(

ĤSĤ
†
S

)−1
]

(5)

which is proportional to the pseudo-inverse of the estimated
channel. TheN ×M matrix ĤS is formed by the rows in set



S of matrix Ĥ. We use this pre-conditioning matrix because
of the lack of any channel knowledge at the users. The pre-
conditioning matrix is normalized so thattr(A†

SAS) = 1.
The transmission signal-vector is given by

sf = ASq (6)

and the power constraint at the base-station is satisfied by
imposing the conditionE[‖qn‖2] = 1, ∀n ∈ {1, · · · , N}. From
(1) and (6), we obtain the signal-vector received at the selected
users to be

xf =
√
ρf HSASq+wf (7)

whereHS is the matrix formed by the rows in setS of the
matrix H.

B. Lower Bound on Sum Capacity

In this section, we obtain a lower bound on the sum
capacity of the system under consideration. The approach is
similar to that in [15], [5]. The lower bound holds for any
scheduling strategy used at the base-station which selectsa
fixed number of users. Recall that the base-station performs
channel estimation as described in Section III.

Theorem 1:For the system under consideration, every se-
lected user can achieve a downlink rate during data transmis-
sion of at least

Cind−lb = log2



1 +
ρfE

2 [χ]

1 + ρf

(

1
1+ρrτrp

+ var{χ}
)



 (8)

bits/transmission whereχ is the scalar random variable given

by χ =

(

tr

[

(

ĤSĤ
†
S

)−1
])− 1

2

.

Proof: Let H̃S be defined as the matrix formed by the
rows in setS of the matrixH̃. TheN ×N effective forward
channel matrix in (7) is

G =
√
ρf HSAS (9)

=
√
ρf

(

ĤSAS + H̃SAS

)

=
√
ρf

(

χIN + H̃SAS

)

. (10)

From (9) and (7), we can write the signal received by thenth

user as
xfn = gT

nq+ wfn (11)

wheregT
n is thenth row of G. From (10), we obtain

gT
n =

√
ρf

(

χeTn + h̃T
S,nAS

)

(12)

whereh̃T
S,n is thenth row of H̃S andeTn is theN × 1 vector

with nth element equal to one and all other elements equal to
zero. From (12), we obtain

E
[

gT
n

]

=
√
ρf E [χ] eTn (13)

and

E
[

gT
ng

∗
n

]

= ρf

(

E
[

χ2
]

+
1

1 + ρrτrp

)

. (14)

Adding E[gT
n ] to and subtractingE[gT

n ] from gT
n in (11),

we obtain

xfn = E
[

gT
n

]

q+ ĝT
nq+ wfn

=
√
ρf E [χ] qn + ŵfn (15)

whereĝT
n = gT

n − E[gT
n ] and ŵfn is the zero-mean effective

noise. Since the signalq is independent of̂gT
n andE[ĝT

n ] = 0,
the signalqn is uncorrelated with the effective noise. Using
(13) and (14), we obtain the variance

var {ŵfn} = E
[

ĝT
nqq

†ĝ∗
n

]

+ E
[

‖wfn‖2
]

= E
[

ĝT
nE

[

qq†
∣

∣ gn]ĝ
∗
n

]

+ E
[

‖wfn‖2
]

= E
[

gT
ng

∗
n

]

− E
[

gT
n

]

E [g∗
n] + E

[

‖wfn‖2
]

= 1 + ρf

(

1

1 + ρrτrp
+ var {χ}

)

. (16)

Under the assumption that the users are aware of the
scheduling strategy,E [χ] is known to the users. We obtain
a lower bound on the downlink capacity of every selected
user during data transmission by assuming worst-case noise
distribution, which is uncorrelated Gaussian noise with same
variance [15]. Thus, from (15) and (16), we obtain (8) which
completes the proof.

Corollary 1: For the system with homogeneous users con-
sidered, a lower bound on the sum capacity is

Csum−lb = max
N≤K, N∈I+

N · Cind−lb. (17)

C. Scheduling Strategy

The need for explicit scheduling arises due the use of
pseudo-inverse based pre-conditioning of the informationsym-
bols. With perfect channel knowledge at the base-station (Ĥ =
H) and no scheduling (N = K), the pseudo-inverse based
pre-conditioning diagonalizes the effective forward channel
and every user sees statistically identical effective channel
irrespective of its actual channel. The inability to vary the
effective gains to the users depending on their channel states
is due to lack of any channel knowledge at the users. This
possibly causes a reduction in achievable sum rate. Motivated
by this, we propose a scheduling strategy which explicitly
selectsN ≤ K users before pre-conditioning.

In every coherence interval, the channel estimate at the base-
station is used to select theN users with largest estimated
channel gains. Let̂hT

(1), ĥ
T
(2), · · · , ĥT

(K) be the norm-ordered

rows of the estimated channel matrix̂H. Then, the matrix̂HS

is given byĤS = [ĥ(1) ĥ(2) · · · ĥ(N)]
T and the lower bound

in (8) becomes

Cind−lb = log2



1 +
ρf

(

ρrτrp
1+ρrτrp

)

E
2 [η]

1 + ρf

(

1
1+ρrτrp

+
ρrτrp

1+ρrτrp
var{η}

)



 .

(18)

Here, the random variableη =
(

tr
[

(

UU†
)−1

])− 1
2

where
U is theN ×M matrix formed by theN rows with largest
norms of aK × M random matrixZ whose elements are
i.i.d. CN(0, 1). We provide numerical results showing the
improvement obtained by using this strategy in Section VI.



D. Net Achievable Sum Rate

Net achievable sum rate accounts for the reduction in
achievable sum rate due to training. In every coherence interval
of T symbols, firstτrp symbols are used for training on reverse
link, one symbol is used for computation (same assumption
as in [5]) and the remainingT − τrp− 1 symbols are used for
transmitting information symbols. The number of usersK and
the training lengthτrp can be chosen such that net throughput
of the system is maximized. Thus, net achievable sum rate is
defined as

Cnet(M,ρf , ρr) = max
K,τrp

T − τrp − 1

T
Csum−lb(·) (19)

subject to the constraintsτrp ≤ T − 2 andK ≤ min(M, τrp).
Csum−lb(·) in (19) is given by (17).

V. HETEROGENEOUSUSERS

In this section, we consider the general setting described
in Section II with heterogeneous users. Moreover, we study
the problem of maximizing achievable weighted-sum rate.
The motivation behind this problem is that many algorithms
implemented in layers above physical layer assign weights
to each user depending on various factors. We assume that
these weights are pre-determined and known. We propose a
modified pre-conditioning method and derive an optimized
pre-conditioning matrix underM -large assumption. We further
combine this with a scheduling strategy to obtain an improved
lower bound on the weighted-sum capacity.

A. Modified Pre-Conditioning

The base-station obtains theM × 1 transmission signal-
vector sf by pre-multiplying the information symbolsq =
[q1 q2 · · · qK ]T with a pre-conditioning matrix as explained in
Section IV-A. We propose a modified pre-conditioning matrix
given by

AD =
Ĥ

†
D

(

ĤDĤ
†
D

)−1

√

tr

[

(

ĤDĤ
†
D

)−1
]

(20)

where ĤD = DĤ and D = diag
{[

p
− 1

2

1 p
− 1

2

2 · · · p−
1
2

K

]}

.
The choice ofD is explained in Section V-C. From (1), we
obtain the signal-vector received at the users

xf = EfHADq+wf (21)

whereEf = diag{[√ρf1 √ρf2 · · · √ρfK ]T }.

B. Lower Bound on Weighted-Sum Capacity

In this section, we generalize the lower bound derived in
Section IV-B to heterogeneous users and weighted-sum rate.

Theorem 2:For the system under consideration, a lower
bound on the downlink weighted-sum capacity during trans-
mission is given byCwt−lb

=

K
∑

k=1

wk log2



1 +
ρfkpkE

2 [φF ]

1 + ρfk

(

1
1+ρrkτrp

+ pkvar{φF }
)



 .

(22)

Here, the random variableφF is given by

φF =
(

tr
[

(

FZZ†F
)−1

])− 1
2

(23)

whereF = D · diag

{

[
√

ρr1τrp
1+ρr1τrp

· · ·
√

ρrKτrp
1+ρrKτrp

]T
}

and

Z is the K × M random matrix whose elements are i.i.d.
CN(0, 1).

Proof: The effective forward channel in (21) is

G = EfHAD

= Ef

(

D−1ĤDAD + H̃AD

)

= Ef

(

φFD
−1 + H̃AD

)

. (24)

The remaining steps in this proof are similar to those in the
proof of Theorem 1 and hence, we skip it.

C. M-large Asymptotics and Optimization of Pre-Conditioning
Matrix

We wish to choose the matrixD such thatCwt−lb in
(22) is maximized. However, this problem is hard to analyze.
We consider the asymptotic regimeM/K ≫ 1. Apart from
making the problem mathematically tractable, this asymptotic
regime is interesting due to the following two reasons. i) In
our system model, we observe that extra base-station antennas
are always beneficial from numerical results given in Section
VI. This observation was first made for homogeneous users in
[5]. ii) The system imposed constraintsK ≤ τrp andτrp ≤ T
restrict the value ofK.

It is known thatlimM/K→∞ ZZ† → MIK whereZ is the
K ×M random matrix whose elements are i.i.d.CN(0, 1).
Therefore, under M-large approximation, random variableφF
in (23) can be approximated to

φF ≈
√

M

tr (F−2)
(25)

which is a constant. Substituting (25) in (22), we get

Cwt−lb ≈ J(p) =

K
∑

i=1

wi log2











1 +
βipi

K
∑

j=1

αjpj











(26)

whereαj = (
ρrjτrp

1+ρrjτrp
)−1 andβi =

Mρfi

1+ρfi(1+ρriτrp)−1 .
Theorem 3:Let p = [p1 p2 · · · pK ]T be any vector of non-

negative real numbers andp∗ = argmaxp J(p) then the set
of possible values ofp∗ = cp∗ wherec is any positive real
number andp∗ = [p∗1 p

∗
2 · · · p∗K ]T such that

p∗i =

(

wi

λ∗αi
− 1

βi

)+

. (27)

The positive real numberλ∗ is chosen such that the constraint
K
∑

i=1

αip
∗
i = 1 is satisfied.

Proof: We use Lagrange multipliers to obtain this result.
Due to lack of space, we do not include the proof here.



The optimizedp∗ given by (27) is substituted in (20) to
obtain the optimized pre-conditioning matrix. We use this
optimized pre-conditioning matrix even whenK is comparable
to M .

D. Scheduling Strategy

In our system model, the optimized valuesp∗ cannot depend
on the instantaneous channel as no channel information is
available to the users. Hence, we need explicit selection of
users to take advantage of the instantaneous channel varia-
tions. In this section, we propose a scheduling strategy for
heterogeneous users.

Let zT1 , z
T
2 , · · · , zTK be the rows of the matrix

Z = diag







[√

1 + ρr1τrp
ρr1τrp

· · ·
√

1 + ρrKτrp
ρrKτrp

]T






Ĥ (28)

whereĤ is the estimated channel given by (4). In every coher-
ence interval, the users are ordered such thatp∗(1)‖zT(1)‖2 ≥
p∗(2)‖zT(2)‖2 ≥ · · · ≥ p∗(K)‖zT(K)‖2 and information symbols
are transmitted to the firstN users using the pre-conditioning
matrix formed by the appropriate rows of the optimized pre-
conditioning matrix as described in Section V-C. The value of
N is chosen in order to maximize achievable weighted-sum
rate. We denote this lower bound on achievable weighted-sum
rate with scheduling byCsh

wt−lb(·).

E. Net Achievable Weighted-Sum Rate

We define net achievable weighted-sum rate as

Cwt−net(M,K, ρf , ρr) = max
τrp

T − τrp − 1

T
Csh

wt−lb(·) (29)

subject to the constraintsτrp ≥ K andτrp ≤ T − 2.

VI. N UMERICAL RESULTS

We provide numerical results in both homogeneous and
heterogeneous users scenarios to show the performance ben-
efits obtained using the various proposed schemes. We are
interested in the realistic communication regime when forward
and reverse SINRs are low. We consider this regime since
interference from neighboring base-stations force systems to
operate in this regime. Moreover, we are interested in high
mobility users. Hence, we choose the system parameters for
these scenarios.

A. Homogeneous Users

We consider forward SINRρf of 0 dB and reverse SINR
ρr of −10 dB. First, we keep the training sequence length
equal to the number of users, i.e.,τrp = K. In Fig. 2, we plot
lower bound on the sum capacity with scheduling (Scheme-
1) and without scheduling (Scheme-0) forM = {4, 8, 16}
and K = {1, 2, · · · ,M}. Note that Scheme-0 is the lower
bound obtained in [5]. The proposed scheme gives significant
improvement which implies that the scheme is capable of
performing opportunistic scheduling. Next, in Fig. 3, we plot
net achievable sum rate versusM for T = {20, 30}. We
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Fig. 3. Net achievable sum rate with scheduling (Scheme-1) and without
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observe that the net achievable sum rate increases withM
for all schemes. As expected, the proposed scheduling scheme
(Scheme-1) outperforms Scheme-0.

In Fig. 4, we plot the optimum valuesτ∗rp, N∗ andK∗,
which maximize net throughput, versus forward SINR forT =
20 symbols. Here, we fix the reverse SINR to be 10 dB less
than the forward SINR. In all the cases plotted, the optimized
value of the number of usersK∗ = τ∗rp. In Fig. 4, we observe
that the scheduling gains are more at low SINRs.

B. Heterogeneous Users

We consider a multi-user system consisting ofK = 8
users with forward SINRs{−4,−3,−2,−1, 0, 1, 2, 3} dB and
coherence intervalT = 20 symbols. We assume that the
reverse SINR associated with every user is10 dB lower than
its forward SINR. Next, we assign a weight of2 to the first
four users and unit weight to the remaining users. The plot in
Fig. 5 of net achievable weighted-sum rate versusM clearly
shows that using more antennas at the base-station is bene-
ficial. Scheme-2 denotes optimized pre-conditioning with no
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scheduling and Scheme-3 denotes optimized pre-conditioning
combined with scheduling. We observe that Scheme-3 gives
the best performance. The performance gain due to scheduling
is very significant when the number of users are comparable
to the number of base-station antennas.

VII. C ONCLUSION

Our results show that even in interference-limited and highly
mobile communication systems, the effective use of multiple
antennas at the base-station greatly improve net downlink
throughput in multi-user setting. We conclude that it is ad-
vantageous to increase the number of base-station antennas
in the system model we considered. Reciprocal training made
feasible by time-division duplex (TDD) operation is key to this
result. With increase in the number of base-station antennas,
the effective forward channel improves whereas the training
sequence length required is not affected. The training sequence
length has significant impact on the net throughput of mobile
systems and hence, it is important to optimize it depending on

various system parameters as discussed in the paper.
In multi-user multiple antenna systems, scheduling and

pre-conditioning are practical schemes that can potentially
improve the net throughput of these systems. We proposed
scheduling schemes in both homogeneous and heterogeneous
users scenarios and showed that these schemes significantly
improve achievable sum/weighted-sum rate. The optimized
pre-conditioning derived is applicable to the generic case
with arbitrary set of weights, forward and reverse SINRs.
Also, the optimization involved is computationally simpleand
can be implemented efficiently. As future work, we plan to
extend these ideas to design a cellular network with aggressive
frequency reuse supporting high mobility and high downlink
rates.
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