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Abstract—We present a novel analytical framework for the
evaluation of important second order statistical parameters, as
the level crossing rate (LCR) and the average fade duration
(AFD) of the amplify-and-forward multihop Rayleigh fading
channel. More specifically, motivated by the fact that thischannel
is a cascaded one, which can be modelled as the product of
N fading amplitudes, we derive novel analytical expressions
for the average LCR and AFD of the product of N Rayleigh
fading envelopes, or of the recently so-calledN∗Rayleigh channel.
Furthermore, we derive simple and efficient closed-form approxi-
mations to the aforementioned parameters, using the multivariate
Laplace approximation theorem. It is shown that our general
results reduce to the specific dual-hop case, previously published.
Numerical and computer simulation examples verify the accuracy
of the presented mathematical analysis and show the tightness
of the proposed approximations.

1

I. I NTRODUCTION
Multihop communications, a viable option for providing

broader and more efficient coverage, can be categorized
as either non-regenerative (amplify-and-forward, AF) or re-
generative decode-and-forward, DF) depending on the relay
functionality [1]-[9]. In DF systems, each relay decodes its
received signal and then re-transmits this decoded version.
In AF systems, the relays just amplify and re-transmit their
received signal. Furthermore, a system with AF relays can use
channel state information (CSI)-assisted relays [1] or fixed-
gain relays [2] (also known as blind or semi-blind relays [6]).
A (CSI)-assisted relay uses instantaneous CSI of the channel
between the transmitting terminal and the receiving relay to
adjust its gain, whereas a fixed-gain relay just amplifies its
received signal by a fixed gain [2][6]. Systems with fixed-gain
relays perform close to systems with (CSI)-assisted relays[2],
while their easy deployment and low complexity make them
attractive from a practical point of view.

Several works in the open literature have provided perfor-
mance analysis of AF or DF systems in terms of bit error
rate (BER) and outage probability under different assumptions
of the amplifier gain [1]-[9]. Among them, only two works
dealt with the dynamic, time-varying nature of the underlying
fading channel, [8], [9], despite the fact that it is necessary
for the system’s design or rigorous testing. In [8], the level
crossing rate (LCR) and the average fade duration (AFD) of
multihop DF communication systems over generalized fading
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channels was studied, both for noise-limited and interference-
limited systems, while Patel et. al in [9] provide useful exact
analytical expressions for the AF channel’s temporal statistical
parameters such as the auto-correlation and the LCR. However,
the approach presented in [9] is limited only to the dual-hop
fixed-gain AF Rayleigh fading channel.

In this paper, we study the second order statistics of the
fixed-gain AF multihop Rayleigh fading channel. More specif-
ically, motivated by the fact that this channel is a cascaded
one, which can be modeled as the product ofN fading
amplitudes, we derive a novel analytical framework for the
evaluation of the average LCR and the AFD of the product of
N Rayleigh fading envelopes. Furthermore, we derive simple
and efficient closed-form approximations using the multi-
variate Laplace approximation theorem [16, Chapter IX.5],
[17]. These important theoretical results are then appliedto
investigate the second order statistics of the multihop Rayleigh
fading channel. Numerical and computer simulation examples
verify the accuracy of presented mathematical analysis and
show the tightness of the proposed approximations.

II. L EVEL CROSSINGRATE AND AVERAGE FADE

DURATION OF THE PRODUCT OFN RAYLEIGH ENVELOPES

Let {Xi(t)}N
i=1 be N independent and not necessarily

identically distributed (i.n.i.d.) Rayleigh random processes,
each distributed according to [10]-[11],

fXi
(x) =

2x

Ωi
exp

(

−x2

Ωi

)

, x ≥ 0, (1)

in an arbitrary momentt, whereΩi = E{X2
i (t)} is the mean

power of thei-th random process (1 ≤ i ≤ N ).
If {Xi(t)}N

i=1 represent received signal envelopes in an
isotropic scattering radio channel exposed to the Doppler
Effect, they must be considered as time-correlated random
processes with some resulting Doppler spectrum. This Doppler
spectrum differs depending on whether fixed-to-mobile chan-
nel [10]-[11] or mobile-to-mobile channel [12]-[13] appears
in the wireless communications system. In both cases, it was
found that time derivative ofi-th envelope is independent from
the envelope itself, and follows the Gaussian PDF [10]-[13]

fẊi
(ẋ) =

1√
2πσẊi

exp
(

− ẋ2

2σ2
Ẋi

)

, (2)
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with variance calculated as

σ2
Ẋi

= π2Ωif
2
i . (3)

If envelope Xi is formed on a fixed-to-mobile channel,
thenfi = fmi wherefmi is the maximum Doppler frequency
shift induced by the motion of the mobile station [10]-[11].If
envelopeXi is formed on a mobile-to-mobile channel, then

fi =
√

f
′2
mi + f

′′2
mi . (4)

where f
′

mi and f
′′

mi are the maximum Doppler frequency
shifts induced by the motion of both mobile stations (i.e., the
transmitting and the receiving stations, respectively) [13]. It is
important to underline that the maximum Doppler frequency
in a fixed-to-mobile channel isfd max = fmi, whereas the
maximum Doppler frequency in a mobile-to-mobile channel
is fd max = f

′

mi + f
′′

mi. The above results are essential in
deriving the second-order statistical parameters of individual
envelopes, as the LCR and the AFD [10], [11], [13].

Below, we derive exact and approximate solutions for both
of the above parameters for product ofN Rayleigh envelopes,

Y (t) =

N∏

i=1

Xi(t) . (5)

We denoteY (t) as N∗Rayleigh random process or, at any
given momentt, N∗Rayleigh random variable, following the
definition given in [14].

For some specified value{Xi}N
i=1 = {xi}N

i=1, the product
Y is fixed to the specific valuey =

∏N
i=1 xi. The LCR ofY at

thresholdy is defined as the rate at which the random process
crosses levely in the negative direction [10]. To extract LCR,
we need to determine the joint probability density function
(PDF) betweenY and Ẏ , fY Ẏ (y, ẏ), and to apply the Rice’s
formula [11, Eq. (2.106)],

NY (y) =

∫ ∞

0

ẏfY Ẏ (y, ẏ)dẏ . (6)

Our method does not require explicit determination of
fY Ẏ (y, ẏ) in order to determine analytically the LCR of the
N∗Rayleigh random process, as presented below.

First, we need to find the time derivative of (5), which is

Ẏ = Y
N∑

i=1

Ẋi

Xi
. (7)

Conditioning on the firstN − 1 envelopes{Xi}N−1
i=1 =

{xi}N−1
i=1 , we have the conditional joint PDFY andẎ written

as fY Ẏ |X1···XN−1
(y, ẏ|x1, ..., xN−1). This conditional joint

PDF can be averaged with respect to the joint PDF of the
N −1 envelopes{Xi}N−1

i=1 to produce the required joint PDF,

fY Ẏ (y, ẏ)

=

∫ ∞

x1=0

· · ·
∫ ∞

xN−1=0

fY Ẏ |X1···XN−1
(y, ẏ|x1, ..., xN−1)

× fX1
(x1) · · · fXN−1

(xN−1)dx1 · · · dxN−1 (8)

where to derive (8) the mutual independence of theN − 1
envelopes is used.

The conditional joint PDF fY Ẏ |X1···XN−1
(y, ẏ|x1, ...,

xN−1) can be further simplified by settingY = y and using
the total probability theorem,

fY Ẏ |X1···XN−1
(y, ẏ|x1, ..., xN−1)

= fẎ |Y X1···XN−1
(ẏ|y, x1, ..., xN−1)

× fY |X1···XN−1
(y|x1, ..., xN−1) , (9)

where each of the two multipliers in (9) can be determined
from the above defined individual PDFs and their parameters.

Based on (7), the conditional PDFfẎ |Y X1···XN−1
(ẏ|y, x1,

..., xN−1) can be easily established to follow the Gaussian
PDF with zero mean and variance

σ2
Ẏ |Y X1···XN−1

=

(

y2
N−1∑

i=1

σ2
Ẋi

x2
i

+ σ2
ẊN

N−1∏

i=1

x2
i

)

= σ2
ẊN

[

1 + y2

(
N−1∏

i=1

1

x2
i

)
N−1∑

i=1

σ2
Ẋi

σ2
ẊN

1

x2
i

]
N−1∏

i=1

x2
i . (10)

The conditional PDF ofY given{Xi}N−1
i=1 = {xi}N−1

i=1 that
appears in (9) is easily determined in terms of the PDF of the
remainingN -th envelope,

fY |X1···XN−1
(y|x1, ..., xN−1)

= fXN

(

y

N−1∏

i=1

1

xi

)
N−1∏

i=1

1

xi
(11)

Introducing (9) and (11) into (8), then (8) into (6) and changing
the orders of the integration, we obtain

NY (y) =

∫ ∞

x1=0

· · ·
∫ ∞

xN−1=0

(∫ ∞

ẏ=0

ẏfẎ |Y X1···XN−1
(ẏ|y, x1, ..., xN−1)dẏ

)N−1∏

i=1

1

xi

fXN

(

y

N−1∏

i=1

1

xi

)

fX1
(x1) · · · fXN−1

(xN−1)dx1 · · ·dxN−1 (12)

The bracketed integral in (12) is found using (10) as
∫ ∞

0

ẏfẎ |Y X1···XN−1
(ẏ|y, x1, · · · , xN−1)dẏ =

σẎ |Y X1···XN−1√
2π

(13)

By substituting (1) and (13) into (12), we obtain the exact
formula for the LCR as

NY (y) =
σẊN√

2π

2Ny

Φ

×
∫ ∞

x1=0

· · ·
∫ ∞

xN−1=0

[

1 + y2

(
N−1∏

i=1

1

x2
i

)
N−1∑

i=1

σ2
Ẋi

σ2
ẊN

1

x2
i

]1/2

× exp

[

−
(

y2

ΩN

N−1∏

i=1

1

x2
i

+
N−1∑

i=1

x2
i

Ωi

)]

dx1 · · · dxN−1, (14)

where

Φ =

N∏

k=1

Ωk (15)



In principle, (14) together with (15) provide an exact
analytical expression for the LCR of the product of the product
of N Rayleigh envelopes (i.e.,N∗Rayleigh random process
[14]). However, (14) becomes computationally attractive only
for small values ofN , where it is possible to apply a numerical
computation method (as Gaussian-Hermite quadrature).

Note that, (14) is transformed into a single integral when
N = 2, which, after introducing (3) fori = 1, 2 and changing
integration variablex with new variablet accordingx = y/t,
reduces to the known result [9, Eq. (17)].

The AFD ofY at thresholdy is defined as the average time
that theN∗Rayleigh random process remains below levely
after crossing that level in the downward direction,

TY (y) =
FY (y)

NY (y)
, (16)

where FY (·) denotes the cumulative distribution function
(CDF) ofY . Fortunately,FY (·) was derived recently in closed-
form [14, Eq. (7)], as

FY (y) = GN,1
1,N+1




y2

Φ

∣
∣
∣
∣
∣

1
1, 1, · · · , 1
︸ ︷︷ ︸

N

, 0



 , (17)

whereG[·] is the Meijer’sG-function [15, Eq. (9.301)].

A. An Approximate Solution for the LCR

Next, we present a tight closed-form approximation of (14)
using the multivariate Laplace approximation theorem [16,
Chapter IX.5], [17] for the Laplace-type integral

J(λ) =

∫

x∈D

u(x) exp(−λh(x))dx, (18)

whereu and h are real-valued multivariate functions ofx =
[x1, · · · , xN−1], λ is a real parameter andD is unbounded
domain in the multidimensional spaceRN−1.

A comparison of (14) and (18) yields

u(x) =

[

1 + y2

(
N−1∏

i=1

1

x2
i

)
N−1∑

i=1

σ2
Ẋi

σ2
ẊN

1

x2
i

]1/2

, (19)

h(x) =
y2

ΩN

N−1∏

i=1

1

x2
i

+

N−1∑

i=1

x2
i

Ωi
, (20)

andλ = 1. Note, that in the case of (14), all the applicability
conditions of the theorem are fulfilled. Namely, within the
domain of interestD, the functionh(x) has a single interior
critical point x̃ = [x̃1, · · · , x̃N−1], where

x̃i = y1/N Ω
1/2
i

Φ1/(2N)
, 1 ≤ i ≤ N − 1, (21)

which is obtained from solving the set of equations∂h/∂xi =
0, where1 ≤ i ≤ N − 1. The Hessian(N − 1) × (N − 1)
square matrixA, defined by [15, Eq. (14.314) ], is written as

A =







8/Ω1 4/
√

Ω1Ω2 · · · 4/
√

Ω1ΩN−1

4/
√

Ω2Ω1 8/Ω2 · · · 4/
√

Ω2ΩN−1

. . · · · .

4/
√

ΩN−1Ω1 4/
√

ΩL−1Ω2 · · · 8/ΩN−1







(22)

By using induction, it is easy to determine that theN − 1
eigenvalues ofA are calculated asµi = 4/Ωi for 1 ≤ i ≤
N − 2, andµN−1 = 4N/ΩN−1. Thus, all eigenvalues ofA
are positive, which, by definition, means that the matrixA

is positive definite. By means of the second derivative test,
since the Hessian matrixA is positive definite at point̃x,
h(x) attains a local minimum at this point (which in this case
is the absolute minimum in the entire domainD).

At this interior critical pointx̃,

u(x̃) =

(

1 +

N−1∑

i=1

σ2
Ẋi

σ2
ẊN

ΩN

Ωi

)1/2

=

(

1 +

N−1∑

i=1

f2
i

f2
N

)1/2

,

(23)

h(x̃) = N

(
y2

Φ

)1/N

, (24)

where (23) is obtained using (3). Now, it is possible to
approximate (18) for largeλ as

J(λ) ≈
(

2π

λ

)(N−1)/2
[

1

det(A)

(

1 +
N−1∑

i=1

f2
i

f2
N

)]1/2

× exp

(

−λN
y2/N

Φ1/N

)

. (25)

It is well-know that the determinant of the square matrix is
equal to the product of its eigenvalues. Hence,A can be
written as

det(A) =
N22(N−1)

∏N−1
k=1 Ωk

=
ΩNN22(N−1)

Φ
. (26)

Although approximation (25) is proven for largeλ [16]-[17],
it is often applied whenλ is small and is observed to be very
accurate as well. Similarly to [18], we apply the theorem for
λ = 1. Therefore, the approximate closed-form solution for
the LCR ofN∗Rayleigh random processY at thresholdy is

NY (y) ≈
σẊN√

2π

2Ny

Φ
J(1) =

2y(2π)N/2−1σẊN

Ω
1/2
N Φ1/2

×
[

1

N

(

1 +
N−1∑

i=1

f2
i

f2
N

)]1/2

exp

(

−N
y2/N

Φ1/N

)

=

(

1

N

N∑

i=1

f2
i

)1/2

(2π)N/2y

Φ1/2
exp

(

−N
y2/N

Φ1/N

)

. (27)

The numerical results presented in Section IV validate the
high accuracy of the Laplace approximation applied for our
particular case.

Combining (17) and (27) into (16), the AFD of the
N∗Rayleigh random processY at thresholdy is approximated
as

TY (y) ≈
(

1

N

N∑

i=1

f2
i

)−1/2

Φ1/2

(2π)N/2

1

y

×GN,1
1,N+1




y2

Φ

∣
∣
∣
∣
∣

1
1, 1, · · · , 1
︸ ︷︷ ︸

N

, 0



 exp

(

N
y2/N

Φ1/N

)

. (28)



III. SECOND ORDER STATISCS OFMULTIHOP

TRANSMISSION

Next, we apply the important theoretical result of the
previous Section to analyze the second order statistics of the
multihop relay fading channel.
A. System Model

We now consider a multihop wireless communications sys-
tem, operating over i.n.i.d flat fading channels. Source station
S communicates with destination stationD throughN − 1
relaysT1, T2,...,TN−1, which act as intermediate stations from
one hop to the next. These intermediate stations are employed
with non-regenerative relays with fixed gainGi given by

G2
i =

1

CiW0,i
(29)

with G0 = 1 and C0 = 1 for the sourceS. In (29), W0,i is
the variance of the Additive White Gaussian Noise (AWGN)
at the output of thei-th relay, andCi is a constant for the
fixed gainGi.

Assume that terminalS is transmitting a signals(t) with an
average power normalized to unity. Then, the received signal
at the first relay,T1, at momentt, can be written as

r1(t) = α1(t)s(t) + w1(t) , (30)

whereα1(t) is the fading amplitude betweenS and T1, and
w1(t) is the AWGN at the input ofT1 with varianceW0,1. The
signalr1 is then multiplied by the gainG1 of the relayT1 and
re-transmitted to relayT2. Generally, the received signal at the
k-th relayTk (k = 1, 2, ..., N − 1) is given by

rk(t) = Gk−1αk(t)rk−1(t) + wk(t) , (31)

resulting in a total fading amplitude at the destination node
D, given by

α(t) =
N∏

i=1

αi(t)Gi−1 . (32)

B. LCR and AFD of Multihop Transmissions

If the fading amplitude received at nodeTi, αi(t), is a
time-correlated (due to mobility ofTi−1 and/orTi) Rayleigh
random process, distributed according to (1) with mean power
Ω̂i = E{α2

i (t)}, then the i-th element of the product in
(32), Xi(t) = αi(t)Gi−1, is again a time-correlated Rayleigh
random process, distributed according to (1) with mean power
Ωi = Ω̂i G2

i−1.
Comparing (5) and (32), we realize that the total fading

amplitude at the destination stationD (i.e., the received desired
signal without the AWGN) is described as theN∗Rayleigh
random processY (t) = α(t), whose average LCR and AFD
are determined in the previous Section.

If all stations are assumed mobile with maximum Doppler
frequency shiftsfmS , fmD, fmi(1 ≤ i ≤ N−1) for the source
S, destinationD and relays, respectively, then for thei-th hop
f2

i = f2
m(i−1) + f2

mi with fm0 = fmS andfmN = fmD, and

N∑

i=1

f2
i = f2

mS + 2

N−1∑

i=1

f2
mi + f2

mD . (33)

Combining (27) and (33), we obtain approximate solution for
the average LCR of the total fading amplitudeα at the output
of a multihop non-regenerative relay transmission system,

Nα(α) ≈
[

1

N

(

f2
mS + 2

N−1∑

i=1

f2
mi + f2

mD

)]1/2

× (2π)N/2α

Φ1/2
exp

(

−N
α2/N

Φ1/N

)

, (34)

whereΦ is given by (15). We see that (34) approximates the
average LCR of the total fading amplitude for arbitrary mean
power of the fading amplitudeŝΩi, arbitrary relay gainsGi

and arbitrary maximal Doppler shiftsfmi.
Note that, for N = 2, (34) is an efficient closed-form

alternative to the corresponding one [9, Eq. (17)] for the dual-
hop case, which is shown in next section to be highly accurate.

IV. N UMERICAL RESULTS AND DISCUSSION

In this section, we provide some illustrative examples for
the average LCR and AFD of the fading gain process of the
received desired signal at the destination of the multihop non-
regenerative relay transmission system model from SectionIII.
The numeric examples obtained from the derived approximate
solutions are validated by extensive Monte-Carlo simulations.

We considered a multihop system consisted of a source
terminalS, 4 relays, and a destination terminalD. The fixed-
gain relays are assumed semi-blind with gains in Rayleigh
fading channel calculated as [2, Eq. (15)] and [6, Eq. (19)]

G2
i,sb =

1

Ω̂i

exp

(
1

γ̄i

)

Γ

(

0,
1

γ̄i

)

, (35)

where γ̄i = Ω̂i/W0,j is the mean SNR on the i-th hop,
and Γ(·, ·) is the incomplete Gamma function. Relay gain
calculated according to (35) assures mean power consumption
equal to that of a CSI-assisted relay, whose gain inverts the
fading effect of the previous hop while limiting the output
power at moments with deep fading.

Depending on the stations’ mobility, we used two different
2D isotropic scattering models for the Rayleigh radio channel
on each hop of the multihop transmission system. For the
fixed-to-mobile channel (hop), we used the classic Jakes
channel model [10]-[11]. For the mobile-to-mobile channel
(hop), we used the Akki and Habber’s channel model [12]-
[13]. The Monte-Carlo simulations of the latter were realized
by using the sum-of-sinusoids method proposed in [19]-[20].

More precisely, all mobile stations are assumed to induce
same maximal Doppler shiftsfm, while the destinationD is
fixed. For all hops,Ω̂i = Ω̂ and W0,i = W0. Thus, γ̄i =
γ̄, Gi,sb = Gsb, and the mean of Rayleigh random process
Xi(t) = αi(t)Gi−1,sb is calculated as

Ωi = exp

(
1

γ̄

)

Γ

(

0,
1

γ̄

)

= Ω , 2 ≤ i ≤ N (36)

whereasΩ1 = Ω̂ is selected independently from the AWGN,
sinceG0 = 1. In this case,

Φ = Ω̂ exp

(
N − 1

γ̄

)[

Γ

(

0,
1

γ̄

)]N−1

(37)
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Fig. 1. Average LCR,̂γi = γ̂ = 5 dB
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Fig. 2. AFD, γ̂i = γ̂ = 5 dB

Note that, when introducing above scenario into (34),α and
Ω̂ appear together asα/

√

Ω̂.
Figs. 1-4 depict the received signal’s normalized LCR

(Nα/fm) or normalized AFD (Tαfm) versus the normalized

threshold (α/
√

Ω̂) at 3 different stations along the multihop
transmission system: at relayT2 (curve denoted byN = 2),
at relayT3 (curve denoted byN = 3) and at the destination
D (curve denoted byN = 5). All comparative curves show
an excellent match between the approximate solution and the
Monte-Carlo simulations.
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