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Abstract—We present a novel analytical framework for the channels was studied, both for noise-limited and interfeee
evaluation of important second order statistical parametes, as |imited systems, while Patel et. al in|[9] provide useful exa
the level crossing rate (LCR) and the average fade duration analytical expressions for the AF channel’s temporalstiatil

(AFD) of the amplify-and-forward multihop Rayleigh fading .
channel. More specifically, motivated by the fact that thischannel parameters such as the auto-correlation and the LCR. Howeve

is a cascaded one, which can be modelled as the product ofthe approach presented in [9] is limited only to the dual-hop
N fading amplitudes, we derive novel analytical expressions fixed-gain AF Rayleigh fading channel.
for the average LCR and AFD of the product of N Rayleigh In this paper, we study the second order statistics of the
fading envelopes, or of the recently so-called/«Rayleigh channel. fixed-gain AF multihop Rayleigh fading channel. More sgeci
Furthermore, we derive simple and efficient closed-form aproxi- . I tivated by the fact that this ch i ded
mations to the aforementioned parameters, using the multariate Ically, m(? lvated Dy the fact that this channel Is a Ca_sca e
Laplace approximation theorem. It is shown that our general ©One, which can be modeled as the product /éf fading
results reduce to the specific dual-hop case, previously plished. amplitudes, we derive a novel analytical framework for the
Numerical and computer simulation examples verify the acctacy  evaluation of the average LCR and the AFD of the product of
of ghe presented mathematical analysis and show the tightss p; Rayleigh fading envelopes. Furthermore, we derive simple
oflthe proposed approximations. . . . _ .
and efficient closed-form approximations using the multi-
variate Laplace approximation theorem [16, Chapter 1X.5],
13]. These important theoretical results are then appiced

. [. INTRODUCTI . -
Multihop communications, a we%ﬁle option for providin

broader and more efficient coverage, can be categori ) - .
as either non-regenerative (amplify-and-forward, AF) e ; Investigate the second order statistics of the multihopdigly

generative decode-and-forward, DF) depending on the ref3¢ling channel. Numerical and computer simulation example
functionality [1]-[9]. In DF systems, each relay decodes itV rify the accuracy of presented mathematical analysis and

received signal and then re-transmits this decoded versignow the tightness of the proposed approximations.

In AF systems, the relays just amplify and re-transmit their  |l. LEVEL CROSSINGRATE AND AVERAGE FADE
received signal. Furthermore, a system with AF relays can USURATION OF THE PRODUCT OF N RAYLEIGH ENVELOPES

channel state information (CSl)-assisted relays [1] oedix | gt {X;(t)}¥, be N independent and not necessarily

gain relays([2] (also known as blind or semi-blind relays [6] jjentically distributed (i.n.i.d.) Rayleigh random prsses,
A (CSl)-assisted relay uses instantaneous CSI of the changgeh distributed according to [10]-]11],

between the transmitting terminal and the receiving retay t 5 5
adjust its gain, whereas a fixed-gain relay just amplifiess i Fx. (@) = 2L exp (_I_) , x>0, 1)
received signal by a fixed gaih![2][6]. Systems with fixedhy Qi
relays perform close to systems with (CSl)-assisted rgllys in an arbitrary moment, whereQ; = E{X?(¢)} is the mean
while their easy deployment and low complexity make themower of thei-th random processl (< i < N).
attractive from a practical point of view. If {X;(t)}Y, represent received signal envelopes in an
Several works in the open literature have provided perfdasotropic scattering radio channel exposed to the Doppler
mance analysis of AF or DF systems in terms of bit err@ffect, they must be considered as time-correlated random
rate (BER) and outage probability under different assuomsti processes with some resulting Doppler spectrum. This Rwppl
of the amplifier gain[[L]{[9]. Among them, only two worksspectrum differs depending on whether fixed-to-mobilencha
dealt with the dynamic, time-varying nature of the undewyi nel [10]-[11] or mobile-to-mobile channel [12]-[13] appsa
fading channel,[[8],[[9], despite the fact that it is necegsain the wireless communications system. In both cases, it was
for the system’s design or rigorous testing. In [8], the levdound that time derivative of-th envelope is independent from
crossing rate (LCR) and the average fade duration (AFD) tife envelope itself, and follows the Gaussian PDF [L0]-[13]
multihop DF communication systems over generalized fading .2
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with variance calculated as The conditional joint PDF fyy v .y,  (4,9l21, ..,
0% = 20, f2 3) xn—1) can be flrrther simplified by settingy = y and using
X ¢ the total probability theorem,
If envelope X; is formed on a fixed-to-mobile channel, )
then f; = f,.; wheref,,; is the maximum Doppler frequency Fyvixixno, @012, o 1)
shift induced by the motion of the mobile station|[10][1H]. = fvxyxy o Wy 21, aN-1)

envelopeX; is formed on a mobile-to-mobile channel, then X fyixyeXn_1 WlEn, o an-1), (9)
fi=A L2+ 2. (4) where each of the two multipliers ifiJ(9) can be determined

om the above defined individual PDFs and their parameters
Based onl[{[7), the conditional PDﬁ/|YX1,__XN71(y'|y,x1,

., xn—1) can be easily established to follow the Gaussian
DF with zero mean and variance

where f,'m and f,',’n are the maximum Doppler frequencyfr
shifts induced by the motion of both mobile stations (i.be t
transmitting and the receiving stations, respectiveld].[1t is
important to underline that the maximum Doppler frequentgl
in a fixed-to-mobile channel iSymax = fmi, Whereas the . N—-1
2 _ 2 X 2 2
maximum Doppler frequency in a mobile-to-mobile channély |y x,..xy_, = <y Z ? + 0%, H $z>
IS famax = f,m + fmZ The above results are essential in = :
deriving the second-order statistical parameters of idda 9 (A p 0’?-( 1%
envelopes, as the LCR and the ARD [[10],J[11].][13]. =% |1 TY H _ Z o2 2 i - (10)
Below, we derive exact and approximate solutions for both =t ) = Txn T
of the above parameters for product]\sﬁfRaerigh envelopes, The conditional PDF o¥ given{X; i:] = {a:l-}f-\’:}l that
appears in[{9) is easily determined in terms of the PDF of the
HX (5) remainingN-th envelope,

We denoteY (t) as N*Rayle|gh random process or, at any Fyixexyoa(ylen, - on 1)

given moment, NxRayleigh random variable, following the Pt BN

definition given in [14]. = fxn < 11 j) H o (11)
For some specified valugX;}¥ | = {z;}¥,, the product =t

Y is fixed to the specific valug = [, z;. The LCR ofy" at Introducing{9) and (11) intd(8), thehl(8) infd (6) and chiawag

thresholdy is defined as the rate at which the random procelze orders of the integration, we obtain

crosses levey in the negative directiori [10]. To extract LCR, / /
IN—-1=— =0

=1

we need to determine the joint probability density functionVy (¥
(PDF) betweert” andY’, fyv(y,9), and to apply the Rice’s

formula [11, Eq. (2.106)], (/ TR T dy> N-1
Nolw) = [ ifyilvi)di. © =
0

N-1 1
Our method does not require explicit determination ofX~ (y II E) fxi (@) fxy oy (@n—1)dey - dey 1 (12)
fyv (y,7) in order to determine analytically the LCR of the =1
NxRayleigh random process, as presented below. The bracketed integral in_(1.2) is found usifngl(10) as

First, we need to find the time derivative &f (5), which is

1
T

%

OY|Y X, Xn_1

/0 1y 0t 00, o)y = =P (1)

Y=Y> =. 7 - . .
= Xi By substituting [(1) and[{33) intd_(12), we obtain the exact
formula for the LCR as
Condltronrng on the firstv — 1 envelopes{X} N
{z;}N', we have the conditional joint PDF andY wrrtten Ny (y) = %y 27Y

as fyyx,.xy_, (¥ Ylz1,...,an-1). This conditional joint ' Var @

PDF can be averaged With respect to the joint PDF of the 0o

N —1 envelopeq X;}¥7* to produce the required joint PDF, x / .
I1:0

zn-1=0 o1 x5 (o) x;
fYYyy yz N-—1 1 N_1I2
/ / Fyvixixn o W Yl - an—1) X exXp | — <m 2 —Z> dxy---dey_1, (14)
rNn-1=0 i=1 "t i=1
X fx, (1) fxy_(@v-1)dar---dzy—1 (8) where N
where to derive[{8) the mutual independence of ffie- 1 P — H O (15)

envelopes is used. i)



In principle, [14) together with[{15) provide an exacBy using induction, it is easy to determine that the— 1
analytical expression for the LCR of the product of the pidueigenvalues ofA are calculated ag; = 4/Q; for 1 < i <
of N Rayleigh envelopes (i.ely«Rayleigh random processN — 2, anduy_1 = 4N/Qpn_1. Thus, all eigenvalues oA
[14]). However, [[I14) becomes computationally attractiméyo are positive, which, by definition, means that the matAx
for small values ofV, where it is possible to apply a numericals positive definite. By means of the second derivative, test
computation method (as Gaussian-Hermite quadrature). since the Hessian matriA is positive definite at point,
Note that, [(I#) is transformed into a single integral wheh(x) attains a local minimum at this point (which in this case
N = 2, which, after introducindg{3) fof = 1,2 and changing is the absolute minimum in the entire domdi).
integration variabler with new variablet accordingz = y/t, At this interior critical pointx,

reduces to the known result [9, Eq. (17)]. N1 .2 1/2 N_ 1/2
The AFD ofY at thresholdy is defined as the average time w® = 1+ Z 9% QN _ Z f_
that the N«Rayleigh random process remains below leyel — 0% ; —~ fx ’
after crossing that level in the downward direction, , (23)
1/N
Fy (y) a-n (Y
Ty (y) = : 16 h(x)=N|= : (24)

where Fy (-) denotes the cumulative distribution functiovhere [2B) is obtained usind1(3). Now, it is possible to
(CDF) of Y. FortunatelyFy (-) was derived recently in closed-approximate[(18) for larga as

form [14, Eq. (7)], as o\ (N-D/2[ 4 No1 o 1/2
| =5 |t (2 1))

2
N,1 Y
= J Z | 1,1,---,1,0
Fy(y) GI,N+1 o Pl ] ) (17) 2/N
N Xexp( /\Nq)l/N) . (25)
whereG[] is the Meijer'sG-function [15, Eq. (9.301)].

It is well-know that the determinant of the square matrix is

A. An Approximate Solution for the LCR equal to the product of its eigenvalues. Hende,can be
Next, we present a tight closed-form approximation[of (14yritten as

using the multivariate Laplace approximation theorem [16, N92(N-1) QNNQQ(Nfl)
Chapter 1X.5], [17] for the Laplace-type integral det(A) = —x— 9 q) (26)
k=1 %%k
J(A) = /x u(X) exp(—Ah(x))dx, (18)  Although approximation{25) is proven for large[16]-[17],
eD

it is often applied when\ is small and is observed to be very

whereu andh are real-valued multivariate functions &f=" 5.0 \rate as well. Similarly td [18], we apply the theorem for

[z1,-- -, 2n-1], A'is a real parametgéva_r}ﬂ) is unbounded ) _ 1 Therefore, the approximate closed-form solution for
domain in the multidimensional spa ' the LCR of NxRayleigh random process at thresholdy is
A comparison of[(T4) and (18) yields N/2-1
_ _ 1/2 oxy 2Ny 2y(2m) Xy
T\ 0% Ny(y) ~ 2RI = =
u(x) = 1+y2<H—2>Z 2%‘—21 , (19 Oy
(E,L- g I'Z 1/2
=1 =1 XN l < N—1 f2> y2/N
y? N-1 X |= {1+ =L exp | -V
1 N L f2 < (I)l/N>
h(x) = QN 1T —+ Z 9 (20) im1 N

i=1 Li i=1

- 1/2
and\ = 1. Note, that in the case of (114), all the applicability _ <i XN: f»2> (2m)N/2y (—N yz/N) 27)

conditions of the theorem are fulfilled. Namely, within the
domain of interesD, the functioni(x) has a single interior

- R - The numerical results presented in Section IV validate the
critical pointx = [Z1,---,Zn—1], Where

high accuracy of the Laplace approximation applied for our
B , particular case.

Ti=Y @1/(21\/)’ l<i<N-1, (21) Combining [I¥) and [{27) into[{16), the AFD of the
which is obtained from solving the set of equatidtis/0z; = V*Rayleigh random process at threshold, is approximated
0, wherel < i < N — 1. The HessiafN — 1) x (N —1) @as
square matrixA, defined by [15, Eq. (14.314) ], is written as

/
1 pl/2 1
8/91 4/\/9192 4/\/919]\[,1 Ty(y ~ <_Zf2> (27T)N/2
Al | YVRD 8/ e 4]/ 00N ! .
y?

2/N
4/ On-a 4/\/Qr Qo - 8/Qn-1 1 N ) ’ L0 fexp (N<I>1/N) - (28)
(22)




I1l. SECOND ORDER STATISCS OFMULTIHOP Combining [2¥) and(33), we obtain approximate solution for
TRANSMISSION the average LCR of the total fading amplitudeat the output
Next, we apply the important theoretical result of th&f @ multihop non- regeneratlve relay translrglssmn system,
previous Section to analyze the second order statisticheof t 1
multihop relay fading channel. Na(a) = [N < s 2 Z Fi + ffw)]
A. System Model =1

. . . _— (2m)N/2 /N
We now consider a multihop wireless communications sys- X exp (_NW) , (34)
tem, operating over i.n.i.d flat fading channels. Souredict o o

S communicates with destination statidn through N — 1 where® is given by [(I5). We see thdt (34) approximates the
relaysTy, Tb,..., T —1, Which act as intermediate stations frongverage LCR of the total fading amplitude for arbitrary mean
one hop to the next. These intermediate stations are emplop@wer of the fading amplitude®;, arbitrary relay gains?;

with non-regenerative relays with fixed gai#; given by and arbitrary maximal Doppler shift,,;.
1 Note that, forN = 2, @4) is an efficient closed-form
G} = YeRTT (29) alternative to the corresponding one [9, Eq. (17)] for thaldu
7705 hop case, which is shown in next section to be highly accurate
with Gp = 1 andCyy = 1 for the sourceS. In (29), Wy, is
the variance of the Additive White Gaussian Noise (AWGN) IV. NUMERICAL RESULTS AND DISCUSSION
at the output of tha-th relay, andC; is a constant for the In this section, we provide some illustrative examples for
fixed gainG;. the average LCR and AFD of the fading gain process of the

Assume that termina is transmitting a signad(¢) with an received o_lesired signal at_ th_e destination of the multihmpn
average power normalized to unity. Then, the received igri@generative relay transmission system model from Sedfion

at the first relay7}, at moment, can be written as The numeric examples obtained from the derived approximate
. 30 solutions are validated by extensive Monte-Carlo simateti
ri(t) = au(t)s(t) +wi(?), (30) " We considered a multihop system consisted of a source

wherea; (t) is the fading amplitude betweest and 77, and terminalS, 4 relays, and a destination terminal The fixed-
wy (t) is the AWGN at the input of} with variancel?, ;. The gain relays are assumed semi-blind with gains in Rayleigh
signalr; is then multiplied by the gaidy; of the relayl; and fading channel calculated as [2, Eqg. (15)] and [6, Eq. (19)]

re-transmitted to rela§s. Generally, the received signal at the ) 1 1 1
k-th relayT), (k=1,2,...,N — 1) is given by Giap = g, &P (%) r (07 %) ; (35)
() = Grrak(t)rr—1(t) + wi(t) (1)  where 3 = Q;/Wy; is the mean SNR on the i-th hop,
resulting in a total fading amplitude at the destination eodnd I'(-,-) is the incomplete Gamma function. Relay gain
D, given by calculated according t@ (B5) assures mean power consumptio
equal to that of a CSl-assisted relay, whose gain inverts the
= HO@(UGFL (32) fading effect of the previous hop while limiting the output
' power at moments with deep fading.

B. LCR and AFD of Multihop Transmissions Depending on the stations’ mobility, we used two different

If the fading amplitude received at nodg, o (t), is a 2D isotropic scattering models for the Rayleigh radio clenn

time-correlated (due to mobility of;_, and/orT}) Rayleigh ©n each hop of the multihop transmission system. For the
random process, distributed according[o (1) with mean powféed-to-mobile channel (hop), we used the classic Jakes
Q; = E{a?(t)}, then thei-th element of the product in channel modell[10]-[11]. For the mobile-to-mobile channel
B2), X;(t) = a;(t)G;_1, is again a time-correlated Rayleigh(hOIO). we used the Akki and Habber's channel model [12]-
random process, distributed according[@ (1) with mean powld3]. The Monte-Carlo simulations of the latter were readiz
Q=0 G2 by using the sum-of-sinusoids method proposed_in [19]-[20]
Comparmg [(b) and[(32), we realize that the total fading More precisely, all mobile stations are assumed to induce
amplitude at the destination statién(i.e., the received desired same maximal Doppler shiftf,,, while the destinatiorD is
signal without the AWGN) is described as thésRayleigh fixed. For all hops,Q; = Q and Wo; = Wo. Thus,5; =
random proces¥ (t) = «(t), whose average LCR and AFD7, Giss = G, and the mean of Rayleigh random process

are determined in the previous Section. Xi(t) = ai(t)Gi-1,s is calculated as
If all stations are assumed mobile with maximum Doppler 1 1 )
frequency shifts,.s, finp, fmi(1 <1 < N—1) for the source Q; = exp < > <O _> =0,2<i<N (36)

S, destinationD and relays, respectively, then for th#h hop
2 _ fm(l b F2 With fino = fos and fouy = fap, and whereas); = ) is selected independently from the AWGN,

‘ sinceGy = 1. In this case,

N N—-1 N—1
;ff — 2542 2+ f2p. (33) =0 exp (%) [r (om (37)

i=1
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