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Abstract—Rateless coding ensures reliability by providing ever-
increasing redundancy, traditionally at the packet level (i.e. the
application layer) through erasure coding. This paper explores
whether additional redundancy for wireless channels is most
helpful at the packet level through erasure coding or at the
physical layer through lower-rate channel coding.

This cross-layer trade-off is explored in a traditional wireless
setting where the communication of a message consisting of a
fixed number of packets takes place over a Rayleigh fading
channel. The examined scenarios include both a single receiver and
multiple cooperating receivers allowing the results to be extended
to situations where selection diversity is available in the system.

For several interesting scenarios, this paper determines the
optimal trade-off between the amount of packet-level erasure
coding and physical-layer channel coding required to provide
reliable communication over the widest range of operating SNR’s.
Our results indicate that packet-level erasure coding can provide
a significant benefit when no other form of diversity is available.
In many cases, the amount of redundancy that should be allocated
to such erasure coding is nearly constant, and further redundancy
(i.e. any rateless coding) should be applied to the physical layer.

I. INTRODUCTION

In recent years, packet-level erasure coding schemes, such
as Raptor coding introduced in [1], have gained widespread
popularity as an efficient and reliable means of message de-
livery over erasure channels because of their rateless nature.
Erasure channels are commonly found in wired computer
networks, however wireless links can also be viewed as packet-
level erasure channels when a cyclic redundancy check, or
similar mechanism, is employed. In fact, most modern wireless
computer networks are packet-based and therefore have an
erasure channel component that should be considered in the
system model.

Unlike wired networks, wireless channels typically require
significant physical-layer coding in order to combat interference
and fading. Therefore, in a wireless application of rateless
coding, we should consider the effects of the packet-level and
physical-layer coding jointly. Luby et al. noticed the need to
consider cross-layer effects in the simulation-based analysis
provided in [2] for 3GPP.

As the name implies, rateless codes operate by adding ever-
increasing redundancy to a particular codeword until it is
successfully decoded at the receiver. Therefore, the key issue to
address in cross-layer rateless coding is whether there exists an
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optimal allocation of this ever-increasing redundancy between
the packet-level and physical-layer codes.

In an AWGN channel, it is intuitive that the optimal solution
is to use no erasure coding. In other words, we should use
a rateless physical-layer code in an AWGN channel and use
no packet-level coding. In this way, because we expect little
variation in SNR from packet to packet, if the rate does not
exceed capacity we can expect to decode all packets reliably.

The optimal solution is less clear when we consider a fading
channel. In a fading channel, intuition suggests that we may
want a cross-layer scheme with a slightly higher channel-
code rate used jointly with some packet-level erasure coding
to take advantage of the channel when the SNR is high and
minimize the loss incurred by dropping packets during deep
fades. It has been noted (see for example [3]) that rateless
coding can be used to drive the outage probability to zero in
a fading environment. However, a cross-layer perspective has
been missing from this discussion.

In this paper, we study the optimal allocation of redundancy
between layers for a Rayleigh block-fading channel. This paper
is organized as follows. Section II introduces the definitions and
notation used throughout the paper. Section III expresses the
tradeoff of channel-code rate R and erasure-code depth D as an
explicit optimization problem with a clear solution path. Section
IV discusses several special cases of interest. Each subsection
of Section IV reduces one of these special cases to a form that
may be solved explicitly using standard optimization methods.
Section V gives numerical results, and Section VI describes the
limiting behavior of the optimal coding strategy. Section VII
delivers the conclusions.

II. DEFINITIONS AND PRELIMINARIES

This paper considers a communication model where a single
transmitter attempts to deliver a message consisting of m
packets to a set of N receivers that cooperate at the packet level
to recover a message. In other words, the system we consider
has N -fold selection diversity - an equivalent model is one with
N transmitters and one receiver that selects the best signal for
decoding.

In this model, a single transmitter uses a packet-level erasure
code, such as a Raptor or Reed-Solomon code, to encode
the original m packets (each with information content k
nats/packet) into Dm erasure-coded packets. The quantity D
is defined to be the erasure code depth (or the inverse of the



erasure code rate). The value of D need not be an integer, but
Dm will always be an integer in practice. We also have D ≥ 1.
Each of these Dm erasure-coded packets is then encoded for
transmission over a wireless channel using a physical-layer
channel code of rate R [nats/channel-use]. After the entire
encoding process, T = Dmk/R uses of the channel are
required to send the encoded message.

Definition 1: We define a transmission strategy, or selection
of D and R, to be optimal if it ensures reliable communication
over the widest operating region (i.e. it ensures communication
at the lowest posible average SNR).

In order to study the relationship between D and R, we find
it convenient in our analysis to introduce the quantity T , which
is defined to be the the number of channel uses during the
elapsed transmission time. We call T the transmission window
duration. For a particular value of T , we have a linear relation
between D and R, given by:

Dmk = RT . (1)

It is clear from (1) that there exists a tradeoff between the
amount of erasure coding and the amount of channel coding
that can be applied to a message for each particular value of
T .

In general, one can expect the optimal allocation of erasure
coding and physical-layer coding to change as the elapsed
transmission time increases (i.e., as the instantaneous code rate
decreases) in a rateless scheme. We study the evolution of
the optimal transmission strategy by optimizing the allocation
across a range of T .

In our chosen model, the N receivers receive the Dm packets
through N independent channels. Each channel is a block-
fading Rayleigh channel with additive white Gaussian noise.
We characterize the channel by three parameters: the Rayleigh
parameter α, the noise power σ2, and the number of block
fades F . F is the number of independent fades that each packet
experiences. For example, if F = 1, a packet is received at a
single SNR. If F = 2, one half of the packet is received at one
SNR and the other half at another (independent) SNR.

The distribution of the SNR is determined by the parameters
α and σ2. For the Rayleigh fading cases treated in this paper,
the SNR follows an exponential distribution with parameter
λ = σ2/2α2. Specifically, Pr(SNR < x) = 1 − exp(−λx).
Note that the average SNR is 1/λ.

Each of the N receivers independently attempts to decode
each of the Dm channel-coded packets and determines whether
the decoding was successful based on an indicator mechanism
such as a cyclic redundancy check. If the channel-coded packet
was successfully decoded (i.e. if the CRC passes), we say that
this packet was successfully received.

The receivers cooperate by sharing their successfully re-
ceived packets with one another. As a group, the receivers
are successful in recovering the initial message if they have
successfully received a sufficiently large subset of the original
Dm erasure-encoded packets. We quantify the sufficiently large
subset by saying that the original message can be successfully

recovered if m̂ = (1+δ)m of the original Dm erasure-encoded
packets were successfully received by the collection of N
receivers. We say that δ is the overhead of the erasure code. For
Reed-Solomon codes this overhead is zero. For Raptor codes
δ ≈ 0.038 for m = 65536 (see [1]). The overhead for Raptor
codes increases as the message size, m, decreases. Note that it
suffices to consider only m̂ in our analysis because, for a known
m and δ (which are design parameters), m̂ can be computed
explicitly for a specific erasure code.

Furthermore, we characterize our channel code by the param-
eter ε and say that a packet is successfully received at receiver
i if (1 + ε)R < Ci, where Ci is the capacity of the channel
from the transmitter to receiver i. Here we make the implicit
assumption that the physical-layer codeword length, kR−1, is
sufficiently large so that reliable communication is possible
within the given distance, ε, relative to channel capacity.

Remark 1: This paper does not discuss the physical-layer
code design since we are interested in the optimal transmission
strategy, not the actual codes that can be used to implement
it. An example of a turbo code that provides near-optimal
performance at many rates to support rateless channel coding
is presented in [6].

Remark 2: For convenience, we use the natural logarithm
throughout this paper, and therefore all information quantities
are in terms of nats rather than bits.

III. OPTIMIZING THE TRADEOFF OF R AND D

For given parameters α, T , m̂, and N , when choosing the
optimal code rate R (and therefore D following the relation in
(1)) we would like to minimize the SNR required for reliable
transmission of the message. This gives the widest possible
operating region. Therefore, we would like to maximize σ2,
or equivalently maximize λ, subject to a constraint on the
probability that the message is not recovered successfully by
the receivers.

The probability that the message is not recovered is the
probability that the collection of receivers does not receive the
required m̂ packets. This probability, denoted κ1, is a design
parameter and will vary depending on the reliability required
for a particular application. Noting that RTk−1 is equal to the
number of transmitted packets, we can express this constraint
as:

m̂−1∑

i=0

(
RTk−1

i

)
(1− pN

e )i(pN
e )RTk−1−i ≤ κ1 . (2)

In the above constraint, pe is the probability of erasure, or the
probability that a single node does not successfully receive a
specified packet. Specifically:

pe = Pr

(
cFR >

F∑

i=1

log(1 + γi)

)
, (3)

where c = 2(1 + ε) is a constant introduced for notational
convenience, and γi is the SNR experienced during fade i. The
block fades are orthogonal in time, so the capacity of the block



fading channel is simply the average of the capacities of each
block [4]:

C =
1
F

F∑

i=1

1
2

log(1 + γi) .

Constraint (2) is difficult to manipulate directly, but fortu-
nately we can use a Gaussian approximation if m̂ is relatively
large. Define Pi to be a random variable indicating the success
or failure of transmission of the ith packet to a specified
receiver node. Let Pi = 1 if packet i is received by the
specified node in the network and Pi = 0 otherwise. Then,
the number of packets successfully received at the specified
node is P = P1 + P2 + · · · + PRTk−1 . We now invoke
the Central Limit Theorem and can approximate P by a
Gaussian random variable with Mean(P ) = RTk−1(1 − pN

e )
and Var(P ) = RTk−1pN

e (1− pN
e ). This allows Constraint (2)

to be rewritten as:

(m̂− 1)−RTk−1(1− pN
e )+

κ2

√
RTk−1pN

e (1− pN
e ) ≤ 0 , (4)

where κ2 = −Φ−1(κ1), and Φ(x) is the CDF of a standard
normal random variable.

Furthermore, if we introduce the change of variables X =√
RTk−1(1− pN

e ) and Y =
√

pN
e , then Constraint (4) reduces

to

Y ≤ 1
κ2

(
X − m̂− 1

X

)
, (5)

and since (1− pN
e ) + pN

e = 1 we also have

1 =
k

RT
X2 + Y 2 . (6)

Because pe is an increasing function of λ when R is constant,
Y is a monotonically increasing function of λ for a fixed R.
Therefore, maximizing Y for a fixed R ensures optimality.
We can see that the optimum Y lies at the intersection of
the ellipse described by (6) and the curve defined where (5)
acheives equality. There are four such intersections, but we are
only interested in the one in the non-negative quadrant due
to the implicit constraint that 0 ≤ pN

e ≤ 1. The optimum
point is shown in Figure 1. Note also the implicit constraint,
R ≥ km̂/T , which is a trivial lower bound on R. In words, it
says that the transmission of the encoded message must fit in
the transmission window of length T .

Finally, we introduce another change of variables that re-
duces the fourth order equation obtained by combining (5) and
(6) to produce a quadratic equation that preserves the solution
that we are interested in. If we let Z = (1 − Y 2), we obtain
the following equation, where κ3 = κ2

2:

Z2RTk−1(RTk−1 + κ3)−
ZRTk−1(2(m̂− 1) + κ3) + (m̂− 1)2 = 0 . (7)

We can solve (7) for Z (we are interested in the larger
root) which in turn gives pe as a function of R. We denote

Y ≤ 1

κ2

(X − m̂−1

X
)

Y

X

k

RT
X

2 + Y
2 = 1

Optimum Point

√
m̂ − 1−

√
m̂ − 1

√
RTk−1−

√
RTk−1

1

−1

Fig. 1. Geometric interpretation of Constraint (2) using the change of variables
X =

√
RTk−1(1− pN

e ) and Y =
√

pN
e . The optimum point is used to

compute p∗e(R).

this solution p∗e(R). This effectively combines Constraints (2)
and (3) into a single constraint which yields the following
optimization problem:

maximize λ

subject to: p∗e(R) = Pr

(
cFR >

F∑

i=1

log(1 + γi)

)
(8)

R ≥ km̂

T
. (9)

In general, no closed form expression exists for the proba-
bility distribution that is required to evaluate (8) accurately. We
therefore resort to analyzing several special cases for which we
can either enforce Constraint (8) by computing the distribution
exactly or by using an approximation.

The analysis of this section may be understood as follows:
The choice of channel-coding rate R affects two things. First,
it determines the actual erasure probability as a function of
λ through (3). Second, it controls the remaining redundancy
available for erasure coding through (1). The optimization
seeks the value of R that balances these two effects so that
reliable communication occurs at the highest possible λ. That
is, it balances the redundancy R leaves available for erasure
correction with the actual probability of erasure provided by R
faced with λ.

IV. EXPLICIT SOLUTION OF THREE CASES

We now apply the results of the previous section to three
special cases.

A. Case 1: Single Fade per Packet

In this case, F = 1, so Constraint (8) can be rewritten as:

p∗e(R) = Pr
(
ecR − 1 > γ

)

= 1− e−λ(ecR−1) (10)

⇒ λ = − log (1− p∗e(R))
ecR − 1

. (11)



Where (10) and (11) follow because γ is an exponential
random variable with parameter λ. In this case, the optimization
problem is now to maximize (11) subject to the inequality
constraint (9).

Differentiating λ with respect to R allows us to solve this
case by standard methods.

B. Case 2: Many Fades per Packet

If there are many fades per packet (i.e. F À 1), we can use a
Gaussian approximation in place of Constraint (8). Specifically,
(8) becomes:

√
F

cR− µ(λ)√
Var(λ)

= Φ−1 (p∗e(R)) . (12)

Where µ(λ) = Mean(log(1 + γ)), Var(λ) = Var(log(1 + γ)),
and Φ(x) is the CDF for a standard normal random variable.

If we introduce the auxiliary equations:

Ei(λ) =
∫ ∞

λ

1
t
e−tdt and (13)

LEi(λ) =
∫ ∞

λ

log(t)
t

e−tdt , (14)

it can be shown, after some intermediate calculus, that:

µ(λ) = eλEi(λ)

Var(λ) = 2eλLEi(λ)− 2eλ log(λ)Ei(λ)− e2λEi2(λ) .

Intuitively, the LHS of (12) must be monotonic in λ, because
for fixed R, the probability of an erased frame should be
increasing as λ increases. Therefore, for a fixed R, we can
solve (12) for λ numerically by bisection.

The optimization problem can then be solved by standard
methods using the derivatives of λ with respect to R obtained
by differentiating (12) implicitly.

Remark 3: It should be pointed out that high quality numer-
ical methods exist for computing the exponential integral (13).
However, the authors are unaware of any accurate methods for
computing the log-exponential integral (14) when λ is large.
Therefore, (12) can only be reliably solved for λ when λ is
relatively small (i.e. when the average SNR is high).

C. Case 3: Low Average SNR

When the average SNR is low, we can use the approximation
log(1 + γ) ' γ. In this case, (8) simplifies to:

p∗e(R) = PΓ (cFR|F, λ) . (15)

In (15), PΓ(x|F, λ) is the CDF for a Gamma random variable
with parameters F and λ. Explicitly, this function can be written
as:

PΓ(x|F, λ) =
λF

(F − 1)!

∫ x

0

tF−1e−λtdt . (16)

Using a simple change of variables, we can solve for λ as:

λ =
P−1

Γ (p∗e(R)|F, 1)
cFR

. (17)

Where P−1
Γ is the inverse of the Gamma CDF defined by:

P−1
Γ (p|F, 1) = {x : PΓ(x|F, 1) = p} . (18)

We can now solve the optimization problem using the
derivatives obtained from (17).

V. NUMERICAL RESULTS

This section presents and discusses the results obtained by
solving instances of the three optimization problems presented
in the previous section. The barrier method of optimization
produced these results. (See [5] for a description of the barrier
method.)

Figure 2 plots typical curves of the minimum average oper-
ating SNR, which is equal to 10 log10(1/λ), as a function of
D. Since these curves are calculated using F = 1, they do not
involve any of the approximations introduced in Cases 2 and 3
of Section IV. The first characteristic to note is that the curves
are quasiconvex with a global optimum. This confirms our
intuition that there should be an optimal tradeoff between R and
D. The next characteristic to note is that the optimal minimum
average operating SNR, denoted γ∗ = 1/λ∗, is decreasing as
N increases. Again, this confirms our intuition that a larger
collection of cooperative receivers should be able to perform
over a wider range of operating SNR’s than a smaller set of
receivers. The final interesting point is that D∗ is decreasing
as N increases. This suggests that the redundancy required to
tolerate packet erasures can be in the form of redundant packets,
created by an erasure code, or in the form of diversity created
by multiple cooperative receivers.

Figure 2 also shows that the gain achievable by adding a
small number of receivers is most significant when N is small.
This is essentially a standard diversity result, however it is
interesting to note that using the optimal cross-layer coding
scheme effectively gives us the same performance as using
more conventional [physical-layer coding only] receivers. When
N conventional receivers cooperate to recover the message,
we obtain the performance of an N -fold packet-level selection
diversity scheme because we only use the successfully decoded
packets to recover the transmitted message. Cross-layer coding
allows us to create diversity through erasure coding which has
the effect of adding virtual cooperative users to the system.
In the case studied in Figure 2, cross-layer coding with one
receiver is almost as good as pure physical-layer coding with
three-way selection diversity.

In Figure 3 we plot the gain that can be achieved by using the
optimal cross-layer coding strategy instead of a pure physical-
layer coding strategy. This figure shows two important trends.
The first is that the achievable gain is a decreasing function
of N . The second is that the achievable gain is a decreasing
function of F . We note that the only time when the achievable
gain is significant, say greater than 1dB, is when both F and N
are small. This is an attractive result because it suggests that
we can acheive near-optimal performance without using any
packet-level erasure coding in many cases. We will comment
more on this at the end of this section.
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Figure 4 shows the evolution of the optimal transmission
strategy as a function of N and the instantaneous rate of
the cross-layer rateless code. This figure also suggests two
important trends. The first is that D∗ is a decreasing function of
N . As we said earlier, this implies that the redundancy created
by the erasure code becomes less useful as we gain diversity in
terms of the independent observations possible through multiple
receivers.

Figure 4 also suggests a second important behavior: for
a fixed N , D∗ has a limit point as the instantaneous code
rate approaches zero. In fact, we have calculated these limit
points and included them in the figure. The fact that these
limit points exist means that D∗ is relatively insensitive to very
large changes in T when the instantaneous code rate is already
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sufficiently small (as would happen when the average SNR is
low). We discuss this phenomenon in detail in Section VI. We
further note that D∗ is insensitive to changes in T when either
N or F is large. This implies that, in these three cases, we don’t
need to know T accurately in order to closely approximate
optimality.

Elaborating on our previous observation, D∗ is nearly one
in all cases when F is large. This implies that the diversity
provided by the multiple fades is sufficient so that no additional
(or very little) redundancy is required in the form of erasure
protection. In other words, there are sufficiently many fades per
packet that there is no reason to assume that the observed fading
characteristics of one packet would be markedly different from
those of another packet. Therefore, all (or almost all) available
coding resources should go into the channel code which does
not assist with recovery from erased packets, but rather reliably
makes the number of erased packets negligible.

In summary, the gains achieved by having packet-level
erasure coding are marginal except when both N and F are
small. If either N or F is not small, a nearly optimal strategy
would be pure physical-layer coding. This is important from a
practical standpoint because a gain on the order of a fraction of
a dB may not merit the cost of implementing the packet-level
erasure coding mechanism. If N and F are small, we may be
able to take advantage of the insensitivity of D∗ with respect
to T to implement another simple, yet nearly optimal, coding
design. This is discussed in the next section.

Remark 4: In a practical application, F may be a function
of R. In such a case, we would expect F to be inversely
proportional to R, because as we increase the transmission
time required to send a packet by lowering R, we are likely to
experience a greater number of fades. If this indeed were the
case, we would expect that D∗ would be nearly one in almost
every situation based on the results given in this section.



VI. INSENSITIVITY TO THE TRANSMISSION WINDOW SIZE

As the results of Section V suggest, the optimal erasure
coding depth changes very little after the elapsed transmission
window, T , becomes sufficiently large. In other words, the limit
of D∗ as km/T → 0 exists. This is a particularly attractive
result because, in practical rateless applications, T is unknown.

Note that as more transmission time elapses and T becomes
large, the instantaneous coding rate, km/T , becomes very
small, allowing reliable communication at a low average SNR.
Therefore, we can use the low SNR approximation to show that
D∗ is independent of T when T is large. Starting with the low
SNR approximation (17), we can write:

λ ∝ P−1
Γ (p∗e(R)|F, 1)

cFRT
. (19)

Introducing the auxiliary variable ` = RT , we can rewrite
(7), (9), and (19) all in terms of `:

maximize
P−1

Γ (p∗e(`)|F, 1)
cF`

subject to: ` ≥ km̂ .

Where p∗e(`) = (1 − Z)1/N , and Z is the larger root of the
quadratic equation:

Z2`k−1(`k−1 + κ3)−
Z`k−1(2(m̂− 1) + κ3) + (m̂− 1)2 = 0 .

Therefore, we can express the optimization problem as a
maximization strictly in terms of `, which means that the
optimal erasure code depth, D = `/km, is independent of T . In
the above analysis, changing T does not change the optimum
`, and therefore does not change the optimum D. Rather, it
changes the required value of R. This implies that, after the
elapsed transmission time becomes large, the ever-increasing
redundancy of a rateless approach should be applied to the
physical-layer channel coding.

Remark 5: Separate from the above analysis, D is insensi-
tive to T when F (or N ) is large since, regardless of T , little
or no erasure coding is needed producing D ≈ 1.

A practical transmission strategy that would achieve near-
optimal performance across all scenarios would have the trans-
mitter select an erasure code depth D based on some estimate of
the transmission window size. The transmitter would then use
a rateless physical-layer channel code to encode the erasure-
coded packets and send additional coded bits (generated by
the rateless code) for each packet on a round-robin basis. This
method would guarantee that the transmission fills the entire
transmission window, that R would be as low as possible
(which lowers p∗e(R)), and that each erasure coded packet
is transmitted at nearly the same rate. This strategy would
also work if the transmission window is unconstrained. The
transmitter would continue sending redundant information until
an ACK is received. This would, in effect, maximize the rate at
which the message is communicated to the receivers and allow
us to drive outage probability to zero.

VII. CONCLUSION

In this paper, we developed techniques to determine the opti-
mal tradeoff between packet-level erasure coding and physical-
layer channel coding for wireless fading channels with any
specified number of cooperating receivers. We provided numer-
ical results for 1-64 receivers. The optimal tradeoff point for
each situation allows reliable message reception over the widest
possible range of SNRs. Three formulations of the general
optimization problem allow us to solve for the optimal tradeoff
for a wide range of interesting cases. We presented numerical
results that demonstrate the relationship between the system
parameters and the optimal solution. The largest amount of
erasure coding we saw in the cases we studied was D = 3.18
corresponding approximately to a rate-1/3 erasure code. Little
erasure coding is needed when diversity is provided by a large
number of cooperating independent receivers or a large number
of independent fades. Conversely, when little or no diversity is
available, packet-level erasure coding offers a significant gain
over pure channel coding. In the cases we studied, gains of up
to 25 dB were achieved using packet-level erasure coding.

We also found that the optimal erasure coding depth ap-
proaches a limit as the elapsed transmission time grows. This
allows for the implementation of a practical and nearly optimal
cross-layer coding scheme when the transmission window size
is unknown or unconstrained as in the case of rateless coding.

Moreover, the amount of packet-level erasure code redun-
dancy is determined by the amount of diversity otherwise
available. The more diversity available through multiple in-
dependent fading instances or multiple independent receivers,
the less erasure coding is needed. Whatever the appropriate
amount of erasure-code redundancy is, it does not change
significantly as the transmission window increases if diversity
is available. Thus, in a practical implementation the ever-
increasing redundancy of a rateless code should be applied
to the physical-layer channel code rather than the packet-level
erasure code. See [6] for a family of capacity-approaching
turbo-codes that can provide rateless physical-layer coding.
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