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An Accurate Approximation to the Distribution of
the Sum of Equally Correlated Nakagami-
Envelopes and its Application in Equal Gain

Diversity Receivers

Zoran Hadzi-Velkov, Nikola Zlatanov, and George K. Karangimlis

Abstract— We present a novel and accurate approximation for ~ Only several papers address EGC in correlated fading
the distribution of the sum of equally correlated Nakagamim with multiple order diversity. In [10], EGC performance was
variates. Ascertaining on this result we study the performace of determined by approximating the moment generating functio

Equal Gain Combining (EGC) receivers, operating over equdy .
correlating fading channels. Numerical results and simuléions (MGF) of its output SNR, where the moments are deter-

show the accuracy of the proposed approximation and the vadity ~mined exactly for exponentially correlated Nakagami clesin
of the mathematical analysis. in terms of multi-fold infinite series. A completely novel

approach for performance analysis of diversity combiners
in equally correlated fading channels was proposed in [11],
. INTRODUCTION where the equally correlated Rayleigh fading channels are
o _ transformed into a set of conditionally independent Rician
T HE knowledge of the statistics of the sums of multiplgy/s. Based on this technique, the authors in [12] derive
signals’s envelopes is important in the analytical perfofhe moments of the EGC output SNR in equally correlated
mance evaluation, such as that of equal gain combining (EGdkagami channels in terms of the Lauricella hypergeometri
systems. However, the evaluation of the probability distri ,ction, and then uses them to evaluate the EGC performance
tion function (PDF) and the cumulative distribution fureti measures, such as outage probability (as infinite seried) a
(CDF) of these sums can be rather cumbersome even fof, nrobability (using Gaussian quadrature with weigttd
the statistically independent Nakagamior Rayleigh fading gpscissas computed by solving sets of nonlinear equations)
channels [2]-[7]. An infinite series technique for compgti Al of the above approaches yield to results that are some-
the PDF of a sum of independent random variables (RVighat complex, not expressed in closed form, and require
was derived in [2]. Applying this technique, the error ratgompytation of infinite series, all of which is attributenithe
performance of EGC systems under Nakagami fading WS erent intricacy of the exact sum statistics. This irtcig
presented in [3], whereas, in [4], the problem was analysed ign pe circumvented by searching for suitable highly adeura
frequency domain in terms of semi-analytical expressioitis W approximations for a sum of arbitrary number of Nakagami
infinite integrals. Other two studies on EGC diversity inkNa Rvs various simple and accurate approximations to the PDF
agami fading that use numerical integration over Gil-Palags sym of independent Rayleigh, Rice and Nakagami RVs
single infinite integral and Hermite quadrature over deubl, o proposed in [13]-[15], which then are used for analytica
finite-infinite integral are presented in [S] and [6], respively. EGC performance evaluation. [15] uses the moment matching
Closed form solutions for some modulation schemes are alsRthod to arrive at the required approximation.
obtained for dual and tri_ple diversity under Ray!eigh fagdin | this paper, we use the moment matching method to
[2], [5]. All above mentioned works assumed independeghyiain highly accurate closed form PDF approximation for
fading channels. the sum of arbitrary number of non-identical equally cated
However, in real-life applications, fading among diveysitNakagami RVs with arbitrary mean powers. We then apply this
branches is correlated, which renders the analytical 8m'¥approximation to efficiently estimate the performance GG
under correlated Nakagami fading with a particular pratticsystems by avoiding many complex numerical calculations
interest. Since the joint PDF of multiple correlated fadinghherent for the methods in abovementioned previous works.
branches is not known, the published results for EGC dittersgyen approximate closed form expressions allow one to gain

in correlated fad|ng channels deal primal’ily with the duqhs|ght into System performance by Considering, for exmp'
branch case [7]-[9], where error probabilities for binanda |arge SNR or small SNR behaviors.

QAM signals over correlated Rayleigh channels are expdesse
in form of infinite series. II. AN ACCURATE APPROXIMATION TO THESUM OF

EQUALLY CORRELATED NAKAGAMI -m ENVELOPES
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The PDF of each envelopg,, 1 < k < L is given by [1] One now needs to determirfigz and mg so that [B) be an
o\ 7 9p2me—1 m accurate approximation of the PDF #&f defined by [(1). For
fz,(2) = ( Z) exp ( 22’2) : z>0 this, we apply the moment matching method by respectively
£ T(m.) @) matching the second and fourth moments of R¥/sind R:

k

having an arbitrary second momefi{Z;] = Qp, 1 <k < L,

same fading parameten, (assumed to be positive integer) E|Z°] = E[R?], ©)
and same envelope correlation coefficient between eaah pai E[Z*']=E[R"). (10)
of RVs cov(Zf,Zf) o The second and the fourth moments Bf are determined
= 5 ~ i &) straightforwardly by using the MGF|(6) and applying the
var(Z3)var(Z5) moment theorem, i.e.,
whereFE]], cov(-,-) andvar(-) denote expectation, covariance dM g2 (s)
and variance, respectively. E[RQ]:% oo = R, (11)
We propose the unknown PDF of be approximated by the d2M82(S) 0
PDF of an equivalent RV defined as E[R‘*]:TSQ\S:O = m—R(l —p+ Limg+p)).
R

L (12)
=.\|>_RZ (4) .
k=1 The second and fourth moments 4&f are determined by

. applying the multinomial theorem and the results presented
where Ry, 1 < k < L, represent a different set of . . .
identical equally correlated Nakagami RVs with equal ageraIn [10, Eq. (21)], [12, Eq. (43)] and Appendix A, yielding

powers,F[Rx| = Qgr, equal fading parameterar and equal L

correlation coefficienpy. Additionally, it is assumed that E[ZQ] _ Z O + 2F mz + 1/2
=1 j=1i+1

PR= Pz =p. (5) k=1

1 1
Both the MGF and the PDF aR? had been determined in X o Fy <_§’_§;mz;p> : (13)
closed form as [16, Egs. (42a) and (36)]

(1_SQR(1+(L—1)\/ﬁ))—mR and

Mpz(s) = E[e"®] =

mpg 1_\/— 2 L
4
N —mp(L-1) E|Z ]_<7) (4> 0 +6W(2,2)
X <1 — SM) ,  (6) M2 k=1
mRg L L
and xz Z QO +AWE, D> Y (,/Q%Qj
mprL i=1 j=i+1 =1 j=i+1
fre(r) = (?) L L
R i n ng) +12W(2,11) Y .Z Z
% m=1i=m+1 j=i+1
r L)1 - mr(L=1)(1 4 (L —1 m
(mrL)(1 — )" =01 + (L — 1)/p)"" <\/ansmj /2020, + \/9in93> +24
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14
respectively, whereF (-, -, -) is the Kummer confluent hyper- (14)
geometric function [17, Eq. (9.210)]. The PDF Bfis deter- \here
mined by simple transformation of RVgg(r) = 2r fg2(r?),
which yields to N T(m —|—k /2) 1
mp mpL W(kla 7 1:[ F(mz)
fr(r) = O -
2mprL—1 e -1 - kj u\/_
" 2rémR x/ u™ e “H1F1 —?,mz; T du (15)
DmaL)(1 =y a D1+ (L= D))" 0 = VP
2
X exp <_%) with o F (-, -; -; -) denoting the Gauss hypergeometric function
(1= /p)r [17, Eqg. (9.100)]. Note thaf (14) and {15) are valid onlyrif

is positive integer [12]. Using [18, Vol. 4, Eq. (3.35.7(3nd
the Lauricella transformation to assure convergence [p2, p

L 2
X1 (mR,mRL v/pmrlr 8)

(1=vp) A+ (L - 1)\/@93) '



121], (IB) is expressed in closed form as follows to the useful branch signal. In the EGC receiver, the random

N phases of the branch signals are compensated (co-phased),
Wik, - ky) = (H L(m. + kj/Q))( 1—p equally weighted and then summed together to produce the
I ) =1 F(mz) 1 +

(N — 1)\/ﬁ) decision variable.
k k The envelope of the composite useful signal, denoted by
1 N . . . . . .
50 M + o5 Myt M is given by [[1), whereas_ thg comppsne noise power is given by
0%oc = LNp/2, resulting in the instantaneous output SNR
VP VP ) (16) given by
1+ (N-1)/p" "14+(N-1)p)’ , . 2 .

where F4(---) denotes the Lauricella hypergeometric func- vegc = 2%— = % <Z Zk> = <Z Gk> (21)
tion of N variables defined by [17, Eq. (9.19)]. Note that 9Ecc 0 \k=1
coefficients W (4), W(2,2), W(3,1) and W (2,1,1) can be where RVsGy = Z./vLNo, 1 < k < L, form a set ofL
expressed in terms of the more familiar hypergeometric-fungon-identical equally correlated Nakagami RVs withG3] =
tions as per (B.1), (B.2), (B.4) and (B.6), respectively. /L, same fading parametens, and same correlation coeff-

Introducing [(9) and (9) intd (11) and (11), one obtains thigient » among the diversity branches. Note that= ;. /Ny
needed parameters for the PDF approximatldn (8)Zoin  denotes the average SNR in theh branch.

x Fy (mz; m, +

closed form as Using the results from Section I, it is now possible to
E[Z?] approximate PDF and MGF of (P1) bil(7) arid (6), respec-
Qr= I (17) tively, with Qg replaced byy = Qr/(LNy). These closed
1+ (L—1)p (E[2?))? form approximations are then used to determine the outage
mRr= T EZ - (E[Z7])? (18) probability and the error probability di-branch EGC systems

in correlated Nakagami fading with high accuracy.
where E[Z?] and E[Z%] are respectively determined from

(I3) and [T4). Note that the fading parametey, is typically A. Outage Probability
calculated to a positive real number. The closed form approximation of the outage probability of
the EGC receiver (i.e. the CDF ofggc) at thresholdt is

A. Special Case: Sum of Identical Equally Correlated Nak- Obtained by applying [18, Vol. 5, Eq. (2.1.3(1))] ovéi (6) as

agami RVs % ) ~ ( mpt )mR( mpt )mR(Lfl)

Let the equally correlated Nakagami RV, ,1 < k < * YA+ (L —=1)/p) (1= /p)
L have same secor_ld moment§Z7] = QZ__(equipowered y 1 o, (mR, mr(L —1); 1 +mzL;
branches), same fading parametey (as positive integer) and I'(l14+mgL)
same correlation coefficient between each pair of RVs. In _ mpt mg ) (22)
this case,[(T3) and(14) are simplified by using (A.6) into H(1+ (L — 1)\/ﬁ)’ y(1 - \/_)

9 (L—1)I?*(m, +1/2) where ®,(-,+;-;-,-) denotes the confluent hypergeometric

E[Z7] = LOz |1+ m,T2(m,) function of two variables defined by [17, Eq. (9.261(2))].

X o F} (—l,—l;mz;p>} . (19) B. Average Error Probability

) 22 Comparing [(IL) and[{4), it is obvious that the error per-
B4 = <Qz(1 - \/ﬁ)) {LW(4)+3L(L— )W (2,2) formance of an EGC.system can be Qpproxma_ted by the
m, performance of an equivalent maximal ratio combining (MRC)

+4 L(L—-1)W(3,1) +6L(L —1)(L —2)W(2,1,1) system for which many closed form solutions exist. For

example, [19] derives the error probabilitiesloforanch MRC

L= DI =)L =3) WL 1,1, 1)} ’ (20)  wyith cpohe[ren]t and non-cohereFr)n detection of binary signals
where the necessary coefficieri§(ky, ko, ks, k4) are again In identical correlated Nakagami fading channels. Thus, th
calculated by[(16). The needed parameters for the PDF &yerage bit error probabilities of the coherent BPSK system

proximation [8) ofZ are obtained from({17) and (18). and non-coherent BFSK are respectively expressed as [19, Eq
(32)] and [19, Eq. (26)]
I1l. APPLICATION IN THE PERFORMANCE ANALYSIS OF P _ 1 \/IF(mRL +1/2) ¥(1 —/p) B
EGCRECEIVERS C-BPSK = 5 7 D(mgl) mg+7(1— /p)

We consider a typical.-branch EGC diversity receiver ex- mp mRL 1—/p mp
posed to slow and flat Nakagami fading. The envelopes of the X [m] [m]
useful branch signalg; are non-identical equally correlated _
Nakagami random processes with PDFs giveriby (2), whereasx f, (mRL 4= 1 1, mp; §,mR ;7(\/_—p—_1) ,
their respective phases are i.i.d. uniform random prosesse 2 mpg +5(1 = /p)
Each branch is also corrupted by additive white Gaussiasenoi mprL\/p
(AWGN) with power spectral density,/2, which is added (mr+3(1—/p)1+(L—-1)y/p)’

(23)
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(A1)
and It is obvious from [Ib) thatW(3,1) = W(1,3) and
- 1 W(2,1,1) = W(1,2,1) = W(1,1,2), which directly yields
Pync_BFsk = 3 Mpg(s) E to the result given by (14).
82 (24)
where F»(+; -, -+, -5+, -) is the Appell hypergeometric function APPENDIXB
(as the special case of Lauricelia, function of two variables) ~ Using identities given by [20, Egs. (13.6.9) and (22.3.9)],
defined by [17, Eq. (9.180(2))]. 1F1(0,m;, —au) = 1, 1 Fi(~=1,m, —au) = 1 + au/m. and
1F1(=2,m,, —au) = 1+ 2au/m, + (au)?/(m.(1 + m.)),
IV. |LLUSTRATIVE EXAMPLES AND DISCUSSION one directly obtains
In this Section, the proposed approximation for the sum of T(m, +2) 1
arbitrary number of non-identical equally correlated Ngkai (4) = ( TL(m.) ) L(m.)
channels is validated by Monte-Carlo simulations. The simu o
lation of correlated Nakagami random signals is realized by X/O u™ e Py (=2, mz; —au) du
using the method proposed in [21, Section VII].
Ingorder to mooﬁ)el r'she non-i[dentical brancg signals (i.e., =ma(L+m.)(L+a)*, (B.1)
unequal average branch powers and unequal average branch 9
SNRs), we introduce exponentially decaying profile, medel W(2,2) = (F(mz + 1)) 1
as L'(m.) ['(m.)
2 = Dy exp(=d(k — 1)), lsksl, (25) X /OO u™ e T [V Py (=1 me; —GU)]Qdu
where(; is the average power of branch & € 1) andJ is 0 9 ) 9
the decaying exponent. Note that= 0 denotes the case of =a'm; +m;(1+a)7, (B.2)

identical branch signals (i.e., equal branch powers andleqyhereq — B/(1=/p) > 0. Using [17, Egs. (9.212 (1)) and

average branch SNRs). (7.622 ()], it is possible to obtain the following ideptit
Fig. 1 illustrate the high accuracy of the proposed PD -

approximation of RV[(IL) for a large variety of fading scenatri J(m,a,p,q) = 1 / um e Ry (_737 m; _au)
Figs. 2 and 3 illustrate the high accuracy of the equiva- I'(m) Jo 2

lent BPSK MRC error probability[ (23) for evaluation of the q b [(14+2a\?
approximated BPSK EGC error probability. x1F (‘5am§ _au) du = (1+a) ( 1ta )
2
r..¢. @
APPENDIX A x 2 Fy (m+ 5 T T +2a) , (B.3)

In order to determiné’[Z?] and E[Z4], we apply the multi- o
nomial theorem [20, Eq. (24.1.2)]. The second momefi?] resulting into

can be extracted straightforwardly. The fourth momefg*], I'(m.+3/2)T(m. +1/2) 1
after using [4, Eq. (43)] and performing some mathematicg‘((& 1) = T'(m.) T'(m.) I'(m.)
manipulations, can be transformed to oo 3 1
2 L / u™ e Yy <__7mz;_au) 1F1 <——,mz; —CW> du
E[Z4]<1 — \/ﬁ) {W(él)ZQQ +6W(2,2) 0 r . i L/ ?
S . 2 ,
m, P _ Lo +3/2)T0ma 4 12) 5051y (B4

L(m.) L'(m.)
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