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An Accurate Approximation to the Distribution of
the Sum of Equally Correlated Nakagami-m

Envelopes and its Application in Equal Gain
Diversity Receivers

Zoran Hadzi-Velkov, Nikola Zlatanov, and George K. Karagiannidis

Abstract— We present a novel and accurate approximation for
the distribution of the sum of equally correlated Nakagami-m
variates. Ascertaining on this result we study the performance of
Equal Gain Combining (EGC) receivers, operating over equally
correlating fading channels. Numerical results and simulations
show the accuracy of the proposed approximation and the validity
of the mathematical analysis.

I. I NTRODUCTION

T HE knowledge of the statistics of the sums of multiple
signals’s envelopes is important in the analytical perfor-

mance evaluation, such as that of equal gain combining (EGC)
systems. However, the evaluation of the probability distribu-
tion function (PDF) and the cumulative distribution function
(CDF) of these sums can be rather cumbersome even for
the statistically independent Nakagami-m or Rayleigh fading
channels [2]-[7]. An infinite series technique for computing
the PDF of a sum of independent random variables (RVs)
was derived in [2]. Applying this technique, the error rate
performance of EGC systems under Nakagami fading was
presented in [3], whereas, in [4], the problem was analyzed in
frequency domain in terms of semi-analytical expressions with
infinite integrals. Other two studies on EGC diversity in Nak-
agami fading that use numerical integration over Gil-Palaez
single infinite integral and Hermite quadrature over double
finite-infinite integral are presented in [5] and [6], respectively.
Closed form solutions for some modulation schemes are also
obtained for dual and triple diversity under Rayleigh fading
[2], [5]. All above mentioned works assumed independent
fading channels.

However, in real-life applications, fading among diversity
branches is correlated, which renders the analytical analysis
under correlated Nakagami fading with a particular practical
interest. Since the joint PDF of multiple correlated fading
branches is not known, the published results for EGC diversity
in correlated fading channels deal primarily with the dual
branch case [7]-[9], where error probabilities for binary and
QAM signals over correlated Rayleigh channels are expressed
in form of infinite series.
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Only several papers address EGC in correlated fading
with multiple order diversity. In [10], EGC performance was
determined by approximating the moment generating function
(MGF) of its output SNR, where the moments are deter-
mined exactly for exponentially correlated Nakagami channels
in terms of multi-fold infinite series. A completely novel
approach for performance analysis of diversity combiners
in equally correlated fading channels was proposed in [11],
where the equally correlated Rayleigh fading channels are
transformed into a set of conditionally independent Rician
RVs. Based on this technique, the authors in [12] derive
the moments of the EGC output SNR in equally correlated
Nakagami channels in terms of the Lauricella hypergeometric
function, and then uses them to evaluate the EGC performance
measures, such as outage probability (as infinite series) and
error probability (using Gaussian quadrature with weightsand
abscissas computed by solving sets of nonlinear equations).

All of the above approaches yield to results that are some-
what complex, not expressed in closed form, and require
computation of infinite series, all of which is attributed to the
inherent intricacy of the exact sum statistics. This intricacy
can be circumvented by searching for suitable highly accurate
approximations for a sum of arbitrary number of Nakagami
RVs. Various simple and accurate approximations to the PDF
of sum of independent Rayleigh, Rice and Nakagami RVs
are proposed in [13]-[15], which then are used for analytical
EGC performance evaluation. [15] uses the moment matching
method to arrive at the required approximation.

In this paper, we use the moment matching method to
obtain highly accurate closed form PDF approximation for
the sum of arbitrary number of non-identical equally correlated
Nakagami RVs with arbitrary mean powers. We then apply this
approximation to efficiently estimate the performance of EGC
systems by avoiding many complex numerical calculations
inherent for the methods in abovementioned previous works.
Even approximate closed form expressions allow one to gain
insight into system performance by considering, for example,
large SNR or small SNR behaviors.

II. A N ACCURATE APPROXIMATION TO THESUM OF

EQUALLY CORRELATED NAKAGAMI -m ENVELOPES

Let Z be a sum ofL non-identical equally correlated
Nakagami-m RVs, Z1, Z2, ... , ZL,

Z =

L
∑

k=1

Zk, (1)
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The PDF of each envelopeZk, 1 ≤ k ≤ L is given by [1]

fZk
(z) =

(

mz

Ωk

)mz 2z2mz−1

Γ(mz)
exp

(

−mz

Ωk

z2

)

, z ≥ 0

(2)
having an arbitrary second momentE[Zk] = Ωk, 1 ≤ k ≤ L,
same fading parametermz (assumed to be positive integer)
and same envelope correlation coefficient between each pair
of RVs

ρZ =
cov(Z2

i , Z2
j )

√

var(Z2
i )var(Z2

j )
, i 6= j (3)

whereE[·], cov(·, ·) andvar(·) denote expectation, covariance
and variance, respectively.

We propose the unknown PDF of be approximated by the
PDF of an equivalent RV defined as

R =

√

√

√

√

L
∑

k=1

R2
k, (4)

where Rk, 1 ≤ k ≤ L, represent a different set ofL
identical equally correlated Nakagami RVs with equal average
powers,E[Rk] = ΩR, equal fading parametersmR and equal
correlation coefficientρR. Additionally, it is assumed that

ρR = ρZ = ρ . (5)

Both the MGF and the PDF ofR2 had been determined in
closed form as [16, Eqs. (42a) and (36)]

MR2(s) = E[esR2

] =

(

1 − s
ΩR(1 + (L − 1)

√
ρ)

mR

)

−mR

×
(

1 − s
ΩR(1 −√

ρ)

mR

)

−mR(L−1)

, (6)

and

fR2(r) =

(

mR

ΩR

)mRL

× rmRL−1

Γ(mRL)(1 −√
ρ)mR(L−1)(1 + (L − 1)

√
ρ)mR

× exp

(

− mRr

(1 −√
ρ)ΩR

)

× 1F1

(

mR, mRL,

√
ρmRLr

(1 −√
ρ)(1 + (L − 1)

√
ρ)ΩR

)

, (7)

respectively, where1F1(·, ·, ·) is the Kummer confluent hyper-
geometric function [17, Eq. (9.210)]. The PDF ofR is deter-
mined by simple transformation of RVs,fR(r) = 2rfR2(r2),
which yields to

fR(r) =

(

mR

ΩR

)mRL

× 2r2mRL−1

Γ(mRL)(1 −√
ρ)mR(L−1)(1 + (L − 1)

√
ρ)mR

× exp

(

− mRr2

(1 −√
ρ)ΩR

)

× 1F1

(

mR, mRL,

√
ρmRLr2

(1 −√
ρ)(1 + (L − 1)

√
ρ)ΩR

)

. (8)

One now needs to determineΩR and mR so that (8) be an
accurate approximation of the PDF ofZ defined by (1). For
this, we apply the moment matching method by respectively
matching the second and fourth moments of RVsZ andR:

E[Z2] =E[R2] , (9)

E[Z4] =E[R4] . (10)

The second and the fourth moments ofR are determined
straightforwardly by using the MGF (6) and applying the
moment theorem, i.e.,

E[R2]=
dMR2(s)

ds

∣

∣

s=0
= LΩR , (11)

E[R4]=
d2MR2(s)

ds2

∣

∣

s=0
=

LΩR

mR

(1 − ρ + L(mR + ρ)) .

(12)

The second and fourth moments ofZ are determined by
applying the multinomial theorem and the results presented
in [10, Eq. (21)], [12, Eq. (43)] and Appendix A, yielding

E[Z2] =

L
∑

k=1

Ωk + 2
Γ2(mz + 1/2)

mzΓ2(mz)





L
∑

i=1

L
∑

j=i+1

√

ΩiΩj





× 2F1

(

−1

2
,−1

2
; mz; ρ

)

, (13)

and

E[Z4]=

(

1 −√
ρ

mz

)2
[

W (4)

L
∑

k=1

Ω2
k + 6W (2, 2)

×
L
∑

i=1

L
∑

j=i+1

ΩiΩj + 4W (3, 1)

L
∑

i=1

L
∑

j=i+1

(

√

Ω3
i Ωj

+
√

ΩiΩ3
j

)

+ 12W (2, 1, 1)

L
∑

m=1

L
∑

i=m+1

L
∑

j=i+1
(

√

Ω2
mΩiΩj +

√

ΩmΩ2
i Ωj +

√

ΩmΩiΩ2
j

)

+ 24

×W (1, 1, 1, 1)

L
∑

m=1

L
∑

n=m+1

L
∑

i=n+1

L
∑

j=i+1

√

ΩmΩnΩiΩj





(14)

where

W (k1, · · · , kN ) =





N
∏

j=1

Γ(mz + kj/2)

Γ(mz)





1

Γ(mz)

×
∫

∞

0

umz−1e−u

N
∏

j=1

1F1

(

−kj

2
, mz;−

u
√

ρ

1 −√
ρ

)

du (15)

with 2F1 (·, ·; ·; ·) denoting the Gauss hypergeometric function
[17, Eq. (9.100)]. Note that (14) and (15) are valid only ifmz

is positive integer [12]. Using [18, Vol. 4, Eq. (3.35.7(4))] and
the Lauricella transformation to assure convergence [22, pp.
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121], (15) is expressed in closed form as follows

W (k1, · · · , kN ) =
(

N
∏

j=1

Γ(mz + kj/2)

Γ(mz)

)( 1 −√
ρ

1 + (N − 1)
√

ρ

)mz

×FA

(

mz; mz +
k1

2
, · · · , mz +

kN

2
; mz, · · · , mz;

√
ρ

1 + (N − 1)
√

ρ
, · · · ,

√
ρ

1 + (N − 1)
√

ρ

)

, (16)

where FA(· · · ) denotes the Lauricella hypergeometric func-
tion of N variables defined by [17, Eq. (9.19)]. Note that
coefficientsW (4), W (2, 2), W (3, 1) and W (2, 1, 1) can be
expressed in terms of the more familiar hypergeometric func-
tions as per (B.1), (B.2), (B.4) and (B.6), respectively.

Introducing (9) and (9) into (11) and (11), one obtains the
needed parameters for the PDF approximation (8) ofZ in
closed form as

ΩR=
E[Z2]

L
, (17)

mR=
1 + (L − 1)ρ

L

(E[Z2])2

E[Z4] − (E[Z2])2
, (18)

where E[Z2] and E[Z4] are respectively determined from
(13) and (14). Note that the fading parametermR is typically
calculated to a positive real number.

A. Special Case: Sum of Identical Equally Correlated Nak-
agami RVs

Let the equally correlated Nakagami RVsZk ,1 ≤ k ≤
L have same second momentsE[Z2

k ] = ΩZ (equipowered
branches), same fading parametermZ (as positive integer) and
same correlation coefficientρ between each pair of RVs. In
this case, (13) and (14) are simplified by using (A.6) into

E[Z2] = LΩZ

[

1 +
(L − 1)Γ2(mz + 1/2)

mzΓ2(mz)

× 2F1

(

−1

2
,−1

2
; mz; ρ

)]

, (19)

E[Z4] =

(

ΩZ(1 −√
ρ)

mz

)2
[

L W (4) + 3L(L − 1)W (2, 2)

+4 L(L− 1)W (3, 1) + 6L(L − 1)(L − 2)W (2, 1, 1)

+ L(L − 1)(L − 2)(L − 3)W (1, 1, 1, 1)
]

, (20)

where the necessary coefficientsW (k1, k2, k3, k4) are again
calculated by (16). The needed parameters for the PDF ap-
proximation (8) ofZ are obtained from (17) and (18).

III. A PPLICATION IN THE PERFORMANCE ANALYSIS OF

EGC RECEIVERS

We consider a typicalL-branch EGC diversity receiver ex-
posed to slow and flat Nakagami fading. The envelopes of the
useful branch signalsZk are non-identical equally correlated
Nakagami random processes with PDFs given by (2), whereas
their respective phases are i.i.d. uniform random processes.
Each branch is also corrupted by additive white Gaussian noise
(AWGN) with power spectral densityN0/2, which is added

to the useful branch signal. In the EGC receiver, the random
phases of the branch signals are compensated (co-phased),
equally weighted and then summed together to produce the
decision variable.

The envelope of the composite useful signal, denoted byZ,
is given by (1), whereas the composite noise power is given by
σ2

EGC = LN0/2, resulting in the instantaneous output SNR
given by

γEGC =
Z2

2σ2
EGC

=
1

LN0

(

L
∑

k=1

Zk

)2

=

(

L
∑

k=1

Gk

)2

(21)

where RVsGk = Zk/
√

LN0, 1 ≤ k ≤ L, form a set ofL
non-identical equally correlated Nakagami RVs withE[G2

k] =
γ̄k/L, same fading parametersmz and same correlation coeff-
icient ρ among the diversity branches. Note thatγ̄k = Ωk/N0

denotes the average SNR in thek-th branch.
Using the results from Section II, it is now possible to

approximate PDF and MGF of (21) by (7) and (6), respec-
tively, with ΩR replaced byγ̄ = ΩR/(LN0). These closed
form approximations are then used to determine the outage
probability and the error probability ofL-branch EGC systems
in correlated Nakagami fading with high accuracy.

A. Outage Probability

The closed form approximation of the outage probability of
the EGC receiver (i.e. the CDF ofγEGC) at thresholdt is
obtained by applying [18, Vol. 5, Eq. (2.1.3(1))] over (6) as

FγEGC
(t) ≈

( mRt

γ̄(1 + (L − 1)
√

ρ)

)mR
( mRt

γ̄(1 −√
ρ)

)mR(L−1)

× 1

Γ(1 + mRL)
Φ2

(

mR, mR(L − 1); 1 + mRL;

− mRt

γ̄(1 + (L − 1)
√

ρ)
, − mRt

γ̄(1 −√
ρ)

)

, (22)

where Φ2(·, ·; ·; ·, ·) denotes the confluent hypergeometric
function of two variables defined by [17, Eq. (9.261(2))].

B. Average Error Probability

Comparing (1) and (4), it is obvious that the error per-
formance of an EGC system can be approximated by the
performance of an equivalent maximal ratio combining (MRC)
system for which many closed form solutions exist. For
example, [19] derives the error probabilities ofL-branch MRC
with coherent and non-coherent detection of binary signals
in identical correlated Nakagami fading channels. Thus, the
average bit error probabilities of the coherent BPSK system
and non-coherent BFSK are respectively expressed as [19, Eq.
(32)] and [19, Eq. (26)]

P̄C−BPSK =
1

2
−
√

1

π

Γ(mRL + 1/2)

Γ(mRL)

[

γ̄(1 −√
ρ)

mR + γ̄(1 −√
ρ)

]
1

2

×
[

mR

mR + γ̄(1 −√
ρ)

]mRL [ 1 −√
ρ

1 + (L − 1)
√

ρ

]mR

×F2

(

mRL +
1

2
; 1, mR;

3

2
, mRL;

γ̄(
√

ρ − 1)

mR + γ̄(1 −√
ρ)

,

mRL
√

ρ

(mR + γ̄(1 −√
ρ))(1 + (L − 1)

√
ρ

)

, (23)
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and
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1

2
MR2(s)

∣

∣

∣

∣

s=−
1

2

.

(24)
whereF2(·; ·, ·; ·, ·; ·, ·) is the Appell hypergeometric function
(as the special case of LauricellaFA function of two variables)
defined by [17, Eq. (9.180(2))].

IV. I LLUSTRATIVE EXAMPLES AND DISCUSSION

In this Section, the proposed approximation for the sum of
arbitrary number of non-identical equally correlated Nakagami
channels is validated by Monte-Carlo simulations. The simu-
lation of correlated Nakagami random signals is realized by
using the method proposed in [21, Section VII].

In order to model the non-identical branch signals (i.e.,
unequal average branch powers and unequal average branch
SNRs), we introduce exponentially decaying profile, modeled
as

Ωk = Ω1 exp(−δ(k − 1)), 1 ≤ k ≤ L, (25)

whereΩ1 is the average power of branch 1 (k = 1) andδ is
the decaying exponent. Note thatδ = 0 denotes the case of
identical branch signals (i.e., equal branch powers and equal
average branch SNRs).

Fig. 1 illustrate the high accuracy of the proposed PDF
approximation of RV (1) for a large variety of fading scenarios.

Figs. 2 and 3 illustrate the high accuracy of the equiva-
lent BPSK MRC error probability (23) for evaluation of the
approximated BPSK EGC error probability.

APPENDIX A

In order to determineE[Z2] andE[Z4], we apply the multi-
nomial theorem [20, Eq. (24.1.2)]. The second momentE[Z2]
can be extracted straightforwardly. The fourth momentE[Z4],
after using [4, Eq. (43)] and performing some mathematical
manipulations, can be transformed to

E[Z4]=

(

1 −√
ρ

mz

)2 [

W (4)

L
∑

k=1

Ω2
k + 6W (2, 2)

×
L
∑

i=1

L
∑

j=i+1

ΩiΩj + 4W (3, 1)

L
∑

i=1

L
∑

j=i+1

√

Ω3
i Ωj

+4W (1, 3)

L
∑

i=1

L
∑

j=i+1

√

ΩiΩ3
j

+12W (2, 1, 1)

L
∑

m=1

L
∑

i=m+1

L
∑

j=i+1

√

Ω2
mΩiΩj

+12W (1, 2, 1)
L
∑

m=1

L
∑

i=m+1

L
∑

j=i+1

√

ΩmΩ2
i Ωj

+12W (1, 1, 2)

L
∑

m=1

L
∑

i=m+1

L
∑

j=i+1

√

ΩmΩiΩ2
j

+ 24W (1, 1, 1, 1)

L
∑

m=1

L
∑

n=m+1

L
∑

i=n+1

L
∑

j=i+1

√

ΩnΩmΩiΩj

]

(A.1)
It is obvious from (15) thatW (3, 1) = W (1, 3) and
W (2, 1, 1) = W (1, 2, 1) = W (1, 1, 2), which directly yields
to the result given by (14).

APPENDIX B

Using identities given by [20, Eqs. (13.6.9) and (22.3.9)],
1F1(0, mz,−au) = 1, 1F1(−1, mz,−au) = 1 + au/mz and
1F1(−2, mz,−au) = 1 + 2au/mz + (au)2/(mz(1 + mz)),
one directly obtains

W (4) =

(

Γ(mz + 2)

Γ(mz)

)

1

Γ(mz)

×
∫

∞

0

umz−1e−u
1F1 (−2, mz;−au)du

= mz(1 + mz)(1 + a)2 , (B.1)

W (2, 2) =

(

Γ(mz + 1)

Γ(mz)

)2
1

Γ(mz)

×
∫

∞

0

umz−1e−u
[

1F1 (−1, mz;−au)
]2

du

= a2mz + m2
z(1 + a)2 , (B.2)

wherea =
√

ρ/(1−√
ρ) > 0. Using [17, Eqs. (9.212 (1)) and

(7.622 (1))], it is possible to obtain the following identity

J(m, a, p, q) =
1

Γ(m)

∫

∞

0

um−1e−u
1F1

(

−p

2
, m;−au

)

×1F1

(

− q

2
, m;−au

)

du = (1 + a)
p

2

(

1 + 2a

1 + a

)
q

2

× 2F1

(

m +
p

2
;− q

2
; m,− a2

1 + 2a

)

, (B.3)

resulting into

W (3, 1) =

(

Γ(mz + 3/2)

Γ(mz)

Γ(mz + 1/2)

Γ(mz)

)

1

Γ(mz)
∫

∞

0

umz−1e−u
1F1

(

−3

2
, mz;−au

)

1F1

(

−1

2
, mz;−au

)

du

=
Γ(mz + 3/2)

Γ(mz)

Γ(mz + 1/2)

Γ(mz)
J(mz , a, 3, 1) . (B.4)
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Using [17, Eq. (9.212 (3)), pp. 1023] and after some simple
algebra, one obtains the following
[

1F1

(

−1

2
, m;−au

)]2

=

(

m + 1/2

m

)2 [

1F1

(

−1

2
, m + 1;−au

)]2

+
1

4m2

[

1F1

(

1

2
, m + 1;−au

)]2

−m + 1/2

m2 1F1

(

1

2
, m + 1;−au

)

1F1

(

−1

2
, m + 1;−au

)

(B.5)

Thus,

W (2, 1, 1) =

(

Γ(mz + 1)

Γ(mz)

(

Γ(mz + 1/2)

Γ(mz)

)2
)

1

Γ(mz)
∫

∞

0

umz−1e−u
1F1 (−1, mz;−au)

[

1F1

(

−1

2
, mz;−au

)]2

du

= mz

(

Γ(mz + 1/2)

Γ(mz)

)2 [

J(mz, a, 1, 1) +
a(mz + 1/2)2

m2
z

× J(mz + 1, a, 1, 1) +
a

4m2
z

J(mz + 1, a,−1,−1)

−a(mz + 1/2)

m2
z

J(mz + 1, a,−1, 1)

]

(B.6)
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