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Abstract—We consider the problem of joint detection and simply as joint decoding, and is the focus of this paper. # ha
decoding of low-density parity-check (LDPC) coded signals also been the focus of some recent works in [9], [10], [11]
over partial response (PR) channels. A method to graphically and [12]. A practical and popular approach in this directias

represent the constraints imposed by the channel and the code - . . .
on the channel output sequence is introduced. This enables the been to design message-passing (MP) decoding algorithans th

design of a detector and decoder that estimates a posteriori Operate on a graph, which represents the constraints irdpose
probabilities of noiseless channel output symbols rather than by both the channel and the LDPC code.
binary channel inputs. By running the sum-product algorithm In turbo-equalizer, the channel constraints are represgent
(SPA) on this graph, a joint decoder is obtained that is shown p the channel trellis and the code constraints are reptesen
to perform significantly better than the turbo-equalizer. by the bipartite graph of the code, known as the Tanner
graph. Detectors like SOVA and BCJR operate serially on
the trellis, while the LDPC decoder operates parallely an th
Low-density parity-check (LDPC) codes, invented by Galfanner graph. While aiming to conceive a joint MP decoding
lager [1] and rediscovered by Mackay and Neal [2] have beeafgorithm operating on a graph, it is logical to first conside
shown to be capacity achieving on memoryless channelsslt hlae problem of representing the channel constraints aspingra
also been shown to achieve excellent error rate performarared then to design a parallel MP detection algorithm that
over channels with memory, such as magnetic storage [3] amgerates on this graph. This problem has been addressed by
optical communication channels [4]. For reasons of bantwidkurkoski et. al. in [9], who introduced parallel bit-basedda
efficiency, these inter-symbol interference (ISI) chasrmle state-based MP algorithms for channel detection. Thedsiet
equalized to a partial-response (PR) target with relativeMP algorithm is useful only in channels with unit memory
small memory compared to the unequalized channel. Afgngth, but has been modified for use in channels with longer
LDPC decoder must cope with the controlled amount of IShemory by Colavolpe et. al. [10]. Even though in [9], the
introduced by the PR. For an uncoded system, the chanpglte-based MP detector was combined with the LDPC MP
input sequence is optimally detected in the presence of I§coder to obtain a joint MP decoder, it achieved at best the
by the Viterbi algorithm. For an LDPC coded system, thsame performance as the turbo-equalizer. This is due to the
optimal maximum a posteriori (MAP) decoding is impractjcaffact that the joint MP decoder is simply a parallel schedile o
but good error rate performance can be achieved by usitg turbo-equalizer.
the turbo principle [5]. In this technique, information is The challenge in jointly using both the channel and code
iteratively passed back and forth between a soft-input- softformation arises from the fact that the channel imposes
output (SISO) detector and a SISO LDPC decoder. The ISl donstraints on the channeltput sequences, whereas the code
the channel output is eliminated by a detector using the-champoses constraints on the chaniglut sequences. The idea
nel information unknown to the decoder, and subsequentiyptivating our approach is the observation that by imposing
the output is decoded by a LDPC decoder using the codenstraints on the channel input sequences, the code also
structure information unknown to the detector. Since, fite imposes certain constraints on the noiseless channel toutpu
algorithm produces only hard decisions, algorithms liké-so sequences. In this paper, we modify the LDPC MP decoder to
output Viterbi algorithm (SOVA) [6] and Bahl-Cocke-Jelkie produce information on the noiseless channel output sysnbol
Raviv (BCJR) algorithm [7] are used for SISO detection ancther than on channel inputs. This enables us to combine
the well-known sum-product algorithm (SPA) [8] is used foit with a modified version of the state-based MP detector to
SISO decoding. This iterative algorithm is known tasbo- design a joint decoder, that significantly surpasses the per
equalizer. Though sub-optimal, it is the best and most widelformance of the turbo-equalizer. The joint decoder estmat
used decoder known today. a posteriori probabilities (APPs) of channel output syrabol
The performance can be improved beyond what is achieviedm which APPs of channel inputs are derived. Also, as it
by turbo-equalizer, if both channel and the code infornrmatiawill be shown, this algorithm can be used irrespective of the
are simultaneously used to make decisions on the chanaeinnel memory length, although as described in Sectioit Il
inputs. This is referred to as joint detection and decoding may perform relatively better for channels with small meynor

I. INTRODUCTION



The rest of the paper is organized as follows. We describe z

Turbo-Equalizer
n+m n+m

a graphical model used to represent the channel and describ@f ] X0 iy b

an optimal MP detection algorithm operating on this graph in=| encoder > h(D) B ®cm) »l decoder

Section Il. This model is extended to include code condisain

and a joint MP decoding algorithm that operates on this : &

combined graph is described in Section Ill. Bit error sinteda ot e

performance for an LDPC code is shown in Section IV and

finally, the paper is concluded in Section V. Fig. 1. Block diagram of a PR system. Decoder is either tudpmtizer
(upper branch) or joint decoder (lower branch) and noise isletenl as

II. MESSAGEPASSING DETECTIONALGORITHM additive white Gaussian.

A. System model
Fig. 1 shows the system model considered, where the

channel response is represented by a polynorh{d)) or . . i
the corresponding coefficient vectdr. A sequenceL c))f k 0 @ @ °
binary bits is encoded by an LDPC code into a codeword
x of n binary bits. The codeword is transmitted through
the PR channel, whose non-binary output is corrupted by
additive white Gaussian noise (AWGN). The noiseless channefig. 2. Generalized factor graph representation of a PRrufarellis.
output,y = x « h, is of lengthn + m, where = denotes
the convolution operator anek denotes the channel memory L . . . _
length. The noisy channel output is given by= y + z. We exchangln_g information with the adjace_nt ones, but within
first consider an uncoded system, where the optimal detec%fh section, the BCJR can operate serially.

is the one that estimates MAP probability of the hitse;|r), . : th'.s work, we consider the fully-parallel MP schedul-
o . th ing. This necessitates the need for state variables to store
vVi=0,1,...,k—1, wherez; is the:*" element of the vector

x andz; € {0, 1}. These quantities are efficiently determine nd relay information between adjacent sections afteryever

by operating the BCJR algorithm on the channel trellis. ! eratloq. We modify the factor graph represen_tmg the dlaan
constraints to remove the need for state variables and-corre

B. Channel graph spondingly alter the detection algorithm. The graph is now

] o simply represented as a bipartite graghshown in Fig. 3,
The trellis of a channel represents the constraints imposgfere circles correspond to the noiseless channel symbols

on the range of noiseless channel output sequences. A dhanneang squares correspond to the local channel constraints.
trellis can be given as a factor graph [8] shown in Figrhese sets of nodes are referred to as symbol nodes and
2, whereqo, q1, - .., qn+1 represents state (hidden) variableghannel nodes respectively. Every channel node represents
o, 21,..., %, represents channel inputs and,yi.....Y» two sections of the trellis. For example, a channel negde
represents noiseless channel outputs. The factor graph gafs as a local constraint and represents all valid 5-tuples
be divided inton sections, where theé*" section denoted {¢i, Vi, Git1, Yis1, Gis1 ). Therefore, unlike the factor graph
by 7; is defined by all valid triples{_qi7yi,Qi+1}- Therefore, in Fig. 3, every section of the trellis is represented by two
each section acts aslacal constraint of the channel. Con-channel nodes in this graph. As will be described in the next
sequently, a sequence of state and channel output varialigstion, information pertaining to state transition piuitides
{901, nv1, 90,41, -, yn} is valid if and only if it 5 exchanged between symbol nodes through the channel
satisfies all local constraint&, Ty, . .., Ty, _ nodes. Like the factor graph of the trellis, gra@his a generic
When aglobal channel constraint is factored into locakycle-free representation of a PR channel, irrespectivigsof
channel constraints, numerous scheduling schemes for ir'?i'emory length. However, the size of the set represented by
plementing the BCJR algorithm are possible. Typically, ongie channel nodes increases exponentially with increase in

instance of a BCJR algorithm is operated on one section r%mory length. If memory length is:, the size of this set is
the trellis at any time instant and is progressively moved tgm+2)

other sections. This scheduling is known as fully-seridl [8 )

On the other extremey instances of the BCJR algorithmC: Message-passing symbol detector

can operate on each section of the trellis simultaneously,Now, we describe a MP detection algorithm that operates on
exchanging information through the state variables durigyaphG and produces APPs of output symbols, from which
every iteration. This scheduling is known as fully-paraléed APPs of channel inputs are derived. 4f, and y; are the

is referred to as the parallel state-based MP algorithm Jin [Zhannel input and noiseless output at titnethen

Naturally, intermediate scheduling schemes are possiae.
example, the factor graph shown in Fig. 2 can be divided into e = F (@ Bhts Teom) (1)

p sections § < n), and during every iteratiom instances of where the functiory() is determined by the channel response
the BCJR algorithm can operate on each of these sectioh&D). Let A = {ag,a,...,a2m_1} be the set of possible




Symbol nodes Messages received from the symbol nodes during the
Yo i1 Y2 Y3 Yntm-2 Yn+ma current iteration serve as tteepriori symbol probabili-
/
!
/
SO S1 SZ S3

ties for the channel node operation.
\/\M . /\/ 4) APPs of channel output symbols: After repeating the
\ above steps for a fixed number of iterations, APPs of
channel output symbols are calculated as,
S

n+m-3  Snem-2

t) __ t t
Channel nodes M?Sk) - MS(kLyk .Ms(k)—l"yk ~p(rely) - p(yk) — (5)
where,p(yyx) is the initial a priori probability.
5) APPs of channel input bits: The algorithm halts after
calculating channel input APPs using Egn. 2.
Remark: p(yk|rk, rk+1, 0x) and p(Yx+1|re, Te+1,¢k) In
noiseless channel output symbols when the current chanigh. 4 can be computed in a straightforward way, since
input z, = 0, and letB = {bg, b1,...,bam_1} be the set of |p| < 2m*+2, andm is small. In the context of a trellis,
possible noiseless channel output symbols when the chanthiéd is same as operating BCJR only on the two sections of
input x, = 1. Then, APPs of the channel inpuf, are given the trellis represented by the channel nege

Fig. 3. A graph that represents constraints imposed by thenghan the
noiseless channel output sequences.

as, When the number of iterations equal the length of the
om_q sequence, the APPs obtained using the above algorithm are
p(zp = 0lr) = Z ply; = a;lr). (2) sameas that obtained from the BCJR algorithm. Usually, only
=0 a small number of iterations are required to obtain perfoicea

close to optimal. However, as observed in [9], all scheddin

Though elements of set and B may not be unique, we : . .
emphasize that they correspond to a unique state transitPofnthe. BCJR algonthm_, except Fhe fP"V'Se”a' schedulmg,
esult in an error floor if enough iterations are not run. Like

in the corresponding channel trellis. Since the MP detactiéth MP detecti lqorith din the literatunis t
algorithm is not operated explicitly on the trellis, we sisnp other etection aigorthms proposed in the literatumes

refer the quantitiew(y;) as symbol probabilities rather thanalgonthm IS more complex than .BC‘]R’ prl_marlly due to. the
state transition probabilities. parallel scheduling of the algorithm, but it can potengiall

Let p; denote the set of symbol pairs represented by chanrﬁ%?uce Ia_tency time and is swtgble for_hlgh-speed app_Ibnat .
node s of the graph shown in Fig. 3. Therefor@y, yi.1) € ItS most important advantage is that it can be combined with

w;, ¥ i. The constraints imposed on the output sequences %}DPC MP decoder to obtain a joint MP decoder.

the channel can be viewed ascade, where each channel |||. JoINT MESSAGEPASSING SYMBOL-DECODING
node s; corresponds to a code of length 2 and the ggt ALGORITHM

corresponds to its set @bdewords. With the knowledge o In this section, we extend the graphical model described

for all channel nodes, the output sequence can thuieieied earlier to include constraints imposed by the parity checks

without the use of state variables. Since the underlyingcbh of the LDPC code. The tripartite graph shown in Fig. 4 is

graphd is a tree, APPs can be estimated optimally using the . . : : .
SPA. Now, the MP detection algorithm is given as follows. Shtained by including the parity check nodes to the channel

. o graph of Fig. 3. Connections between the parity check nodes
MP D.e.te(':t|or.1 Algor'|thm. ) . and the symbol nodes are defined in the same way as the
1) Initialization: Since, channel inputs are i.i.d, allt8ta connections between the parity check nodes and the variable
transitions are initially equally likely. Thereforg(y;) = nodes. Using this combined graph, a joint decoding algarith
1/2m*, ¥ i=0,1,...,n+m— L is developed that estimates the symbol APPs using both the
2) Message from symbol nodes to channel nodes duriggannel and the code information simultaneously. The joint

th ; : . . . . .
the ¢** iteration: decoding algorithm is outlined below.

MW = M{¢-Y Joint MP Decoding Algorithm:
Yk —Sk—1 Sk =Yk (3) T . P g
M® = a1 Vik=1 n4+m—2 1) Initialization: Symbola priori probabilities p(y;) =
Yk —Sk Sk—1—Yk’ ety 1/2m+1.
where,]V[z,EiLsk_1 denotes the message sent from sym- 2) Message from symbol nodes to channel nodes during
bol nodey;. to channel node;s ; during thet'” itera- the ' iteration: For everyk, compute,
tion. Other terms are defined similarly. . MO _ag-1) H (t—1)
3) Message from channel nodes to symbol nodes during Yo —Sk—1 YR iUk
the t*" iteration: Jlhse=1 ©6)
(t) — A1) (t—1)
M PRI et k) My g = Mg [T Mg
Sk—Yk ) Yk jlhje=1
P(relyr)p(ye) @
) ~ pWrsalTR, TRa 1, O8) 3) Message from symbol nodes to check nodes during the

SR T e e )P (Yer1) Yk+1- th iteration: If H = {h;;} is the parity check matrix



Fig. 4. A graph that represents constraints imposed by thenghhand the

Check nodes Remark: Observe that the check node operation of the LDPC
MP decoder is modified to provide symbol information for use
in joint decoding. In the traditional decoder, the check enod
operation is efficiently computed by ti@nh function, whereas
the new check node operation is more complex. We describe

Yn+m-1 next an efficient method to compute this new operation.

For ease of exposition, consider a degree 3 check node ¢
x; ®x; ®xy. The check node;dmplies that the three variable
nodes form a single parity check code, denotedty. This
is compactly represented by the code trellis shown in Fig.
5. All paths beginning and ending at state O correspond to
codewords of the cod€ x. Input bit APPs conditioned on the

n+m-3 Sn+m-2

Channel nodes

parity checks of the LDPC code on the noiseless channel begmuences. €ventC; can be determined by operating the BCJR algorithm
Parity checks imposes certain constraints on the channelibsequences by on this trellis, which simply turns out be thanh check node

imposing constraints on the channel input sequences.

operation.

The check node; is connected to symbol nodgs, y; and
yr in the combined graph. By imposing constraints on the
variable nodes;, z; andxy, the check; also imposes certain
constraints on the corresponding output symbols. In other
words, the check node implies that the three symbol nodes
also form a code, which we denote iy . In order to obtain
symbol APPs, a trellis for the cod€y, referred to as the
expanded code trellis, is constructed é&ypanding the edges
of the code trellis shown in Fig. 5. The expanded code trisllis

Fig. 5. Trellis diagram of a single parity check code of léngt The states shown in Fig. 6. An edge representing a state transitiondeco

indicate the parity of the incoming sequences.

4)

5)

6)

7

trellis is now replaced bp™ edges representing all possible
noiseless channel outputs generated during the correspnd
state transition. For example, if; = 0 is transmitted, the
corresponding noiseless channel outpute A. Further, the
edge labels are elements of sebr B depending on whether
Méi)ﬂci = Ms(;f;ly)k 'Mgfflllyk . H Mc(flé)k- the corresponding edge label in cpde trellis is O or 1. If the
three symbol nodes aiedependent, i.e. they have at least

(7) other symbol nodes between them, then all paths beginning
Message from channel nodes to symbol nodes duriagd ending at state O of the expanded code trellis correspond
the t*" iteration: This is same as Eqgn. 4. to codewords of the cod€y . Therefore, the symbol APPs of

of the LDPC code, then for every and k& such that
hir = 1, compute,

dlhjr=1.5#i

Message from check nodes to symbol nodes during the y; andy; conditioned on the event is determined by
t*h iteration: For everyi and k such thath;, = 1, operating the BCJR algorithm on the expanded code trellis.
compute, If the symbol nodes connected to a check node are not inde-
pendent, the above method can still be used for an approximat
Méé)_}y' - M, Uk (8) calculation of Egn. 8. In principle, the joint symbol decode
e pOrlye)p(ye) can be applied for channels with any memory length, although

where, C; denotes the event that the checki satis- the number of check nodes that violates the independence

fied andr; denotes the set of received Samp|es at tigoperty will be lower for channels with small memory. The
locations of the variable nodes connected to check Performance of the joint decoder would be severely affeited

APPs of channel symbols: For evelry compute, the LDPC code contains many pairs of consecutively ocogirrin
variable nodes connected to a check, as such codes would
MP =M oM T M, result in many four-cycles in the combined graph.
Jlhjr=1 9) In practice, the check node degree is much higher than 3,
p(relye) - p(yk) but the computation of Eqn. 8 using the expanded trellis is
still simple, since the expanded code trellis will alwayvéa
where, p(yy) is the initial a priori probability. only two states as long as the check node represents a single
APPs of channel input bits: After every iteration, th"f)arity check code.

channel input APPs are calculated using Egn. 2. All

the above steps are repeated until either the decoded IV. SIMULATION RESULTS

sequence satisfies all channel and code constraints or gve illustrate the performance of the joint symbol-decoding
preset maximum number of iterations is reached.  algorithm by simulating an LDPC coded PR system, where



V. CONCLUSION

The problem of joint detection and decoding of LDPC
coded signals over partial response channels is considered
order to jointly use both the channel and code information,
the LDPC decoder is modified to produce information on
channel output symbols rather than on channel inputs. Bhis i
combined with a message-passing detector to develop a joint
decoder that estimates channel input APPs by first estimatin
channel output symbol APPs. The performance of this decoder
is shown to significantly outperform that of the turbo-edgel

for a random LDPC code of rate 0.89.

Fig. 6. Expanded code trellis of Fig. 5. The state transigdge labels are
either elements of sed or B.
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Fig. 7. Bit error rate comparison of (1908,212) random LDP@econ a
PR4 channel when decoded using turbo-equalizer and thedezoder. [7]
(8]

the channel is given by the impulse respofis®, —1] (PR4),

and the LDPC code is of length 1908 and rate 0.89 [13]. The!
channel output sequences are decoded by using both turbo-
equalizer and the joint symbol-decoder. When turbo-eqgeialiZ10]
is used, the number of global iterations is restricted tocbtar
number of internal LDPC decoder iterations is restricted.to [11)
These settings give the best bit error rate (BER) performanc
Increasing the number of global iterations beyond 5 does r] ]
improve the performance significantly. When the joint symbo
decoder is used, the number of iterations is restricted to 608]
The performance comparison is shown in Fig. 7. At a signal-
to-noise ratio (SNR) of 5.4 dB the BER obtained by the joint
decoder is almost an order of magnitude better than the turbo
equalizer. Also, the figure suggests that the gain increagks
increasing SNR. Among the 212 parity checks of this code,
100 parity checks contain at least one pair of variable nodes
(or symbol nodes) that are not independent. However, tim joi
decoder was applied to the code without any modification,
implying that the computation of Eqn. 8 was approximate. In
spite of this, the decoder was able to achieve significant gai
over the turbo-equalizer.
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