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Abstract— Rate, energy and delay are three main 
parameters of interest in ad-hoc networks. In this paper, 
we discuss the problem of maximizing network utility and 
minimizing energy consumption while satisfying a given 
transmission delay constraint for each packet. We 
formulate this problem in the standard convex 
optimization form and subsequently discuss the tradeoff 
between utility, energy and delay in such framework. Also, 
in order to adapt for the distributed nature of the network, 
a distributed algorithm where nodes decide on choosing 
transmission rates and probabilities based on their local 
information is introduced.  
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I.  INTRODUCTION 
In many wireless ad-hoc networks due to the lack of a 

central station, nodes compete for the channel and decide 
channel access in a random manner. In the random access 
networks that channel access is not predetermined and depends 
on the network traffic, it is possible that two nodes 
simultaneously decide to send data to the same node, resulting 
in collision. Collisions waste energy, increase transmission 
delay and reduce throughput. The aim of the random access 
protocols is controlling collisions in the network in order to 
achieve the desired network performance. 

In an earlier paper [1], we solved the problem of energy-
utility optimization in random access networks with no delay 
constraints. In this paper, the notion of delay is added to the 
analysis of random access networks using the queuing theory. 
The delay constraint has a non-convex form and in order to 
convert it into a convex constraint a complete problem 
reformulation is proposed. An optimal random access protocol 
which satisfies delay constraints for the links is subsequently 
presented. 

The importance of energy efficiency in ad-hoc networks 
stems from the multi-hop nature of the network. If nodes of an 
ad-hoc network run out of energy some routes may become 
disconnected [2]. Therefore, the available energy of nodes 
should be consumed cautiously to transmit as much 
information as possible. Another criterion for the network 
performance is the utility, which is a monotonically increasing 
function of the allocated rate to each link. Network Utility 
Maximization (NUM) has recently received much attention in 
the literature [5], [6], [7]. It has been first proposed by Kelly 
[5] in order to optimize end-to-end rates of the wired networks. 

It is also used in optimizing transport layer of wireless 
networks [6], [7]. Also, Nandagopal et. al. [8] used similar 
approach in proportionally fair channel allocation and [9] 
developed the idea of optimizing persistence probabilities in 
the random access wireless network. Transmission delay is 
another important parameter for the network performance and a 
delay limit should be practically considered for the packets in 
the network. Such delay constraint depends on the type of 
traffic and the required quality of service (QoS) level. Real-
time applications such as voice or video conferencing require 
packets to be transmitted with a specific delay limit. However, 
data transmission is less sensitive to delay and a more relaxed 
delay constraint can be adopted for such transmissions. It 
should be noted that one of the issues in random access 
networks is the size of queues, as for example, in Aloha it is 
possible that average length of the queues in some nodes go to 
infinity. Setting a delay limit for the packet transmission is 
therefore equivalent to setting a limit for the average queue 
length.   

Energy minimization and lifetime maximization for 
wireless ad-hoc networks have been the focal point of many 
research activities [10], [11]. However, to the best knowledge 
of the authors, the work presented in this paper is the first case 
which considers energy minimization along with delay 
constraints in random access networks. For example, although 
[6] and [9] have formulated and solved NUM for the random 
access but they have neither considered energy consumption 
nor delay constraints. Optimal utility-lifetime tradeoff has been 
achieved in [12] for non-random access networks, however no 
delay constraints were considered in that approach. Delay 
minimization for slotted aloha was considered in [13] where 
transmission probabilities were optimized to achieve minimum 
delay and maximum throughput. However energy 
minimization and fairness among nodes were not addressed.  

The rest of the paper is organized as follows. First, the 
network model is presented in the next section. Then, in section 
III we formulate the problem by defining the goal functions 
and the link delay constraint. Section IV investigates the trade-
off between energy, utility and delay; it also contains numerical 
results of the distributed algorithm. Finally, we conclude the 
paper and review its contributions in section V. 

II. NETWORK MODEL 
Suppose an ad-hoc network which contains N nodes that 

are going to transmit their packets through their neighbors 
using the set of links L. Each node selects one of its links and 
transmits with probability pij where i is the transmitter index 
and j is the receiver index. Pi is the transmission probability of 
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node i, which is equal to the sum of transmission probabilities 
of its output links. We assume that nodes transmit during time 
slots whose duration equals the packet transmission time. 
Collision happens if two neighbors transmit packets in the 
same slot.  Nodes are supposed to have infinite buffers, thus 
there is no packet drop. We also assume that the distribution of 
packet arrival at each node is Poisson and independent of the 
other nodes. 

The set of neighbors of the node i is denoted by Ni, the set 
of nodes which i transmits to them with Oi and the set of nodes 
that transmit to i with Ii. We define connectivity factor by the 
ratio of communication range to the network dimension. Thus, 
as the nodes’ powers increase, the connectivity factor and 
number of neighbors, |Ni|, increase as well. In this paper, we 
assume that all nodes have equal power, resulting in symmetric 
neighborhoods. The case that neighbors use unequal powers 
was considered in [1]. Although such assumption can be easily 
incorporated in the current work, it has not been considered in 
this paper in order to simplify the formulations.  

III. DELAY ANALYSIS 
In order to calculate average delay in random access 

networks, we assume packet arrival at each node to be modeled 
by a Poisson process. It is also assumed that in case of  
collisions, the packet is retransmitted until it is successfully 
received at the other end. Thus, when a packet collides it does 
not return to the queue, but waits until it is served. The service 
time of each link depends on the transmission probability of 
that link and the collision probability. We can model each link 
as an M/G/1 queue and use the following Pollaczek-Khinchin 
formula to estimate the queue delay [14].  
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where W is the waiting time of the queue, S is the average 
service time, r is the arrival rate, and  ρ=r S . Thus, the first and 
second order mean of the service time should be computed. In 
the slotted access, the service time is a discrete random variable 
and the probability of transmission after k time slots is equal to 
x(1-x)k , where x is the probability of successful transmission. 
Mean and variance of the service time are then given by: 
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Thus, using (1) and (2) the link delay can be found as 
follows:  
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IV. OPTIMAL MAC WITH DELAY CONSTRAINT  

Our goal is to optimize MAC parameters in order to achieve 
minimum energy consumption and maximum utility in the 

network. Solving such a bi-criterion problem is equivalent to 
finding Pareto optimal points [15]. Pareto optimal points have 
the characteristics that no other point that is better in both 
energy and utility exists. Also, an additional delay limit for the 
links of the network should be considered in this bi-criterion 
problem. In problems where goal and constraint functions are 
convex, it is common to use scalarization in order to find the 
Pareto optimal points. However, in this case delay constraint in 
its original form is non-convex and the first step in the 
proposed algorithm converts it to a convex function. 
Subsequently, scalarization can be used in order to form a 
convex problem and achieve Pareto optimal points. 

A. Convex Formulation  
The utility function, U, is defined as the summation of link 

utilities. In order to achieve proportional fairness between links 
we use the same approach as [8] and [9], and define utility as a 
logarithmic function of the link rates: 
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Therefore, the utility which is the first goal function, is a 
concave function. Another goal function that should be 
formulated is the energy consumed in the network. The 
required energy to transmit a packet by node i is equal to ei, so 
average energy consumption by node i in one timeslot is given 
by Ei=ei×Pi . In this paper we assume equal transmission power 
for the nodes and thus, total energy consumption of the 
network is given by the following linear function: 
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The network parameters targeted to the optimization 
problem are transmission probabilities and rates. The energy 
and the negative of the utility are goal functions that should be 
minimized and were shown to be convex functions of 
transmission rate and probabilities. The next step is to show 
that the constraints are also convex functions of these 
parameters. Link delay constraint is found in section III and 
can be reformulated as follows:  
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where xij is equal to the throughput of packets on link (i,j). 
Using the collision model, successful reception probability 
depends only on transmission probability of j’s neighbors. 
Therefore, a packet is received successfully if and only if 
neither j nor any of the neighbors of j except i have sent a 
packet at the same time. Thus, throughput of a link is given by 
the multiplication of successful reception probability and link 
capacity: 
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Equation (7) shows that xij has a product form and is non-
convex, so, the delay constraint (6) is non-convex. In order to 
obtain a convex delay constraint as a function of pij., we first 
use a logarithmic function, which is monotonically increasing 
and preserves inequality, on both sides of (6): 
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It is easy to show that the above constraint is a concave 
function of transmission rates rij. Therefore, by using a change 
of variables of the form  zij=log(rij), the delay constraint can be 
converted into a convex function of zij. This also changes utility 
to a linear function: 
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We can now use scalarization for the convex goal functions 
and constraints in order to formulate a convex problem and 
find Pareto optimal points: 
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There are many well-known algorithms for solving such 
convex problems. We use Sequential Quadratic Programming 
(SQP)[16] to solve (10). In section VI, optimal tradeoff curves 
for energy and utility with different delay constraints are 
obtained using SQP. 

B. Feasibility of the problem   
The convex formulation ensures that the problem has a 

unique solution in its feasible region. One remaining problem 
is the issue of feasibility of the problem. This depends on the 
link delay constraint (Dc). It is apparent that using delay 
constraints smaller than the average service time of any link 
may turn the problem into an infeasible problem. So, we should 
find the minimum delay constraint (MinDc), that ensures 
feasibility of the problem, and only adopt higher delay 
constraints for the network. The delay constraint formula (6) 
shows that the maximum link delay occurs for the link with 
minimum throughput. As a result, if the minimum throughput 
is maximized over all links, it is possible to obtain the point 
that can tolerate the MinDc. This is equivalent to the following 
maxmin optimization problem:  
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This problem can also be formulated as the convex 
optimization form of (12). The achieved minimum delay 
constraint depends only on the network structure. In section V 
(12) is used to calculate MinDc for different network structures 
and sizes. Henceforth, we assume that structure of the network 
is approximately known and Dc in (10) is set so that it is 
feasible. 

max

log( )
0 , 1 ( , )

p

ij

i ij

z

z x
P p i j L

≤

≤ ≤ ∀ ∈

 (12) 

C. Distributed MAC Optimization   
In general, algorithms such as SQP are applied in a 

centralized manner. In practice we should use distributed 
algorithms in the network so that nodes can decide and select 
their optimal variables through minimum interaction with other 
nodes. Since, the problem is convex and feasible, the duality 
gap is zero and we can use the dual problem in order to make 
separate problems over the nodes. This dual decomposition 
approach will give update formulas for link probabilities and 
rates. 

First, we write the Lagrangian of (10) as follows: 
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where µij is the dual variable for delay constraint of the link 
(i,j). Using the derivative of the Lagrangian we can find the 
rate update formula and the corresponding equation for the link 
probabilities: 
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Using (15) and computing the summation over j, will give 
us the following quadratic equation for the node probabilities: 
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New link probabilities can be found using updated node 
probability and dual variables: 
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 where proj[·] function projects transmission probabilities 
in the feasible region. 



 
Also, the following formula can be used to update dual 

variables: 
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Convergence of this dual decomposition algorithm is 
guaranteed for small values of αn or when αn goes to zero for 
large n [15]. In the numerical analysis, we have used a constant 
small step size since such choice does not require synchronous 
update of the step size in the whole network and also reduces 
the complexity.  

V. NUMERICAL ANALYSIS 

Three types of networks are considered in our numerical 
analysis. First, the sample network of Fig. 1 which has 10 
nodes and 12 links is considered. Linear and star networks are 
also used in order to investigate the problem for different 
network sizes (Fig. 2 and Fig. 3). For the linear network we 
assume that nodes are only neighbors of the nodes that they 
have a common link with. In the star network we assume that 
all nodes are neighbor of node 1 and their adjacent nodes so in 
Fig. 3 node 2 is neighbor of 1, 3 and n. Also, in the numerical 
analysis we assume cij =1. 

A. Centralized Solution  
Minimum delay constraint (MinDc) of the links is a 

parameter that should be properly set to guarantee the 
feasibility of the problem. It was shown in section IV.B that 
this constraint can be found by solving (12). For the sample 
network of Fig. 1, the MinDc that can be used is equal to 10.47. 

 
For linear and star networks the MinDc may vary with the 

network size. As shown in Fig. 4, for linear networks this 
minimum delay changes very slowly with the network size. 
However, for star networks it linearly increases as the number 
of nodes increases.  

The cost function of problem (10) is a linear combination of 
energy and utility. The parameters λ1 and λ2 can be changed in 
order to control the tradeoff between energy minimization and 
utility maximization. Although it is possible to use the MinDc 
given in problem (10), using MinDc results in only one feasible 
point. We use delay constraints of about 4× MinDc and more in 
order to obtain a large enough feasible region. This allows λ1 
and λ2 to better control the tradeoff between energy and utility. 

Fig. 5 shows the trade off between energy and utility for 
three different delay constraints in the case of the sample 
network. As the delay constraint decreases, the optimal points 
have less energy and more utility. Our numerical analysis 
shows that increasing delay from 40 to 100 is more effective 
than increasing it from 100 to 1000. Also, three regions from 
left to right can be distinguished on each curve. At large values 
of λ1, the energy is near its minimum value and changes very 
slowly, but the utility decreases at a high rate. In the next 
region, the tradeoff between energy and utility is more evident. 
The last region is where utility slowly reaches its maximum 
value at the cost of doubling energy consumption from 1.5 to 3. 
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Figure 3. Star Network  

 
Figure 2. Linear Network with n nodes 

 
Figure 1.  Sample network 



 

B. Distributed Algorithm  
A simple distributed algorithm was described in section 

IV.C. We have used this algorithm for the case of (λ1 ,λ2) = (5, 
0.1) and a delay constraint equal to 100. The algorithm starts 
from initial transmission probability of 0.1 for all links. Results 
of the distributed algorithm are then compared with the 
optimum point in Fig. 6 where the percentage of error in  
network cost function, transmission probability of link (1,2), 
and link data rate is shown. In these curves, the error 
percentage of the x is defined as ( ) opt optx itr x x− . If we 
use error of less than 1% as a measure of convergence, it can 
be verified that the distributed algorithm converges in about 12 
iterations for the sample network.  

One interesting question to address is how the convergence 
of this algorithm scales with the network size. In order to 
investigate such effect, a linear network in which the minimum 
delay does not scale with the network size has been considered. 
The convergence rate is then compared for different network 
sizes in which Dc=100 and (λ1 ,λ2)=(5,0.1). Our numerical 
analysis shows that for all linear network sizes between 4 and 
32, the number of iterations required for convergence is 
roughly 15. In order to explain this we note that in gradient 
direction methods computations scale with the dimension of 
the problem. However, when distributed computation is used, 
the number of computers also scales with the network size. 
Consequently, the number of iterations computed by all nodes 
in finding the optimum point does not scale with the network 
size. 

VI. CONCLUSION AND FUTURE WORKS 

In this paper, the delay constraint was added to the previous 
work on energy-utility optimization in random access 
networks. We have modeled links as M/G/1 queues and used 
this model in order to calculate average delay of the random 
access protocol. Non-convexity of the delay constraint was the 
main obstacle for the centralized or distributed optimization 
algorithms. After proper transformations, the problem is 
transformed into the convex form. Subsequently, the bi-
criterion problem of energy-utility maximization with delay 
constraint is formulated as a standard convex optimization 
problem and dual decomposition is used to achieve a 
distributed solution. This convex problem is not only useful for 

network design but can also be used to find optimum 
achievable energy and utility values at different delay 
constraints. The minimum delay constraint that ensures 
feasibility of the problem is also considered in the paper. It is 
shown that a maxmin problem should be solved in order to find 
MinDc. A convex equivalent is also given for this maxmin 
problem.  

Our numerical analysis shows the trade off between energy, 
utility and delay in the random access network. We indicated 
that there are some regions that there is gain for energy or 
utility only at the cost of loss for the other one. Also increasing 
the delay constraint near MinDc is more effective than 
increasing it at large delay values. The convergence rate was 
another parameter considered in the numerical results. The 
relationship of the network size and convergence rate was also 
addressed for linear networks. 

The next step in continuation of the current work is to 
consider delay in the cross-layer problem of MAC-Transport 
optimization where we should consider end-to-end delays and 
rates. In this case, the assumption of Poisson arrivals at the 
nodes should be revised. Our initial work shows that this cross-
layer problem is non-convex and non-separable.  
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Figure 6. Convergence of the distributed algorithm for the sample 

network. 


