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Abstract— We consider the downlink of multiuser system
from a transmitter equipped with multiple antennas to multiple
non-cooperative single-antenna mobile receivers. Particle Swarm
Optimisation (PSO) algorithm is invoked to solve the constrained
nonlinear optimisation problem for the Minimum Bit Error Rate
(MBER) Multiuser Transmission (MUT). The proposed PSO
aided MBER-MUT scheme provides much better performance
over the conventional minimum mean-square-error MUT scheme,
and it achieves a much lower complexity compared to the state-of-
the-art sequential quadratic programming based MBER MUT.
Simulation results also show that the proposed MBER MUT
scheme is capable of supporting more users than the number of
transmit antennas available.

I. INTRODUCTION

For the downlink of a Space-Division Multiple-Access
(SDMA) system with decentralised non-cooperative mobile
devices at the receive end, the mobile users are unable to do
cooperative Multiuser Detection (MUD). In order to achieve
better performance, the signals should be pre-processed at
the Base Station (BS), leading to Multiuser Transmission
(MUT). MUT techniques provide the possibility to implement
low-complexity and high power-efficiency Mobile Terminals
(MTs) for mobile broadcast channels when channel state
information is available at the transmitter [1]. The assumption
that the downlink channel impulse response is known at the BS
is valid in Time Division Duplex (TDD) systems due to the
channel reciprocity. Transmit preprocessing is then possible
when the channel coherence time is large compared to one
transmission interval. However, for Frequency Division Du-
plex (FDD) systems, where the uplink and downlink channels
are not reciprocal, feedback from the MT receivers to the BS
transmitter is necessary.

Most of the MUT techniques are based on the Minimum
Mean-Square-Error (MMSE) criterion [2], [3]. Since the Bit
Error Rate (BER) is the ultimate system performance indicator,
interests on Minimum BER (MBER) based MUT techniques
have increased recently. A MBER-MUT scheme was proposed
in [4] for the TDD Code-Division Multiple-Access (CDMA)
downlink over frequency-selective channels, and this work
was extended to multiple transmit and receive antennas in
[5]. A chip level MBER-MUT scheme was proposed in [6].
The MBER-MUT techniques mentioned so far are designed
exactly for the given transmit symbol vector and, therefore,
the coefficients of the precoder have to be calculated for
every transmit symbol vector. A true MBER-MUT design
was proposed and investigated for Binary Phase Shift Keying

(BPSK) modulation [7] and Quadrature Phase Shift Keying
(QPSK) modulation [8], where the coefficients of the precoder
only need to be re-calculated when the channel coefficients are
changed. The MBER-MUT design is a constrained nonlinear
optimisation [7], [8], and the Sequential Quadratic Program-
ming (SQP) algorithm [9] is typically used to obtain the
precoder’s coefficients for the MBER-MUT [7], [8], [10], and
the computational complexity of the SQP based MBER-MUT
solution may be too high to be implemented in a real-time
system [10].

In this contribution, we invoke the Particle Swarm Optimi-
sation (PSO) algorithm [11] to find the precoder’s coefficients
in order to reduce the computational complexity of the MBER-
MUT. PSO is a population based stochastic optimisation tech-
nique [12] inspired by social behaviour of bird flocking or fish
schooling. The algorithm starts with random initialisation of a
population of individuals, called particles, within the problem
search space. It finds the global best solution by simply
adjusting the trajectory of each individual toward its own best
location and toward the best particle of the entire swarm at
each time. The PSO method is becoming very popular due to
its simplicity in implementation, ability to quickly converge
to a reasonably good solution and its robustness against local
minima. It has been applied to wide-ranging optimisation
problems successfully. In particular, many researchers have
applied PSO techniques to Multiuser Detection (MUD) [13]-
[17], and the experimental results obtained have shown that the
PSO aided MUD achieves better performance with lower com-
putational complexity, compared with the Genetic Algorithm
(GA) assisted MUD [16]. We will show that the proposed
PSO approach achieves the optimal MBER MUT solution at
a much lower complexity, compared to the existing state-of-
the-art SQP based MBER MUT method.

The rest of this contribution is structured as follows. In
Section II, the signal model of the downlink SDMA system
is introduced. The MBER-MUT strategy is summarised in
Section III, while Section IV outlines our proposed PSO
assisted MBER-MUT algorithm. Our simulation study is given
in Section V, and we conclude the paper in Section VI.

II. SYSTEM MODEL

The downlink of a SDMA system with decentralised non-
cooperative mobile devices at the receive end is considered
here. The BS is equipped with N transmit antennas and
communicates over flat fading channels with K MTs, each



Fig. 1.  Schematic diagram of the downlink of a SDMA system using
preprocessing at the BS. The system employs N transmit antennas to
communicate with K decentralised non-cooperative mobile devices.

employing only one receive antenna. Frequency selective
channels can be made narrowband using for example the Or-
thogonal Frequency Division Multiplexing (OFDM) technique
[18]. This system model is illustrated in Fig. 1. The vector
of information symbols for transmission is given by x =
[£1 5 -+ 2k]T, where x), denotes the transmitted symbol for
the kth MT and the symbol energy is given by E[|z|°] = 02,
for 1 < k < K, with E[e] denoting the expectation operator.
The N x K-dimensional precoder matrix P is defined by

P=[p, p, Pkl ¢))

where p;, 1 < k < K is the precoder’s coefficient vector for
the kth user’s data stream. Given a fixed total transmit power
Er at the BS, a scaling factor should be used to fullfill this
transmit power constraint, which is defined as

a = /Er/E[|[Px]]?]. 2

At the receive end, the inverse of the scaling factor, a L

is multiplied with the received signal to ensure unit gain
transmission. The channel matrix H is given by

H=|h hy-- hg] 3)

where hy, = [h1 ) hog---hni]T. 1 < k < K, is the kth
user’s spatial signature. The channel taps h; j for 1 <k < K
and 1 < ¢ < N are independent with each other and obey
the complex-valued Gaussian distributions associated with
E[|hlk|2] = 1. The additive Gaussian white noise vector n
is defined by n = [n; ny---ng]?, where ng, 1 <k < K is
a complex-valued Gaussian random process with zero mean
and a variance of 02 = 1/2SNR per real dimension, and SNR
stands for the signal-to-noise ratio of the downlink. Thus, the
baseband model of the system can be described as

y = H'Px 4+ o~ !n, (@)

where y = [y1 y2 - yx]? denotes the received signal vector,
and vy, 1 < k < K, is a sufficient statistics for the kth MT
to detect the transmitted data symbol xy.

III. MBER MULTIUSER TRANSMISSION

Two MBER-MUT strategies exist. The first design can be
referred to as the symbol-specific MBER MUT [10], and the
other one the true MBER MUT [7], [8]. These two methods
are outlined in the following.

A. Symbol-Specific MBER-MUT

This approach was developed based on the fact that the
information symbols to be transmitted are known exactly at the
transmitter and the precoding matrix can be chosen specifically
for the given symbol vector so that the BER is minimised.
Given the symbol vector x for transmission, the average BER
of the in-phase component of y at the receiver is

1~ (sen(Rlzx]) R0 Px]
Pe,,x—K];Q( > 5)

On

where ()(e) is the standard Gaussian error function and H[e]
denotes the real part. Thus, the BER for BPSK signalling is
given by

Pex = Pe, x. (6)

Similarly, the average BER of the quadrature-phase component
of y given X is

K IS x
Popx = %ZQ (sgn(\s[xk.])\s[thx]> 7 ™

b1 On

where [e] denotes the imaginary part. Thus, the BER for
QPSK signalling is
1
Pe,X: §(P€I,X+PEQ7X)' (8)

Therefore, the solution of the symbol-specific MBER-MUT
is defined as

PTYxMBERx =
st. E[|Px|?] = Er.

arg m}'}n P, x )

The problem associated with this approach is that for every
transmitted symbol vector X, the precoder matrix P must be
calculated by solving the constrained optimisation problem (9).

B. True MBER-MUT

To avoid the computational complexity associated with the
previous symbol-specific MBER MUT scheme, we should
determine the precoder matrix that remains optimal for all the
legitimate transmission symbol vectors. The average BER of
the in-phase component of y at the receiver can be shown to
be [19]

METY K (a) Tpy(q)
1 sen(Ra()) R Px)
- i 2 ZQ( b

(10)
Here M~ is the number of equiprobable legitimate transmit
symbol vectors x(?), given xj, = +1 + j, for the M-ary PSK
signalling, where 1 < ¢ < M%~! and j = /—1. Thus, the
BER for BPSK signalling is

P. =P, an



TABLE I
COMPUTATIONAL COMPLEXITY PER ITERATION OF TWO MBER MUT DESIGNS FOR QPSK SIGNALLING, WHERE N IS THE NUMBER OF TRANSMIT

ANTENNAS, K THE NUMBER OF MOBILE USERS, M = 4 IS THE SIZE OF SYMBOL CONSTELLATION AND S IS THE PARTICLE SIZE.

Algorithm | Flops
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with ME-1 = 2K-1 Gimilarly, the average BER of the
quadrature-phase component of y is give by
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(12)
and the BER for QPSK signalling is defined by
1
P = §(Pe, + Pey, ), (13)

with ME-1 = 4K-1
Hence, the solution of the true MBER MUT is defined as

PTXMBER = arg H%)in Pe (14)
st. E[|Px|% =Er.

The optimisation problem (14) is a constrained nonlinear op-
timisation one, and is typically solved by an iterative gradient
based optimisation algorithm known as the SQP [7], [8], [10].
The computational complexity per iteration of the SQP based
MBER MUT scheme is listed in Table I for QPSK modulation.
Detailed derivation of this complexity can be found in [8], and
we assume that the complexity of a real-valued multiplication
is equal to a real-valued addition. The total computational
complexity equals the number of iterations that the algorithm
required to arrive at a global optimal solution multiplied by
this complexity per iteration.

IV. PSO ASSISTED MBER MUT

We invoke the PSO algorithm to solve the MBER-MUT
design problem (14). In the original PSO algorithm [12],
a group of particles that represent potential solutions are
initialised over the whole search space randomly. Each particle
has a fitness value I’ associated with it, based on the related
cost function of the optimisation problem, and its F' value
is evaluated at each iteration. Each particle knows its best
position, pbest, which provides the cognitive information,
and the best position so far among the entire group, gbest,
which provides the social information. The pbests and gbest
are updated at each iteration. Each particle also has its own
velocity to direct its flying, which relies on its previous
speed as well as its cognitive and social information. In each
iteration, the velocity and the position of the particle is updated
based on the following equations

vt = wx vl 4 rand() * ¢ * (pbest. — s!)

+rand() * ¢z * (gbest' —s!), (15)

%

sttt = sl 4 vitt, (16)

where [ is iteration index, 1 < ¢ < S and S is the particle
size,

vi the velocity of the ith particle at /th iteration. The
elements of v! are in the range [~ Vinaz, Vinax)

w inertia weight

Cm, the acceleration coefficients, m = 1,2

rand() uniform random number between 0 and 1

st the position of the ith particle at /th iteration. The

elements of st are in the range [—Syaz, Smaz]
pbesti the best position that the ith particle has visited
at Ith iteration
gbestl the best position that all the particles have visited
at /th iteration

Many enhancements and modifications have been made to
this original PSO. For a conventional PSO, the acceleration
coefficients are kept constant for all iterations. However, it
was reported in [20] that using Time Varying Acceleration
Coefficient (TVAC) can enhance the performance of PSO. The
reason is that at the initial stages, a large cognitive component
and a small social component help particles to wander around
the search space and to avoid local minima. In the later stages,
a small cognitive component and a large social component help
particles to converge quickly to the global minima. We adopt
the TVAC mechanism as suggested in [20], in which ¢; for
the cognitive component is reduced from 2.5 to 0.5 and the
co for the social component varies from 0.5 to 2.5 during the
iterative procedure

a = (0.5-25)
Cy = (25—05)

l
Max Iteration +2.5,
+ 0.5,

l (17)
Max Iteration
where Max Iteration denotes the maximum number of itera-
tions. The second modification suggested in [20] is to remove
the influence of the previous velocity by setting the inertia
weight w = 0. Then, when the velocity in equation (15)
approaches zero, it is reinitialised to proportional to V,,,4, With
a factor . This modification is found to be beneficial in our
problem although it was reported to be only helpful in certain
cases in [20]. The third modification is in the way of dealing
with the particle s; that exceeds the range [—Smaz, Smaz)-
In our approach, the particle is moved inside the search space
randomly, instead of forcing it to stay at the border. A similar
procedure can be found in [21].

Since the N x K precoder matrix P is complex-valued, the
optimisation problem (14) is a 2 x N x K-dimensional one and



the length or dimension of each particle s; is 2 x N x K. The
search space is set to [—1, 1]2XV*K with S,,,,, = 1. Elements
of each initial particle position s?, s?|, for 1 < ¢ <2x N x K,
are uniformly randomly chosen within [—1, 1], where s?|,
denotes the gth element of s?. A limit of V,,,,, = 1 is used in
our algorithm for velocity. It is also found by experiments that
v = 0.1 provides us excellent performance and convergence
speed. We define the following penalty function to take into
account the power constraint

2
) = { BIPx — Br, BIPal?l —Ep 50, 09
and introduce the cost function
F =P, +)\G(P) (19)
to convert (14) into an unconstrained optimisation
PrxMBER = argmin{F. + AG(P)}, (20

where A is the penalty factor and its value should be chosen
appropriately to ensure fast convergence. The pseudocode of
the PSO algorithm we adopted is summarised as follows.

Initialise the positions of the particles, {s?}5_,, set all the
{F(pbest})}7_, and F(gbest’) to a large positive number;
For (I = 0; [ < Max Iteration; [++)
Evaluate {F'}?_, for all the particles;
For (i =1; i < S; i++)
If (F! < F(pbest!))
F(pbest!) = F!;
pbesté = sé;
End if;
End for;
i* = arg min; <;<g F(pbest!);
If (F(pbest’.) < F(gbest'))
F(gbest') = F(pbest..);
gbestl = pbesté*;
End if;
For (i =1; 1 < S} i++)
vt = rand()  ¢; * (pbest} — st)
+rand() * ¢z * (gbest! — st);
If (vitt, ==0)
If (rand() < 0.5)
vﬁ+1\q =rand() * v * Vipae;

Else
v’li+1‘q = 7’)"(17”Ld() * 7y ok Vmam;
End if;
End if;
If v\, > Vinas)
Vﬁ—H‘q = Vinazs
Else if (v§+1|q < —Vimaz)
Vi'+1‘q = —Vinass
End if;

sttt = sl 4 vt
If (s;"' (g > Spmaa)

sit, = rand() * Spaz;
Else if (si™ |, < —Simaz)
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Fig. 2. BER versus SNR performance of the transmit MMSE and transmit
MBER schemes, communicating over flat Rayleigh fading channels using 4
transmit antennas to support 4 QPSK users.

s, = —rand() * Smaz;
End if
End for;
End for;

The computational complexity per iteration of this PSO
based MBER MUT scheme is also listed in Table 1.
V. SIMULATION RESULTS

A multiuser downlink broadcast system employing 4 trans-
mit antennas at the BS was considered. Full channel state
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Fig. 3. Complexity and convergence performance of the SQP and PSO
based MBER-MUT schemes for the system employing 4 transmit antennas
to support 4 QPSK users over flat Rayleigh fading channels. Eb/No=10 dB,
and 2 x 10% symbols are used to test the run time.



information was assumed at the BS. Transmission was over
flat Rayleigh fading channel. First the system was used to
support 4 QPSK users. The particle size was chosen to be
S = 20 for the PSO algorithm. Fig. 2 compares the uncoded
BER performance of the transmit MMSE scheme with that of
the transmit MBER scheme using the PSO algorithm. It can
be seen from Fig. 2 that the PSO aided MBER-MUT achieved
a SNR gain of 4 dB over the MMSE-MUT at the target BER
of 10~*. Complexity and convergence speed of the PSO aided
MBER-MUT were investigated, using the SQP based MBER-
MUT as the benchmark. Given SNR= Eb/No = 10 dB and
under the identical computational platform, Fig. 3 compares
the convergence performance and computational complexity
of the SQP and PSO based MBER MUT schemes. It is clear
that the SQP converged to the MBER-MUT solution after 100
iterations, which took 86532.3 seconds at a cost of 56807100
flops, while the PSO arrived at the MBER-MUT solution
with 20 iterations, which took 12678.6 seconds with a cost of
8756960 flops. The PSO algorithm is approximately 7 times
faster than the SQP algorithm for this case.

The system was next used to support K > 4 BPSK
users, and Fig. 4 shows the BER performance of the MMSE-
MUT and the PSO aided MBER-MUT in this rank deficient
scenarios. The MMSE-MUT is unable to differentiate the
users, when the number of downlink transmit antennas is less
than the number of users at the receive end and exhibits high
residual BER floor as can be seen in Fig. 4. By contrast, the
MBER-MUT is capable of supportting more downlink users
than the number of transmit antennas.

VI. CONCLUSIONS

We have proposed a PSO assisted MBER-MUT algorithm,
which offers a much lower computational complexity than
the existing SQP based MBER-MUT algorithm. Our future
research will investigate the robustness of the PSO based
MBER-MUT solution under the condition of channel estima-
tion error.
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