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Abstract—This paper presents a near-optimum, low-complexity, 

fixed-interval smoothing algorithm that approaches the 

performance of an optimal smoother for the price of two low-

complexity sequential estimators (two PLLs). The proposed 

Smoothing PLL (S-PLL) algorithm is easy to implement and fits 

the Cramer-Rao bounds over a wide range of signal-to-noise 

ratios. Moreover we show that, compared to the conventional 

forward loop, the proposed scheme allows to have a large gain of 

several dBs and is able to track frequency offsets. 

Keywords-Dynamical Phase Estimation; Phase-Locked Loop 

(PLL); QAM; Smoothing Algorithm. 

I.  0BINTRODUCTION 

Due to the increasing requirements of modern 

communication systems to face the physical channel (low 

signal-to-noise ratio, high data rates), phase estimation is more 

challenging than ever before. Since phase errors rapidly 

degrade the overall performance of communication systems, 

synchronization has recently become one of the most 

challenging tasks that a digital receiver has to cope with.  

Noels et al [1],[2]X derived a maximum likelihood (ML) 

algorithm for the problem of constant phase estimation, and 

then applied a first-order and a second order phase-locked loop 

(PLL) based algorithm for the coded BPSK and QPSK 

dynamical phase estimation. The corresponding performances 

are limited both by the on-line bound and by a non-zero phase 

MSE floor. On the contrary, this paper deals with the non data 

aided (NDA) estimation of a time-varying phase and proposes 

an off-line Smoothing PLL (S-PLL) algorithm. To assess the 

performance of such algorithms, Bayesian and hybrid Cramér-

Rao Bounds (BCRB and HCRB) associated to this dynamical 

phase synchronization problem have already been considered 

in some recent contributions X[3]XX-[6]X and clearly show the 

superiority of the off-line scenario [7].  

In practice, on-line estimators are often considered for 

complexity considerations. Among the famous algorithms, 

phase-locked loops are recognized low-cost devices for on-line 

estimation and have been integrated in many existing systems 

X[8]X-X[11]X. Despite a poor transient behaviour, their excellent 

asymptotic (i.e. tracking) characteristic makes them a reference 

from the performance-complexity trade-off point of view. The 
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poor transient behaviour has now been handled by several 

authors for many years (see e.g. X[12]X). The good performance 

of such PLLs can even be improved at low SNRs within the 

turbo-receiver framework (see e.g. X[1],XX[2]XX,[13]X) but this paper 

is definitely not concerned about the code-aided framework. 

X[14]X proposed a CA belief-propagation (BP) algorithm for the 

BPSK dynamical phase estimation but the computation 

complexity of the proposed BP algorithm is rather high. This 

paper is concerned with a very simple synchronizing scheme 

for any QAM modulated signal which is able to operate near 

the off-line time-varying phase bounds. To our knowledge, it 

was first proposed without any justification and without any 

performance evaluation in X[15]X-X[17]X; contrarily to X[1]XX,[2]X, it 

takes advantage of averaging two phase trajectories provided 

by two PLLs, so that this S-PLL algorithm is able to have such 

a near off-line Cramér-Rao bound performance. 

The rest of the paper is organized as follows. In section XIIX, 

we give the system model. In section XIIIX, we derive from the 

MAP estimation theory the proposed algorithm where the 

smoothing effect is achieved through two PLLs working in 

opposite time directions. Finally in section XIVX, we present the 

simulation results before giving some conclusions. 

II. 1BSYSTEM MODEL 

We consider the transmission of a complex-valued QAM 

modulated sequence  1
, ,

T

c c


c   (
Mk

c  S ) over an AWGN 

channel affected by some carrier phase offsets stacked in a 

vector  1
, ,

T

 


θ  . Assuming that the timing recovery is 

perfect without any inter-symbol interference (ISI), the 

sampled baseband signal  1
, ,

T

y y


y    is written as: 

,k
j

k k k
y c e n


     (1) 

where 
k

c , 
k

  and 
k

n  are respectively the i.i.d. - thk unknown 

transmitted constellation symbol (   1 M
k

p c  ), the residual 

phase distortion and the zero mean complex-valued circular 

Gaussian noise with known variance 2

n
 . We suppose that the 

system operates in a non-data aided (NDA) mode. Hence, the 

conditional probability based on the known phase 
k

  is: 
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where  
 

2

2

2 R e

, , e x p

k
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k k k

k k k

n

c y c e

c y
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. 

In practice, due to the rapid variant channel and the 

imperfections of the functional blocks before the phase 
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estimation, the residual phase distortion can be modeled 

efficiently by a Brownian motion. The corresponding phase 

model is:  

1
,

k k k
w  


      (3) 

where 
k

  is the unknown phase offset at time k ,   is the 

unknown constant frequency offset (linear drift), 
k

w  is a real-

valued white Gaussian noise with zero mean and variance 2

w
 . 

This model is commonly used X[18]X-X[21]X in order to describe 

the behavior of practical oscillators for which the frequency is 

randomly perturbed. Based on (3), the corresponding 

conditional probability can be expressed as: 

 
 
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1 2
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| , e x p .

22

k k

k k

ww
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


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 (4) 

III. 2BRATIONALE FOR A FORWARD / BACKWARD APPROACH 

BY MAP ESTIMATION THEORY 

In the MAP estimation approach, one classically chooses θ̂  

to maximize the posterior pdf X[22]: 

     ˆ a rg m a x | a rg m a x ln | lnp p p    
 

θ θ

θ θ y y θ θ  (5) 

Based on the model described by (2) and (4), the joint pdf of 

the observations and the parameters can be written as: 
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It is easy to obtain for any 
k

  the first derivative of 

 ln , ,p  
 

y θ : 
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for 2 1k    , 
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where
 
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the MAP estimator implies that one must set the first 

derivative 
 ln , ,

k
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
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Rewrite 
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 as below in order to get the 

physical meaning of the term: 
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One can then recognize that the factor  Im k
j

k k
y c e

  is just 

the classical hard decision phase detector output based on the 

decision 
k

c , while the factor 
 
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posteriori probability (APP)  P r | ,
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c y   in the NDA scenario. 
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 can be interpreted as the soft 

decision phase detector output. (9) can then be written as: 
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Furthermore in (11),  F

k
  and  B

k
  can be regarded as soft-

decision based first-order PLL outputs which are respectively 

updated in the increasing (Forward) and decreasing (Backward) 

time directions. The physical meaning of (9) can thus be 

summarized as following; assuming that we do not have any a 

priori information about the initial phase 
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  (i.e. 
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in the general case ( 1 k   ), the phase estimator is 

estimated both from the previous and the following samples, 

i.e. as the average of a forward and of a backward  PLL. Since 
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From (8) the “Forward / Backward” (F/B) estimator can thus 

be written as: 
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Note that this structure is similar to that of the Kalman 

smoother valid for linear Gaussian problems. The name 

“Forward / Backward” stems from the fact that the off-line 

phase estimation is just the average of a classical (Forward) 

phase-locked loop and of a Backward phase-locked loop 

working in the reverse time direction and that can be initialized 

at the end of the forward PLL. This process can then be iterated, 

i.e. the estimation error at the end of the previous backward 

loop can be further used as the estimation error at the beginning 

of the next forward recursion, and several forward and 

backward recursions can sequentially be proceeded. We call 

this process in the sequel as “multiple forward / backward”. 

Restricted by the paper size, we shall give further analysis of 

the proposed algorithm at the oral presentation. 

IV. 3BSIMULATION AND DISCUSSION 

In a practical system, a frame header can be used and one 

could take advantage of it to get rid of the phase ambiguities. In 

our simulations, we thus assume that the phase ambiguity 

problem is solved. We evaluate the MSEs in the centre position 

of the block after 3 F/B iterations over 5
1 0  Monte-Carlo trials. 

The block length   for BPSK and QPSK is 60, and is 800 for 

the 16QAM constellation. We use the following notations in 

the figures of the present paragraph. “Forward (Sim)” means 

that the simulation MSE is measured after one (on-line) 

forward estimation without any backward estimation. The 

“Forward / Backward (Sim)” means that the MSE of the F/B 

estimation is measured after three (off-line) F/B iterations. 

A. 5BPerformance with no linear drift 

Since all the parameters are random, we compare the 

estimation MSE of the “Forward (Sim)” (resp. “Forward / 

Backward” (Sim)) with the on-line BCRB (resp. the off-line 

BCRB) X[3],[5],[6], on Fig. 1 to Fig. 3 for different 

constellations. 
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Fig. 1 BPSK MSEs and BCRBs versus SNR 

At high SNR, we notice that the forward MSE and the F/B 

MSE curves logically merge. In this case the observations are 

reliable enough to only take into account the present 

observation 
k

y in order to estimate
k

 ; this is why the off-line 

BCRBs (corresponding to the F/B MSE) converge to the on-

line BCRBs (corresponding to the forward MSE), and this is 

also why the NDA bounds converge to the DA bounds. As the 

a priori distribution of θ  then has very little influence, the 

Bayesian problem tends to a deterministic phase estimation 

problem where we estimate independent observations. 

In more realistic mid-range SNRs, the F/B performance is 

definitely superior to the forward only recursion and the 

maximum difference is 3dB. In this range of SNRs, the a 

priori knowledge on θ  plays a very important role in the 

phase estimation and this is why there is a larger difference 



between the F/B and forward recursions compared to higher 

and lower SNR range. 

Finally, at low SNRs, because of the decision error, the 

MSE increases rapidly and the non-data-aided (NDA) BCRBs 

do not coincide anymore with the DA BCRBs. However, 

generally, the performance gain using a data-aided scenario is 

relatively low compared to the performance difference 

between the off-line and the on-line scenarios, and logically, 

when comparing with the forward recursion, there is still an 

appreciable gain in favor of the F/B recursion. 
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Fig. 2 QPSK MSEs and BCRBs versus SNR 
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Fig. 3 16QAM MSEs and BCRBs versus SNR 

B. 6BPerformance with a linear drift 

Since the parameters contain both some random parameters 

k
  and a deterministic linear drift  , we compare the MSEs to 

HCRBs of interest X[4]-[6] for different constellations on Fig. 4 

to Fig. 6. 

At high SNR, the off-line HCRB coincides with the on-line 

HCRB, and so are the corresponding MSEs. Because in this 

range of SNR, the information provided by the observation is 

dominating over the a priori knowledge on θ , the observation 

k
y  is self-sufficient to estimate 

k
  and the error on   does not 

disturb the estimation performance on
k

 . 
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Fig. 4 BPSK MSEs and HCRBs versus SNR 
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Fig. 5 QPSK MSEs and HCRBs versus SNR 

At mid-range SNRs, there is not enough information 

provided by 
k

y  to estimate the phase and one can take 

advantage of the a priori knowledge on θ  (see the difference 

between the on-line and the off-line BCRBs). The F/B 

estimation is definitely superior (up to 5 dB on Fig. 4) to the 

forward MSE not only thanks to the a priori knowledge on θ ; 

this superiority also comes from the fact that the F/B scheme 

remains unbiased contrarily to the forward 1
st
 order loop which 

suffers from the high linear drift as the corresponding MSE 

does not coincide anymore with the on-line HCRB.  

At low SNRs, there is still an advantage for the F/B 

recursion; however the F/B performance of Fig. 4 deteriorates 

rapidly, because in practice the F/B recursion is made out of 

two unidirectional loops, and these loops are not able to operate 



anymore as wanted with the considered large linear drift. This 

phenomenon is attenuated with a smaller linear drift (see Fig. 6) 

or if we had replaced our simple first order PLL components 

by other component loops such as second order PLLs. 
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Fig. 6 16QAM MSEs and HCRBs versus SNR 

C. 5BAlgorithm complexity analysis 

The classical on-line PLL has a very low gradient-like 

complexity and has been employed in real systems for several 

decades. The complexity price for the off-line improvement is 

only two times that of the on-line algorithm as we combine 

two elementary PLLs. In addition, three forward-backward 

needs to be proceeded which both involves a very reasonable 

delay and the memorization of K symbols and of 2K phase 

values. 

V. 4BCONCLUSION 

In this paper, we presented a near-optimum smoothing 

phase locked loop (S-PLL) algorithm made out of two very 

simple first order PLLs. The performance of the S-PLL 

algorithm does not suffer from the poor transient behavior even 

with a small number of observations. The proposed scheme 

provides a gain of several dBs over a forward only on-line 

algorithm and its performance is near the Cramer-Rao bounds 

of interest. Finally it is very easy to implement and should be 

very useful in practice. 
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