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Abstract—We study the transmission capacities of two coex-
isting wireless networks (a primary network vs. a secondary
network) that operate in the same geographic region and share
the same spectrum. We define transmission capacity as the
product among the density of transmissions, the transmission
rate, and the successful transmission probability (1 minusthe
outage probability). The primary (PR) network has a higher
priority to access the spectrum without particular considerations
for the secondary (SR) network, where the SR network limits
its interference to the PR network by carefully controlling
the density of its transmitters. Assuming that the nodes are
distributed according to Poisson point processes and the two
networks use different transmission ranges, we quantify the
transmission capacities for both of these two networks and discuss
their tradeoff based on asymptotic analyses. Our results show
that if the PR network permits a small increase of its outage
probability, the sum transmission capacity of the two networks
(i.e., the overall spectrum efficiency per unit area) will beboosted
significantly over that of a single network.

I. I NTRODUCTION

Initiated by the seminal work of Gupta and Kumar [1], the
studies for understanding the capacities of wireless ad hoc
networks have made great progresses. Consideringn nodes
that are randomly distributed in a unit area and grouped
independently into one-to-one source-destination (S-D) pairs,
Gupta and Kumar [1] showed that a typical time-slotted
multi-hop architecture with a common transmission range
and adjacent-neighbor communication can achieve a sum
throughput that scales asΘ

(

√

n/ logn
)

. By using percola-

tion theory, Franceschettiet al. [2] showed that theΘ(
√
n)

sum throughput scaling is achievable. In [3], Grossglauserand
Tse showed that by allowing the nodes to move independently
and uniformly, a constant throughput scalingΘ(1) per S-
D pair can be achieved. In [4], Baccelliet al. proposed
a multi-hop spatial reuse ALOHA protocol. By optimizing
the product between the number of simultaneous successful
transmissions per unit area and the average transmission range,
they showed that the transport capacity is proportional to the
square root of the node density, which achieves the upper
bound of Gupta and Kumar [1]. Weberet al in [5] derived the
upper and lower bounds on transmission capacity of spread-
spectrum wireless ad hoc networks, where the transmission
capacity is defined as the product between the maximum
density of successful transmissions and the correspondingdata
rate, under a constraint on the outage probability.

All the above results focus on the capacity of a single ad
hoc wireless network. In recent years, due to the scarcity
and poor utilization of spectrum, the regulation bodies are
beginning to consider the possibility of permitting secondary
(SR) networks to coexist with licensed primary (PR) networks,
which is the main driving force behind the cognitive radio
technology [6]. In cognitive radio networks, the PR users have
a higher priority to access the spectrum and the SR users
need to operate conservatively such that their interference to
the PR users is limited below an “acceptable level”. In this
overlaid regime, the capacity or throughput scaling laws for
both of the PR and SR networks are interesting problems.
Recently, some preliminary works along this line appeared.
In [7], Vu et al. considered the throughput scaling law for
a single-hop cognitive radio network, where a linear scaling
law is obtained for the SR network with an outage constraint
for the PR network. In [8], Jeonet al. considered a multi-
hop cognitive network on top of a PR network and assumed
that the SR nodes know the location of each PR node. With
an elegant transmission scheme, they showed that by defining
a preservation region around each PR node, both networks
can achieve the same throughput scaling law as a stand-alone
wireless network, while the SR network may suffer from a
finite outage probability. In [9], Yinet al. assumed that the SR
nodes only konw the locations of PR transmitters (TXs) and
proposed a transmission scheme to show that both networks
can achieve the same throughput scaling law as a stand-alone
wireless network, with zero outage.

In this paper, we study the coexistence of two ad hoc
networks with different transmission scales (power and/or
transmission range) based on the transmission capacity defined
in [5]. We extend the definition of transmission capacity from
a single network to two overlaid networks. Different from the
approaches in [7], [8], and [9], we resort to stochastic geome-
try tools to quantify the transmission capacities for both the PR
and SR networks without defining any preservation regions. By
considering the mutual interferences from the two networks,
we discuss the tradeoff of the transmission capacities between
them. The results show that if we permit a slight increase over
the outage probability of the PR network, the sum transmission
capacity (i.e., the overall spectrum efficiency per unit area) of
the overlaid networks will be boosted significantly over that
of a single network.

The rest of the paper is organized as follows. The network
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model and symbol notations are described in Section II. The
transmission capacity for a single network case is analyzed
in Section III. The transmission capacities for the PR and
SR networks and their tradeoff are discussed in Section IV.
The numerical results and observations are given in Section
V. Finally, Section VI summarizes our conclusions.

II. N ETWORK MODEL AND SYSTEM SETUP

Consider the scenario where a network of PR nodes and a
network of SR nodes coexist in the same geographic region,
and assume that the PR network is the legacy network, which
has a higher priority to access the spectrum. The prerequisite
condition for introducing a new SR network into the territory
of the PR network is that the outage probability increment
of the PR network is upper-limited by a target constraint△ǫ,
where△ǫ usually takes a very small value.

We assume that at a certain time instance the distribution of
PR TXs follows a homogeneous Poisson point process (PPP)
Π0 of density λ0, and the distribution of SR TXs follows
another independent homogeneous PPPΠ1 of densityλ1. Our
goal is to evaluate the outage probability of the PR network,
P0, and that of the SR network,P1, which are functions of
the TX node densitiesλ0 andλ1. The specific definitions of
outage probability will be given in Section III and Section
IV. Similar to that in [5], in order to evaluate the outage
probabilities, we condition on a typical PR (or SR) RX at the
origin, which yields the Palm distribution for PR (or SR) TXs.
Following the Slivnyak’s theory in stochastic geometry [10],
these conditional distributions also follow homogeneous PPPs
with the corresponding densities (i.e.,λ0 andλ1, respectively).
Let

{

Xi ∈ R
2, i ∈ Π0

}

and
{

Yj ∈ R
2, j ∈ Π1

}

denote the
locations of the PR TXs and the SR TXs, respectively,|Xi| and
|Yj | denote the distances from PR TXi and SR TXj to the
origin, respectively. An attempted transmission is successful
if the received signal-to-interference-plus-noise ratio(SINR)
at the reference RX is above a threshold,β; otherwise, the
transmission fails, i.e., an outage occurs. We useβ0 andβ1 to
represent the SINR thresholds for the PR network and the SR
network, respectively.

For simplicity, we limit our discussion to single-hop trans-
missions, and assume that all PR TXs use the same transmis-
sion powerρ0, and all PR transmissions are over the same
distancer0. Similarly, all SR TXs use the same transmission
power ρ1 over the same transmission distancer1. For the
wireless channel, we only consider the large-scale path-loss,
and ignore the effects of shadowing and small-scale multipath
fading. As such, the normalized channel power gaing(d) is
given as

g(d) =
A

dα
, (1)

whereA is a system-dependent constant,d is the distance
between the TX and the corresponding RX, andα > 2
denotes the path-loss exponent. In the following discussion,
we normalizeA to be unity for simplicity. The ambient noise
is assumed to be additive white Gaussian noise (AWGN) with
an average powerη. We assume that all the PR TXs and the

SR TXs use the same spectrum with bandwidth normalized to
be unity.

As in [5], we define transmission capacity as follows.
Definition 1: Transmission capacityCǫ of a randomly-

deployed wireless network is defined as the product among
the maximum densityλǫ of transmissions, the common trans-
mission data rateR, and(1−ǫ) with ǫ an asymptotically small
outage probability. Therefore, we have

Cǫ = Rλǫ(1− ǫ). (2)

As noted in [5], Cǫ also represents the unit-area spectral
efficiency of the successful transmissions.

III. A SYMPTOTIC ANALYSIS OF THE TRANSMISSION

CAPACITY: SINGLE NETWORK CASE

In this section, we derive the asymptotic result (asymptotic
over vanishingly-small outage probability values) for thetrans-
mission capacity of the PR network when the SR network is
absent. As an example, we focus on the case when the path-
loss exponentα = 4, over which we build an asymptotic
analysis framework that is useful for the future study over the
cases of generalα values.

When the SR network is absent, denote the target outage
probability of the PR network over per-link SINR asǫ0. Then
we have

P0 = Prob









ρ0r
−α
0

η +
∑

i∈Π0

ρ0|Xi|−α
≤ β0









= ǫ0. (3)

Rewrite (3) as
Prob(X ≥ T0)= ǫ0, (4)

where X =
∑

i∈Π0
ρ0|Xi|−α and T0 =

ρ0r
−α

0

β0

− η. The
moment generating function (MGF) ofX is given by [11]

ΦX(s) = exp

[

−πλ0ρ
2

α

0
s

2

αΓ

(

1− 2

α

)]

. (5)

Whenα = 4, we have

ΦX(s) = exp
[

−π
3

2λ0ρ
1

2

0
s

1

2

]

. (6)

Via the inverse Laplace transform, we obtain the probability
density function (PDF) ofX as

fX(x) =
π

2
λ0

√
ρ0x

− 3

2 exp

(

−π3

4x
λ2

0ρ0

)

, (7)

and the corresponding cumulative density function (CDF) of
X as

FX(x) = 2Q

(

π
3

2λ0

√
ρ0√

2x

)

. (8)

From (8), we have

Prob(X ≥ T0) = 1− 2Q

(

π
3

2λ0

√
ρ0√

2T0

)

. (9)



Combined (4) and (9), it is clear that the following condition
has to be satisfied:

Q

(

π
3

2 λ0

√
ρ0√

2T0

)

=
1− ǫ0

2
. (10)

When ǫ0 → 0 such thatπ
3

2 λ0

√
ρ0√

2T0

→ 0, with Taylor series
expansion, we obtain the maximum allowable value (via the
monotonicity of the Q function) ofλ0 asymptotically forα =
4 as

λǫ0
0

=
ǫ0
π

(

T0

ρ0

)
1

2

=
ǫ0
π

(

r−4

0

β0

− η

ρ0

)

1

2

. (11)

As we can see from (11) that when the outage probability
ǫ0 is very small, the density of TXs is a linear function of
ǫ0. Therefore, the transmission capacity of the PR network is
given by

Cǫ0
0

= R0λ
ǫ0
0
(1− ǫ0), (12)

whereR0 is the data rate when the transmission between the
TX and its associated RX is successful, which is set to be
same for all the links.

IV. A SYMPTOTIC ANALYSIS OF THE TRANSMISSION

CAPACITY: OVERLAID NETWORK CASE

A. Transmission Capacity of the PR Network

When the SR network is present, it introduces interference
to the PR network and the outage probability of the PR net-
work will be increased. If we set the target outage probability
increment of the PR network as△ǫ, we have

P0 = Prob









ρ0r
−α
0

η +
∑

i∈Π0

ρ0|Xi|−α +
∑

j∈Π1

ρ1|Yj |−α
≤ β0









= ǫ0 +△ǫ. (13)

With Y =
∑

j∈Π1
ρ1|Yj |−α, (13) can be rewritten as

Prob(X + Y ≥ T0)= ǫ0 +△ǫ. (14)

The MGF ofY is given by

ΦY (s) = exp

[

−πλ1ρ
2

α

1
s

2

αΓ

(

1− 2

α

)]

. (15)

DefineZ = X + Y such that the MGF ofZ is given by

ΦZ(s) = ΦX(s)ΦY (s)

= exp

[

−πs
2

αΓ

(

1− 2

α

)

(

λ0ρ
2

α

0
+ λ1ρ

2

α

1

)

]

.

For α = 4, we have

ΦZ(s) = exp
[

−π
3

2 s
1

2 (λ0

√
ρ0 + λ1

√
ρ1)
]

, (16)

and the PDF ofZ is given by

fZ(z) =
π

2
(λ0

√
ρ0 + λ1

√
ρ1) z

− 3

2

× exp

[

−π3

4z
(λ0

√
ρ0 + λ1

√
ρ1)

2

]

. (17)

Applying (17) in (14), we have

1− 2Q

(

π
3

2

(

λ0

√
ρ0 + λ1

√
ρ1
)

√
2T0

)

= ǫ0 +∆ǫ, (18)

i.e.,

Q

(

π
3

2

(

λ0

√
ρ0 + λ1

√
ρ1
)

√
2T0

)

=
1− ǫ0 −△ǫ

2
. (19)

When ǫ0 → 0 and ∆ǫ → 0, with bivariate Taylor series
expansion, we obtain

1

2
− πλ0

√
ρ0

2
√
T0

− πλ1

√
ρ1

2
√
T0

=
1− ǫ0 −△ǫ

2
. (20)

If we chooseλ0 = λǫ0
0

as in (11), the maximum allowable
value of λ1 corresponding to a target outage probability
increment∆ǫ is given by

λ∆ǫ
1 =

1

π

(

T0

ρ1

)
1

2

∆ǫ =
1

π

(

ρ0
ρ1

· r
−4

0

β0

− η

ρ1

)

1

2

∆ǫ, (21)

and the transmission capacity of the PR network is given by

Cǫ
0 = R0λ

ǫ0
0
(1− ǫ0 −∆ǫ) . (22)

As shown in (20), when the SR network is presented, the
outage probability of the PR network can be approximated by
an affine function ofλ0 andλ1 over asymptotically smallǫ0’s
and∆ǫ0’s.

B. Transmission Capacity of the SR Network

Denote the outage probability of the SR network asǫ1, the
outage probability of the SR network is given by

P1 = Prob









ρ1r
−α
1

η +
∑

i∈Π0

ρ0|Xi|−α +
∑

j∈Π1

ρ1|Yj |−α
≤ β1









= ǫ1.

(23)
Rewrite (23) as

Prob

(

Z ≥ ρ1
r−α
1

β1

− η

)

= ǫ1. (24)

DefineT1 = ρ1
r
−α

1

β1

− η, and we have

Prob(Z ≥ T1)= ǫ1. (25)

Similar to (19), we obtain

Q

(

π
3

2

(

λ0

√
ρ0 + λ1

√
ρ1
)

√
2T1

)

=
1− ǫ1

2
. (26)

Whenǫ1 → 0, with bivariate Taylor series expansion, we have

1

2
− πλ0

√
ρ0

2
√
T1

− πλ1

√
ρ1

2
√
T1

=
1− ǫ1

2
. (27)

Therefore, the outage probability of the SR network is given
by

ǫ1 =
π√
T1

(λ0

√
ρ0 + λ1

√
ρ1) , (28)



and the transmission capacity of the SR network is given by

Cǫ
1 = R1λ

ǫ
1 (1− ǫ1) , (29)

whereR1 is the data rate adopted by successful SR links.
On the other hand, if we set the target outage probability

of the PR network to beǫ0 + ∆ǫ, and set the target outage
probability of the SR network to beǫ1 simultaneously, we
could choose the value ofλǫ

1 in (29) as follows

λǫ
1 = min

(

λ∆ǫ
1 , λǫ1

1

)

, (30)

whereλǫ1
1

is given by (via (28))

λǫ1
1

=
ǫ1
π

(

r−α
1

β1

− η

ρ1

)

1

2

− λǫ0
0

√

ρ0
ρ1

. (31)

C. Sum Transmission Capacity of the Overlaid Network

When the SR network is present, based on the above anal-
yses, the sum transmission capacity of the overlaid networks
is given by

Cǫ
s = Cǫ

0 + Cǫ
1

= R0λ
ǫ0
0
(1− ǫ0 −∆ǫ) +R1λ

ǫ
1(1− ǫ1)

= R0λ
ǫ0
0

(

1− π√
T0

(λǫ0
0

√
ρ0 + λǫ

1

√
ρ1)

)

+R1λ
ǫ
1

(

1− π√
T1

(λǫ0
0

√
ρ0 + λǫ

1

√
ρ1)

)

= (R0λ
ǫ0
0

+R1λ
ǫ
1)− π (λǫ0

0

√
ρ0 + λǫ

1

√
ρ1)

×
(

R0√
T0

λǫ0
0
+

R1√
T1

λǫ
1

)

. (32)

Compared to the single network case, the gain of the trans-
mission capacity (i.e., the overall spectrum efficiency) ofthe
overlaid networks over that of a single network is given by

Kg =
Cǫ

s

Cǫ0
0

≈ 1 +
Cǫ

1

Cǫ
0

. (33)

D. Tradeoff of the Transmission Capacities

Here we consider two setups to study the tradeoff between
the transmission capacities of the PR network and the SR
network. The first setup is that we change the value of∆ǫ
only, and fix other parameters (ρ0, ρ1, r0, r1, β0, β1, η, and
ǫ0). The second setup is that we change the value ofρ1, and
let other parameters (ρ0, r0, r1, β0, β1, η, ǫ0, andλ1) be fixed.

Let us consider the first setup. Whenǫ0 is fixed,λ0 is also
fixed, see (11). From (22), we can see thatCǫ

0 is a linear
function of∆ǫ. As such, when∆ǫ is increased,Cǫ

0 is reduced.
Rewrite (29) as

Cǫ
1 =

R1

π

√

T0

ρ1
∆ǫ

(

1−
√

T0

T1

ǫ0 −
√

T0

T1

∆ǫ

)

. (34)

From (34), we can easily verify that when
√

T1/T0 > ǫ0, Cǫ
1

is a convex function of∆ǫ, and when∆ǫ < 1

2
(
√

T1/T0− ǫ0),
Cǫ

1 increases monotonically over∆ǫ.

Table I
NETWORK PARAMETERS.

Symbol Description Value
ρ0 Transmission power of PR TXs 20 W
ρ1 Transmission power of SR TXs 0.1 W
r0 Transmission range of PR TXs 20 m
r1 Transmission range of SR TXs 5 m
η Average power of ambient noise 10−6 W
β0 Target SINR for PR network 10 dB
β1 Target SINR for SR network 10 dB

Now, we consider the second setup. Rewrite (22) and (29)
as follows,

Cǫ
0 = R0λ

ǫ0
0
(1 − ǫ0 −

π√
T0

λǫ
1

√
ρ1) (35)

and

Cǫ
1 = R1λ

ǫ
1



1− πλǫ0
0

√

ρ1

ρ0

r
−α

1

β1

− η
ρ0

+
πλǫ

1
√

r
−α

1

β1

− η
ρ1



 . (36)

We can easily show that whenρ1 increases,Cǫ
0 decreases and

Cǫ
1 increases.

V. NUMERICAL RESULTS AND INTERPRETATIONS

In this section, we present some numerical results based
on our previous analyses and give some interpretations. We
set the values of the network parameters as in Table I unless
otherwise specified.

A. Single Network Case

In Fig. 1, we show the normalized transmission capacity
Cǫ0

0
/R0 as a function of the outage probabilityǫ0, as well as

the density of PR TXsλ0 vs. the outage probabilityǫ0. Note
that these are exact results (not asymptotic ones) by using (2)
and (10). We could see from this figure that whenǫ0 is about
0.55,Cǫ0

0
is maximized, and whenǫ0 < 0.4, λ0 is nearly a

linear function ofǫ0, which verifies the asymptotic result in
(11).
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Figure 1. Normalized transmission capacity/density of PR TXs vs. outage
probability for the PR network when the SR network is absent.



In Fig. 2, we show the normalized asymptotic transmission
capacityCǫ0

0
/R0 as a function of the outage probabilityǫ0,

and the upper and lower bounds of the transmission capacity
based on the results derived in [5], which verifies the tightness
of the upper bound.
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Figure 2. Normalized transmission capacity vs. outage probability for the
PR network when SR network is absent.

B. Overlaid Network Case

The normalized transmission capacity of the PR network
Cǫ

0/R0 vs. the increment of the outage probability∆ǫ of
the PR network is shown in Fig. 3. As expected,Cǫ

0/R0 is
inversely proportional to∆ǫ. On the other hand, sinceCǫ

0 is
a convex function ofǫ0; and whenǫ0 < 1−∆ǫ

2
, Cǫ

0 increases
over ǫ0 monotonically for a fixed∆ǫ.
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Figure 3. Normalized transmission capacity of the PR network vs. increment
of the outage probability of the PR network.

In Fig. 4, we show the normalized transmission capacity
of the SR networkCǫ

1/R1 as a function of∆ǫ, see (29). As
shown in the figure, we see thatCǫ

1 increases monotonically
over ∆ǫ, since the larger∆ǫ is, the larger the values ofλǫ

1

andǫ1 are, but the effect ofλǫ
1 on Cǫ

1 is dominant whenǫ1 is
small.
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Figure 4. Normalized transmission capacity of the SR network vs. increment
of the outage probability of the PR network.

Assuming thatR0 = R1, the capacity gainKg of the
overlaid networks (i.e., the sum transmission capacity) over
that of a single network is shown in Fig. 5, see (33). We see
thatKg increases over∆ǫ since the extra capacity contribution
from the secondary network increases over∆ǫ.
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Figure 5. Gain of the transmission capacity of the overlaid network over
that of the PR network.

In Fig. 6, we show the tradeoff between the normalized
transmission capacity of the PR networkCǫ

0/R0 and that of
the SR networkCǫ

1/R1 when∆ǫ changes as an intermediate
variable. We see thatCǫ

0 decreases overCǫ
1, which verifies the

result in Section IV.

VI. CONCLUSIONS

In this paper, we extended the concept of transmission
capacity defined for the single network case to overlaid
network case. By considering the mutual interference effect
across two overlaid networks, i.e., the PR network vs. the
SR network, we derived the transmission capacities for these
two networks and studied their tradeoffs. Different from the
previous approach for the single network case, we resorted to
obtain the asymptotic solutions for these capacities. The results
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Figure 6. Tradeoff of the transmission capacities of the PR and the SR
networks when the value of∆ǫ is changed.

showed that by letting a SR network coexist with a legacy
PR network, the spectrum efficiency per unit area could be
increased significantly. Although we focused on a simple path-
loss channel model with single-hop transmissions, the results
are meaningful and motivating us to study more complex cases
in the future work.
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