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Abstract—In this work, we develop mathematical and algorith- is built on multiplicative linear fractional programmingprf
mic tools for the self-optimization of mobile cellular networks. optimization problems expressible as a difference of two-co
Scalable algorithms which are based on local measurements andvex functions. However, this algorithm requires a cereli

do not require heavy coordination among the wireless devices trol and i v efficient f bl inst f I
are proposed. We focus on the optimization of transmit power control and I1s only eimcient for problem Instances or sma

and of user association. The method is applicable to both joint Scale due to the computation complexity. o
and separate optimizations. The global utility minimized is linked In this paper, we focus on the development of distributed

to potential delay faimess. The distributed algorithm adaptively  self-optimization tools for cellular networks based on I&ib
updates the system parameters and achieves global optimality sampler (see, e.g., [13, pp. 285-290]) and the methodology

by measuring SINR and interference. It is built on Gibbs’ - L
sampler and offers a unified framework that can be easily developed in [10] for IEEE 802.11 networks. The aim is to

reused for different purposes. Simulation results demonstratette  design scalable algorithms which achieve global optimaitt
effectiveness of the algorithm. only require local information exchange and operations. To

the best of our knowledge, this is the first time this techeiqu
is applied to power control and user association in reuse 1
In 4G and future cellular mobile radio systems, networgellular networks. By decisions based on local measuresnent
self-organization and self-optimization are among the ke&f interference, the algorithm drives the network into the
targets [1]. Autonomic management is desirable to relax tlptimal configuration.
heavy requirement of human efforts in conventional network The rest of the paper is organized as follows. Section Il
planning and optimization tasks [2]. For example, baséostat describes the system model and problem formulation. Sec-
(BSs) should automatically adjust their operational patens tion Il presents the proposed power control algorithm.-Sec
to achieve the best network performance and adapt to systiéom IV generalizes the result to user association and joint
dynamics such as traffic and environment changes. In peactaptimization. Section V contains numerical studies. Hynal
[3], self organization and optimization will help to impmthe Section VI gives the conclusion.
overall quality-of-service (QoS) and also reduce the sgste
capital and operational expenditure (CAPEX/OPEX).
System-wide radio resource optimization is however uyuei%

I. INTRODUCTION

Il. SYSTEM MODEL AND FORMULATION

We consider a reuse 1 cellular radio system with a set of
ase stationd3, which serve a population of users denoted

traditional schemes [4]-[6] designed for voice-centria- se™ setl{. For each user, we assume there is a pair of

vice may not be effective for overall network '[hroughpu?rthogo.nal Cha?””e's for uplink_and downlink communipaﬂ;ion
maximization or traffic delay minimization. It requires théespectlvely. Since there is no interference between thakup

solution of a multi-cell and multi-link optimization in wbi and downlink, for simplicity we only cons@der the downlink i .
different transmitters or links cooperate for the benefit '€ Present paper. However, the discussion can be geretaliz

overall improvement and where fairness issues should @Qf_hebupli.nk af[hwell. ider that h Ui
addressed [7]-[9]. 0 begin with, we consider that each user is

It is well known that power control, user association an ssociated with the closest Bf < B that is the element

channel allocation are essential issues in many wireless s €le such tthhat the ﬁ'gqalNatttentﬁatt'?g. frasto w, tgienott?l:jb
tems including mobile cellular and wireless ad hoc networ Y (b, u), is the smallest. Note that this assumption will be

[10], [11]. However, optimizing these parameters is oftef?laxed in the sequel when our scheme will be generalized to

- LS o user association optimization.
difficult. For example, the optimization of transmissionyeo . .
for system throughput maximization over multiple inteifigr Denote byP, the power used by, to transmit data destined

links is in general non-convex [7]. Therefore, it is hard twvé to u; the SINR (signal-to-interference-plus-noise ratio).as

an efficient optimization algorithm that works in a distried expressible as:
manner and also ensures global optimality. The only known g _ Py - 1(by, u) )
power control algorithm that can guarantee strict throughp N, + Z a(v,u) - Py - 1(by, u) ’

maximization in general SINR regime is reported in [12]. It vel ,v#u

quite challenging. In today’s broadband wireless networ




where N,, denotes the receiver noise@tand (v, u) repre- We will say that the orthogonality factor is symmetrical if
sents the orthogonality factor on the transmission dedtine «(v,u) = a(u,v), for all u,v € U.
v € U. Note thatd < o < 1. For all subsetd’ C U, let |V| denotes the cardinality af.

A. Cost Function We have

E=>V(V), (6)
For a balance between network throughput enhancement N
and bandwidth fair sharing among users, we use the notion of ) T )
minimal potential delay fairnesproposed in [14]. This solu- With V(.) the following potentialfunction:

tion for bandwidth (resource) sharing is intermediate leev N, .

max-min and proportional fairness. Instead of maximizimg t vy) = m it V={u},
sum of throughputs, i.e} " r,, which often leads to very low a?v7u)f5v Alby,u)  alu,v)Py - 1(by,v)
throughput for some users, it minimizes the sum of the irevers vy) = Py - 1(by, ) P, - 1(by,,v)

of throughput, i.e.> (1/r,), or equivalently the total delay ’ it Y= {u, v},
to send an information unit tall users, which penalizes very ViV) =0 if [V]|>3.

low throughputs.

In other words, a bandwidth allocation that minimizes poth€ local energyt, of useru is defined as:

tential delay is one that minimizes the following cost fuoit &, = Z{V fuev,veuy. @)
1
C=3 ol (2)  Using the definition ofi’ (), we have:
ueld v

which is the network’s aggregate transmission delay. Eu =
Under the additive white Gaussian noise (AWGN) model,
the achievable data rate in bits/s/Hzwats given by

N, a(v,u)Pyl(by,,u)
Bt T it "

=1/(SINRy)
= Klog(1l + SINRy,) , 3) Z a(u, v) Pyl (by, v) (®)
where K is a constant which depends on the width of the v Pyl(by,v) 7
frequency band. Below, we actually minimize the foIIowmgNhICh can be seen as a function Biwhere P — P, and can
cost function:
be written in the following form:
&= = , 4
uezu Z SINRy, &L(P) — % + B,P, 9)
which will be the globalenergyof the Gibbs sampler. The where
reason for this is primarily mathematical convenience (see
below). Note that if one operates in a low SINR regime such A, 2 I Z Pv (bu,u)
that the achievable data rate of a user is proportional to its bua“ v
SINR, e.g.,r, = KSINR,, then minimizing potential delag’
of (2) is equivalent to minimizing of (4). and
One can see that (2) and (4) have quite similar characteris- B A a(u, v)l(by, v)
tics. Notice thatl /(e ® — 1) increases more significantly than “ o P l(boyv)
1/r, and yields a more substantial rise in the cost function,
whenr,, is low. Notice that the first termA,P~! in (9) can be seen as

Therefore, minimizing€ rather thanC penalizes low the “selfish” part of the energy function which is small if the
throughputs more and favors a higher level of fairness amof\R of useru is large, whereas the second tetfth P is
all the users. the “altruistic” part of the energy, which is small if the pew
of interference incurred by all the other users, i®€.# u,

B. Gibbs Sampler Formulation because ofP is small compared to the power received from
Substituting (3) into (4), the global energy can be writtefheir own BSs.

as: Remark 1 In (8), when multiplying all the powers by the
c_ Z Z a(v,u) Py, - 1(by,u) same constant, all the terms are unchanged except thetoeise-
P, bmu) s P, - 1(by,u) signal ratio which will be decreased. Thus, the optimal ealu

will favor large powers. In what follows, we will assume

or equwalently as: bounded transmission powers. This observation also isplie

Z that at the optimum, at least one of the powers will be at its
= P, bu,u maximal value (see, e.g., [8]).
(v, u)Py - by, 1) () Py - (b, v) ' Remar'k 2Th|s global energy derives from the aboye .potgn-
Z + (5) tial function is hence amenable to a distributed optimarati
P, - (by,u) P, - l(by,v)

{u,0}CU This explains the choice made in (4).



[1l. PoOweR CONTROL 3) the power of the signal received from the other BSs, i.e.

We now describe a distributed algorithm for power control P(by,v) £ a(u, 0) Py - U(bu, v) 2
(PC), which aims at minimizing thglobal energy/cost given  Let U. denote the set of users of BS Using 2) and 3)
by (6). We first describe very roughly what this algorithm sloeEach BSc can determine the set
and achieves: S, = {bv €U, st. P(b,v) > 0} . (10)
« Through measurements and information exchange be- ) )
tween neighboring BSsthe coefficientsd,, and B, of 1hese values will .t_)e updated qnly if the geometry of the
the local energy (9) are evaluated; users or the condition Qf the wireless medium change. BS
« Each BS separately triggers a transition (i.e., a powérthen reports the following aggregate rafi6, .(u)} to each
adjustment applied to one of its users picked at randofighboring BS):
sayw) using a local random timer; this transition, which a(u, )Py - (b, v)
is only based on the evaluation of the coefficients of { Iy (u) = Z }3 .ZT(LC U)’ } : (11)
the local energyt,, consists in selecting a transmission vES. Y ’ uEUy

power with low local energy with high probability. Thengie that the above communication takes place between
precise definition of the transition, which depends on ﬁeighboring BSsh and ¢. So. there is no need to transmit
parameter]” called the temperature, is given below. i’ information on the wireless medium. The coefficidht

o The dynamics based on these local transitions, callggn be deduced by B&, by summation of these aggregate
the Gibbs sampler, lead to a steady state which is tpgtios and division byP,.

Gibbs distributionassociated with this global energy and
temperaturel’, namely the following distribution on the C. Evaluation of the Coefficients of Local Energy

power vectors: From the collected information, each B, is able to
. compute the parameters, and B,, that show up in the local
mr(Pusu € U) = cexp(=E(Pu,u €U)/T), energyé’u assrc))ciated with each of its users. P
with ¢ a normalizing constant. Using 1), the BSb, can determineA, by computing
« This distribution puts more mass on low energy (smalf./SINR,. The coefficient3, can be computed from the
cost) power configurations. Whefl goes to 0 in an ratios of I .(u) advertised by neighboring BSs, since (9) is
appropriate way, the distribution(.) converges to a expressible as:

dirac mass at the power vect@®,,, v € U) with minimal alu. V)P alu. )P, - 1(b.v

cost if it is unique. B,P,= Y % +Y N ( B )' ll(tc v()’ ) ;
We now describe the algorithm in more precise terms. vEUp vFU v c#b veU, v ’

_ whereb = b, andb andc are implicit neighbors. We have
A. Graph of the Gibbs Sampler
. : a(u,v) Ip,c(u)

The Gibbs sampler operates on the graph defined below: By= > Iz R (12)
« The set ofnodesof the graph is the set of users. vellpvFu "0 ctb "
« Each node has &tate which is its power (which is  Note that in (12), forv € U,, sinceb, = b,, both P, and

discretized). a(u,v) are known by the same BS.

« The set ofneighborsof nodew in this graph is the set of .
all usersv # u such that the power of the signal receive(IP' Updtate Algorithm
from BSb, atu is above a specific threshold, séyfor ~ The BS updates the powers using Algorithm 1 described
practical consideration, we assume that it is the same feglow. For each user associated with this BS, we set a

all). timer, t,,, that decreases linearly with time. Here, we consider
_ _ discrete time in step aof second(s) and simply sét= 1. This
B. Information Collection and Exchange timer has an expiration time randomly generated according t

As aforementioned, the state transition (i.e., power cntr & geometric distribution. When, expires, dransition occurs
is based on the coefficients of the local enefgy So, the Py which the powerP,, for this user is updated. This update
BS b, needs to gather some information so as to determif@nsists in selecting a new powé¥ for useru according to
the coefficients of,. To do so, each user e U reports the the fO”OWing probablllty distribution, given the state dfe

following data to its BSh,: graph (namely given the other powers):
1) its SINR,, ) e—Eu(P)/T
2) the power of its received signal, i.eP(b,,v) = mu(P) = > pepe EuPIT (13)

Pv'l(bvvv)az and . . .
whereT > 0 is the temperature an® the discrete set in
1Two BSs, sayb and ¢, are calledimplicit neighborsif at least one user Which powers are selected. For practical reasons, powelslev
associated with one BS receives the signal of the other B&eabe threshold. ~
20r, the attenuation fromb,, to v, i.e.,1(by,v), as P, is known atb,. 30r, au, v)l(by, v). Note thatP(b,,v) refers to interference.



are discretized in such a way that= {0, Ps,2Ps, ..., Pnax }»
whereP,,.« is the maximum transmission power afglis the

power step.
every § sdo y ., . b
foreach u in the setls, do
if £, <0 then . Fig. 1. The path loss from to v is a little bit less than that from to v.
MEASUresINR, , However, associating both andv to a is sub-optimal.
forall P in P do
Eu(P) < % +
assumption is sub-optimal. Fig. 1 gives an example of two
Pl Y o(u,v) | 3 Toe(u) |, BSs and two users in which both usersndv have the same
velly vtu v b Py closest BS, i.e.q. However, it is better to associate with
du(P) + exp (_@); a, andv with b, rather than to associate bothand v with
T a, since the former association can lead to a lower overall
end , . interference and higher network capacity.
sampleP EAP according to the probability In general, if one simply associates users with the closest
law 7, (P) = d“(.P)/gz_PeP_ du(P)); ] BS or to that with the strongest received signal, it is pdssib
elsesampletu = 0 with distributionexp(1); that some BSs have many users while others have only a few.
|ty b, — The resulting overload will lead to an overall performance
end degradation and user association (UA) optimization should
end hence be considered.
forall c: neighbors ofb do A. Joint Optimization
Iy (u) < Z a(w,v)Py - 1(b,0) ; In the following, we generalize the previous Gibbs sampler
vEU, Py -ife,v) to a joint optimization of UA and PC for driving the network
if I .(u) has changed, send its new valuebto | {5 a state of minimal energy. The setting is the same as the
end above but now, thetateof each node is a pair of (BS, power).
end To be practical, the set of candidate BSs of a user could be its
Algorithm 1: power transition of base statidn k neighboring BSs (e.gk may equal to 2 or 3) from which
the power of signal received is above a certain threshold. Th
test xtest local energy now reads:
One can see in (13) that, favors low energies. As a ]
result, in each state transition, the Gibbs sampler willgam &, (b, P) = % + Z a(v,g)i’?b lfLI;U7 u)
a random variable® € P having more likely a smalf,,. ’ ) ’
E. Convergence Z a(u,v)P - U(b,v)
As previously mentioned, the setting Bfwill influence the vu Py - 1(bu, v)
limit distribution to be reached by the system. This paramet Au(b) R
has to be chosen as a tradeoff betwestrict optimality - p + Bu(b)P (14)
of the limit distribution concentrating on state with Iovt/esW ere
energy, and the convergence time. It is known that for a fixecr
environment (i.e., user population, signal attenuatidnyne Au(b) 2 Nu_ 3 (v, u) Py - 1(by, u)
decreaseq” as1/log(t), wheret is the time, this algorithm lb,u) = L(b, u)

will drive the network to a state of minimal energy, startin% d
from any arbitrary state (i.e., any initial power vector)eW n
follow this and sel” = 1/In(1 +t), wheret starts from zero. Bu(b) 2 a(u, v)l(b,v)

A proof of convergence of Algorithm 1 to the state of ' = Py - 1(by,v)
minimal £ can be done similarly to that of [13, pp. 311-313] ] ) o
based on the notion of weak ergodicity of Markov chains and The above setting (14) is hence similar to that of (9). The
is thus omitted here. On the other hand, in Section V, tf§&Me algorithm can be used with the following simple modifi-
numerical study will illustrate the convergence property. ~ cation: sample the random variables on the set of fairg)

according to the probabilityr, (b, P) that is proportional to
IV. USERASSOCIATION exp(—E, (b, P)/T).

We now relax the assumption that each user is associatedNote that to determiné&, (b, P) for the joint optimization,

with the closest BS. There are situations where such #re information to be collected and feedback should include



(a) UA with “closest" BS

2200 (b) UA optimized V. NUMERICAL STUDIES
BS ‘ : BS
q 3000

3200

Based on the system model described in Section I, we
employ the 3GPP-3GPP2 spatial channel model [1] for simu-
lations. The urban micro-cellular system with hexagondll ce
layout is adopted. BS-to-BS distance is set to 1 km, whilesuse
are assumed to be uniformly distributed in the geographic
area, except that BS-to-user distance should exceed 20anete
as required by the model. The maximum transmission power
Py is set tol W, for all u. Distance dependent path loss is
given by:

3000
2800 2800+
2600 2600
2400 2400
2200 2200+
2000 2000+

1800 1800

Y-coordinate (meter)

1600 . 1600 -

1400 14001

198)(d) = —(30.18 4 26 log;o(d) + XI®) | (16)

1200 1200

1000l ‘ ‘ ‘ 10001 ‘ ‘ ‘ whered is the transmitter-receiver distance akig represents
500 1000 1500 2000 2500 500 1000 1500 2000 2500 log-normal shadowing with zero mean and standard deviation
X-coordinate (meter) X-coordinate (meter) . B . .
4 dB. With operating temperature 290 Kelvin and bandwidth
i i -15
Fig. 2. User delay before and after optimization: (a) mean 3%7s/bit, 1 MHz, the thermal noiseV, is equal t04.0039 x 10 W,
s.d. = 2.2001us/bit, and (b) mean = 5.4438s/bit, s.d. = 2.0662s/bit. for all u.
The considered system has 16 BSs and a total of 160 users.
It consists of a cellular network with frequency reuse facto
. _ _ 1 and ten orthogonal channels for the downlink. As in [15],
the S|gna| and !nterference -measur?ments related to tmonwe Consider Co_channel and adjacent_channe| Orthogyna"t
ered BS candidates. The information exchange required Wiltors, denoted byo,, a.), equal to (0.1, 0.5) and (0.1, 0.9)

increase linearly with the average number of neighboring.BSn two separate sets of simulations, respectively. Besgleen
However, the operation and procedure are similar to those fo___— 1 W, we assume that power step® = 1 mW. In

determining (9). (10), the threshold for determining the implicit neighbor set
is set to 20 dB abovéV,,, so thatd equals t0—93.98 dBm.
B. User Association Only We compare our solution to some reference scenario where

users associate with their closest BS and where each transmi
A simplification of (14) is possible if one considers usesion is conducted a8,,.«. In the simulation of our solution, we
association optimization without power control (e.g., ploever only consider the scheme with separate optimizations: we fir

vector is simply fixed). The local energy now reads: conduct UA optimization which aims at achieving user/load
balancing and then conduct PC. Note that the formulation in
£.(b) = Ny 3 a(v,u) Py - 1(by, u) N (14) allows a joint optimization (see [16] for more on the
“ P, - 1(b,u) P, - 1(b,u) matter in the CSMA/CA context).

Fig. 3 shows the evolution of global enerdy during
a(u,v)Py - 1(b,v) .
Z Py - 1(bn ) (15) the power control phase in twg randomly generated ngtwork
vu v v topologies. We allow the algorithm to have a long run in the
simulation. It is observed thaf converges to its minimum

which is a function oft, instead of(b, P). Consequently, we quite fast. It takes about 30 iterations in both systemsn(@ a
sample a random variable on the set of BS candidates accqi:- The evolution of algorithm in the UA optimization pheas
ing to the probability distributionr,,(b) which is proportional has a similar convergence speed. To avoid redundancy, we do
to exp(—&.(b)/T). not plot them here.

Fig. 2 shows a topology of wireless hot spot in which users Fig. 4 shows the empirical cumulative distribution of long-
are relatively concentrated in the center of the geographi¢erm (averaged over 100 time iterations) transmissionydefia
area. There are totally 210 users. 3GPP-3GPP2 spatial ehamrsers after UA and PC optimization in a randomly generated
model [1, “C802.20-07-02.doc"] is employed. For demonstraystem topology. It is found that the mean delay in the
tion, we simply setP, = 1 W, a(u,v) = 0.1, and channel whole network is significantly reduced. Besides, the stethda
bandwidth equal to 1 MHz, for all. By default, users aréeviation of user delay is much smaller. This means that
associated with their closest BS, as shown in Fig. 2(a).r§leathe system has offered a much higher service fairness to all
the BS in the center has many users and will be overloadeders. Table | shows the numerical comparison of transomssi
However, the other BSs have only a few users. The resultidglay in the reference scenario and in the scenario where
load is unbalanced. We conduct UA optimization. As showwe performed our optimization. The results are based on an
in Fig. 2(b), the new association is more even and has a betigeraging over 200 random topologies. It is observed that
load balance, which leads to an improvement in the overdlbth the mean delay and its standard deviation (s.d.) are
delay performance. significantly reduced (by more than 70%), in both systems (i)




: TABLE |

(ha,=0.1,a =05 USER TRANSMISSION DELAY BEFOREAFTER UA & PC OPTIMIZATION.
—— (i) a.= 0.1, a = 0.9
3000 g Qa, O \ “Closest"+P,..x: mean, s.d.\ Gibbs: mean, s.d.
i) 0.1, 0.5 2.8284, 1.5372us/bit 0.7145, 0.2932:s/bit

2500 ] i) 0.1,0.9| 3.3087, 1.895Qs/bit | 0.8121, 0.295Js/bit

3500 T

Global energy

2000 1 show that not only the mean delay but also its variance
can be significantly reduced. Consequently, a higher lefel o
service fairness among the users is offered. The perforenanc
is favorable to system-wide QoS enhancement and important
to 3G/4G networks. An investigation of the proposed scheme

1000 ‘ w w o in dynamic settings is in a future work.
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