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A Distributed Sequential Algorithm for
Collaborative Intrusion Detection Networks

Quanyan Zhu, Carol J. Fung, Raouf Boutaba and Tamer Basar

Abstract—Collaborative intrusion detection networks are often communication in CIDNSs is often of “low-cost”, which leads
used to gain better detection accuracy and cost efficiency asto the possibility of usingtest messages (a communication

compared to a single host-based intrusion detection syste(iDS). il
Through cooperation, it is possible for a local IDS to detechew ggﬁ;f;%?adtgr(:;lerated on purpose fo test the refiability of the

attacks that may be known to other experienced acquaintance ] ] )
In this paper, we present a sequential hypothesis testing rtieod Based on the aforementioned properties, we design a CIDN
for feedback aggregation for each individual IDS in the net- which utilizestest messages to learn the reliability of others

work. Our simulation results corroborate our theoretical results gndconsultation requests to seek diagnosis from collaborators.
and demonstrate the properties of cost efficiency and accucy The architecture design is shown in Figlile 1, where NIDSs

compared to other heuristic methods. The analytical resulton . .
the I|O()\,\,er_bound of the average number of acé,taintances for @and HIDSs are connected into a collaboration network. Each

consultation is essential for the design and configurationfdDSs  IDS maintains a list obcquaintances (collaborators) and test
in a collaborative environment. messages are sent to acquaintances periodically to update i

belief on peer reliability. When an IDS receives intrusion
alerts and lacks confidence to determine the nature of the
alerted source, alert messages are sent to its acquaiatance

As computer systems become increasingly complex, thar evaluation. An acquaintance IDS analyzes the received
accompanied potential threats also grow to be more sophigrusion information and replies with feedback of posi-
ticated. Intrusion detection is the process of monitoring a tive/negative diagnosis. The ambivalent IDS collects beed
identifying attempted unauthorized system access or manipm its acquaintances and decides whether an alarm should
ulation. It is one of the most important tools for a networbe raised or not to the administrator. If an alarm is raised, t
administrator to detect security breaches along with filewa suspicious intrusion flow will be suspended and the system

An IDS can be categorized as either host-based or netwoddministrator investigates the intrusion immediately.
based. A host-based IDS (HIDS) is intended primarily to In this paper, we design an efficient distributed sequential
monitor a host, which can be a server, workstation, or amygorithm for IDSs to make decision based on the feedback
networked device, whereas a network-based IDS (NIDS) fiom its collaborators. We investigate four possible oates
used to protect a group of computer hosts by capturing aofla decision:false positive (FP), false negative (FN), true
analyzing network packets. Even though these two types misitive (TP), andtrue negative (TN). Each outcome is asso-
IDSs are commonly employed in an enterprise network, thejated with a cost. Our proposed sequential hypothesimest
do not adequately leverage the possible information exgpharbased feedback aggregation provides improved cost effigien
between IDSs. The exchange of alert data or decisions las- compared to other heuristic methods, such as the simple
tween administrative domains can effectively supplemkat taverage model [1] and the weighted average model [2], [3]. In
knowledge gained by a single local IDS. In a collaborativaddition, the algorithm reduces the communication ovethea
environment, an IDS can learn the global state of netwods it aggregates feedback until a predefined FP and TP goal is
attack patterns from its peers. By augmenting the inforomati reached. Our analytical model effectively estimates thralmer
gathered from across the network, an IDS can have a mafeacquaintances needed for an IDS to reach its predefined
precise picture of an attacker’s behavior and hence inereastrusion detection goal. Such result is crucial to the glesif
its accuracy and efficiency of detection. an IDS acquaintance list in CIDN.

Collaborative intrusion detection networks (CIDNs) have The remainder of this paper is organized as follows. In
distinct features from some other types of social netwouktis Section Il, we review some existing CIDNs in the literature
as P2P network and E-commerce network, where the colland IDS feedback aggregation techniques. The problem for-
oration is one-time or short-term pattern. The collaborath mulation is in Section Ill, where we use hypothesis testing
IDN is usually long-term based. Unlike other social netvegrkto minimize the cost of decisions and sequential hypothesis

by and - . § testing to form consultation termination policy for predefi
Quanyan Zhu and Tamer Basar are with the Department of rigiaicn ; : .
Computer Engineering, University of lllinois at Urbana @Gigaign, 61801 goals. In Section |V, we use a simulation approach to evaluat

(email{zhu31,basafi@illinois.edu). Carol J. Fung and Raouf Boutaba aréh€ €ffectiveness of our aggregation system and validae th
with David R. Cheriton School of Computer Science, Univgrsi Waterloo, analytical model. Section V concludes the paper and identifi
Ontario, Canada (emaikj22fung, rboutabp@uwaterloo.ca). ; ;

The work of the authors from University of lllinois was in paupported by directions for future research.
a grant from Boeing through the Information Trust Institut@e work of the
authors from the University of Waterloo is supported by theguxal Science
and Engineering Research Council of Canada under its gitgieogram and Il. RELATED WORK
in part by WCU (World Class University) program through ther& Science . .
and Engineering Foundation funded by the Ministry of EdiacatScience and Many CIDNs were proposed m_ the literature, such as
Technology (Project No. R31-2008-000-10100-0). Indra [4], DOMINO [5], and NetShield [6]. However, these

I. INTRODUCTION


http://arxiv.org/abs/1002.3190v1

hypothesesH, and H;. Hy hypothesizes that no intrusion

is detected wherea#; forwards a hypothesis that intrusion

is detected and alarm needs to be raised. Note that we
intentionally drop the superscriptbecause we assume that
each IDS attempts to make the same decision. Denote by
m, 7 the apriori probabilities on each hypothesis such that
my = P[Ho|,n} = P[H,] andny + 7w} = 1, for all i € V.

The conditional probability’(Y* = y*|H;),l = 1,2 denotes

the probability of a _complete feedback beipg e Hj_em Vi
given the hypothesis. Assuming peers make decisions inde-
pendently (this is reasonable if acquaintances are apptejy
selected), we can rewrite the conditional probability as

NIDS3 Acq List:
HIDS1

HIDS1 HIDS2 . . .
Nibs2 p' (Y =y'lH) = [] pi(¥; =yl H),i € N, 1=0,1. (1)
JEN;
Fig. 1. A Collaborative Intrusion Detection Network A hypothesis testing problem is one of finding a decision

function §°(Y?) : ¥ — {0,1} to partition the observation
space)’ into two disjoint setg)} and Vi, where) = {y" :
works did not address the problem that the system might pgy) — o1, andYi = {y: §i(y") = 1}.
degraded by some compromised insiders who are dishonest ofg find an optimal decision function according to some
malicious. _ criterion, we introduce the cost functio@,,l,I’ = 0,1,
Simple majority voting [7] and trust management are COMhich represents IDSs cost of deciding thaf; is true when
monly used to detect malicious insiders in CIDNs. Existingy, holds. More specificallyC?, is the cost associated with
trust management models for CIDN are either linear as il missed intrusion or attack an@:, refers to the cost of
[2], [8], or Bayesian model as in [3]. They are based ofyse alarm, whileC;,, Ci, are the incurred costs when the
heuristic where the feedback aggregation is either a simpjgcision meets the true situation. In several situatiansan
average [1] or a weighted average [3]. Moreover, no decisiga shown that decision functions can be picked as function
cost is considered in these models. In this paper, we US&:da jikelihood ratio given byli(y?) = pi(y'[H1) (see [9],
sequential hypothesis testing model aiming at finding costy P (y*|Ho)
minimizing decl|3|0ns based.on co]lected feedbgck. E)gst.m A threshold Bayesian decision rule is expressed in terms of
work that applies hypothesis testing for intrusion detetti the likelihood ratio and is given by
includes [9] and [10], where a central data fusion center is o _
used to aggregate results from distributed sensors in a loca 5 (y) = { L it L(y') > @)
area network. However, their methodologies are limitechto t B 0 if L'(y") <7' '
context that all participants need to engage in every detuactwhere the threshold’ is defined by
case. While in our context, IDSs may not be involved in all

intrusions detection and the collected responses may e fro i _ (Ci:o - 050)776 3)
different groups of IDSs each time. (Cly — Cy)mt
If the costs are symmetric and the two hypothesis are equal
Ill. PROBLEM FORMULATION likely, then the rule in[{R) reduces to the maximum likelikdoo

In this section, we formulate the feedback aggregation &€L) decision rule
a sequential hypothesis testing problem. Consider a st of . e i > iy
nodes\/, connected in a network, which can be represented  d3.(¥) = { (1) :; gzgzigig - zzgzigg; NG
by a graphG = (N, &). The set€ contains the undirected
links between nodes, indicating the acquaintances of IDSs i

the network. A. Sequential Hypothesis Testing

Let Y;,i € V, be a random variable denoting the decision | . oo oo oo ential hyothesis testing teemak
of IDS ¢ observed by its peer IDSs on its acquaintance Iiat ’ q yp g

;. The random variabl®; takes values i, = [0, 1]. In the ecisions with minimum number of feedback from the peer

intrusion detection setting;; = 0 says that IDS decides that IDSs, [.11]’ [1.2]' An IDS asks for feedback from its acquain-
. . . : C tance list until a sufficient number of answers are collected
there is no intrusion whil&; = 1 means that IDS raises

. . . . Let Q' denote all the possible collections of feedback in the
an alarm of possible detection of intrusion. Each IDS makes "~ . . » - .
: - . . ._acquaintance list to an IDSandw’ € Q* denotes a particular
its decision based upon its own experience of the previol

, e : collection of feedback. LetVi(w?) be a random variable de-
attacks and its own sophistication of detection. WepJeds the noting the number of feedbacks used until a decision is made
probability mass function defined @ such thatp;(Y; = 0) Ing u u unti Ision 1 )

andp;(Y; = 1) denote the probability of no intrusion and théA‘ sequential decision rule is formed by a pé, d), where

probability of intrusion fromi, respectively. ¢" = {¢,,n € N} s a stopping rule and® = {5,,n € N}
We let Yi = [Yj]jen, € Vi = v Vi be an is the terminal decision rule. Introduce a stopping rulehwit
= Wiljen; = jEN; iy i
observation vector of an ID$ that contains the feedback” feedbackg;, : V;, = [Lien,, Yi — {0, 1}1 whereN; ,, is
from its peers in the acquaintance list. Each IDS has twbe set of nodes an IDSasks up to timer. ¢!, = 0 indicates



that IDSi needs to take more samples afterounds whereas its apriori probability. Aftern feedback are obtained; can
¢! =1 means to stop asking for feedback and a decision cha updated as follows:
be made by the rulé’. The minimum number of feedbacks i
is given by Titn) = — 0 . (11)
. | ’ o+ (L —m)Ls,

N( =min{n: g = 1,n €N}. ©) where Lj, = [Licp, . i(jﬂglg We can thus obtain the
Note that N*(w*) is the stopping time of the decision rule.optimum Bayesian rule captured by Algorithm 1 below, known
The decision rule)’ is not used untilN. We assume that no as the sequential probability ratio test (SPRT) for a reabten
cost has incurred when a correct decision is made while thgst D¢,
cost of a missed intrusion is denoted 6Y, and the cost of
a false alarm is denoted h¥:.. In addition, we assume eachAlgorithm 1 SPRT Rule for an IDS

feedback incurs a cogp’. We introduce an optimal sequentialStep 1 Start withn = 0. Use [I2) as a stopping rule until

rule that minimizes Bayes risk given by ¢t =1 for somen > 0.
R'(¢',6") = R(¢",0'|Ho)mh + R(¢",6'|Hy)7y,  (6) o :{ (1, If;‘r < mi(n) < iy, 12
o _ . "
where R(¢',6°|H;),l = 0,1, are the Bayes risks under otherwise.
hypothesesify and f;, respectively: or in terms of the likelihood ratioL!, we can use
R'(¢',8'|Ho) = CpP[on (Y, j € Nin) = 1|Ho] + D'E[N|Ho], ¢}, = { (1) gtrﬁarfwsLe <B"  whereAi = 7?10(;0;513 and

R'(¢',8'|H) = CyPon(Yj,j € Niw) = 0|Ha] + D'E[N|H1].  p; _ my(1-m})
] ) — (A-m)m " )
Let Vi(n}) = ming 5 R'(¢",6°) be the optimal value Step 2 Go to Step 3 if¢p!, = 1 or n = |N;|; otherwise,
function. It is clear that when no feedback are obtained froohoose a new peer from the acquaintance list to request a
the peers, the Bayes risks reduce to diagnosis and go to Step 2 with=n + 1.

Ri(qs? - 1’6?: ) = Cfﬁo’ (7) Step 3 Apply the terminal decision rule as follows to
R'(¢y =1,00=0) = Chymi. (8) determine whether there is an intrusion.
K] K3 C . . .
Hence,H; is chosen wher. 7§ < Ci,mi or my < +MC¢ , é 1 ?f mi(n) < 7TL or §i — 1 !f Li < AP
and Hy is chosen otherwise. The minimum Bayes "risk" undér = 0 if mi(n) >y 0 if L) > B
no feedback is thus obtained as a functiomrpfind is denoted

by . -
o B. Prior Probabilities
Ti(ri) = Cpmy i mo < &3 @ In the above section, the conditional probabilities
Ci (1 —mp) otherwise. p'(yi|Hy),i € N,1 = {0,1} are assumed to be known. In this

r§ect|0n we use the beta distribution and its Gaussian appro
imation to find the probabilities. We lef(y; = 0|H;) := p',
be the probability of miss of an ID8s diagnosis, also known
Kas the false negative (FN) rate; and fét := p’(y; = 1|Hy)
be the probability of false alarm or false positive (FP) rate
- S The probability of detect|on or true positive (TP) raten dze
Vi(mg) = min{T"(ng), J* (7)) }- (10) expressed ag’, — Dy
Based on hlstor|cal d‘ata an IDScan assess the distribu-
Note that.Ji(r) must be greater than the cost of one sampifns over its peer IDS's probabilities of detection and false
D' as a sample request incub¥ and.J!(x)) is concave inr§  alarm as beta functions parameterizedldy, o’ and /",
as a consequence of minimizing the linear Bayes kikk (Gmelft . o rabipl) a1 st
cost D' is high enough so thafi(x) > T'(x}) for all i, ~ Pr~ Bewz'lar, br) = mfrmry e © (1 —2:)" 7, (13)
then no feedback will be requested. In this cagé(r)) = i i o Cab+85) ab—1 gl _1
~ Bet % ) = % P 1-— i) P ) 14
T(r), and the terminal rule is described il (9). For other’? elyilab, fp) Top)T(Bp) i (1-v) (14)
values ofD? > 0, due to the piecewise linearity @f () and wherez;,y; € [0,1]; af ,aP and 8F, 8F are beta function
concavity of J¢(r{), we can see thal®(r}) andTZ(wo) have parameters that are updated accordlng to historical data as
two intersection points}, andr}; such thatrj < nj;. It can follows.
be shown that for some reasonably low céstand «{, such i Z (i) thpl e, Bl = DIIPRCY )k (1 — ); (15)

The minimum cost functior {9) is a piecewise linear functio
For ¢' such that¢) = 0, i.e., at least one feedback is
obtained, let the minimum Bayes risk be denoted/bir}) =
ming g siy.4:—0p R'(¢',6). Hence, the optimal Bayes ris
needs to satisfy

. . . ap =
that 7} < 7y < 7%, an IDS optimizes its risk by requesting " ke

another feedback; otherwise, an IDS should choose to raise a ; Ny ; i\l 5
- l. i) X i - . 7 — AZ k 2 7 — )\L k 1 _ T . 16
alarm whenr, < 7% and report no intrusion when < 7% . ap kez/\;]( p)*rpxs Bp = Xhem, Ap) (1 =7p 1) (16)
Assuming that it takes the same ca@tfor IDS i to acquire  The introduction of the discount factors;., A}, € [0,1]
a feedback, the problem has the same form after obtainingliows more weights on recent data from ID3hile less on
feedback from a peer. IDS can use the feedback to updat¢he old ones. The discount factors on the data can be differen



for false negative and false positive rates. The parantéterbounds such thaPj, < Pi, Pj, > Pj. Then, the thresholds
denotes the time wheh-th diagnosis data is generated (angd,, pe chosen such thaf — 1=Fo' RBi — Pb

i i i 1—Pp PL -
§ent to its peer) by IDS. The pargmeterm, "Mk € [0,1] The next proposition gives a result on the bound of the users
is the revealed results of theth diagnosis datary, = 1

) . N that need to be on the acquaintance list to achieve the desire
suggests that the-th diagnosis data from peeéryields a un-

. . o S performances.
detected intrusion whiler,, = 0 means otherwise; similarly, * pronosition 3.1: Assume that each IDS makes independent
"p,x = 1 indicates the data from the peeresults in a correct giagnosis on their peers’ requests and each has the same
_dr(re]tectlor; under |(;1t(rjgsmn a_nidg,C = 0hsuggestsdotr?ermse.distribution py = po = p(|Ho),pi = p1 = p(-|H1),
e total reported diagnosis data is the dtand they are ;. "— () — g, b, (y; — 0) — 0, for all i € A,
classified into two groups: one is where the result is either| ot D1 (po||p1) be the Kullback-Leibler (KL) divergence
false positive or true negative under no intrusion, dentted Jefined as follows.

the setMy; and the other is where the result is either false 1

negative or true positive under intrusion, denoted by thte se (5 115} — 5 (k) In po(k) 19

M. Both sets are disjoint satisfyingty U M; = M and e (Pollp) kz:(:)pO( ) pi(k)’ (19)

MoN My = 0. . 0, 1—6,
Each peerj can assess a peeusing [I3) and[{d5), where = fpln o + (1 —6p)In =0, (20)

we have not included indekin the expressions for simplicity. = ) o .
However, it is clear tha{{13) anf{15) are assessed from tHkewise, the K-L divergenceDx . (p:[[po) can be defined.
perspective of a certain IDS In addition, the discount factors ON @verage, an IDS needé acquaintances such that
in need not be the same for gllHence, we can implicitl i i
g a3 ' # W ImpHetty N; > max | [— Dy D 1 (21)
view (I8) dependent op. i D (oallo) " Dot (o lln )
. . KL (Pol[P1) rxL(P1]|Po)

When parameters of the beta functionsand 8 in (13) . .

are sufficiently large, i.e., enough data are collecteda bathere D}, = Pr 1n(PD) + Pp ln(l_PD) and D% =

R . _ e » PL A
distribution can be approximated by a Gaussian d|str|hut|(}olg In (1_pD) + P 1D§%)' If Pi < 1andPi, < 1,

as 1-Pj, _ -
we need approximatelyV; such that

« af ; ;
Betao, 8) ~ N ( : \/ 5 ) . A7) ( PL—1 Pi, )
1 N; > max — 1, [— S . 22
o+ 5\ @R+ AT D) Dl " Droilion ) @2
Note that we have dropped the superscripts and subscripts in 0
(I2) for generality as it can be applied to alh (I3). Hence, Proof: The conditional expected number of feedback
using the Gaussian approximation afd] (15), the expegted needed to reach a decision on the hypothesis in SPRT can
andp’,, are given by be expressed in terms é¢fr and Pp, [11], [12].
i i _ 1 i Pi i 1P}
Bbk = T Ebbl= e PR [P (5) + Poin (=22
@ o i 1-P}, i Ph
F T PF DT FD E[N|H:] = m[PFln(l—P};)_‘—PDIH(P};)}’

The mean values if (18) under large data can be intuitively .
interpreted as the proportion of results of false alarm andi€Nce, to reach a decision we need to have at least
detection in the setM, and M, respectively. They can MaX{E[N|Ho], E[N|H,]} independent acquaintances. Under

thus be used if{1) as the assessment of the peer probabifi§ @ssumption that botRx and P;, are much less tha,

distribution p;. we can further approximate

C. Threshold Approximation E[N|Ho] ~ — 1-Pj E[N|H;] ~ — Py '
In the likelihood sequential ratio test of Algorithm 1, the Dz (pollp1) Dxr(p1llpo)
threshold valuest and B need to be calculated by finding ~ These lead us to inequalitis {22) add](21). [ ]

andr; from J* () andT"(x{) in (I0). The search for these
values can be quite involved using dynamic programming. ) } ) ) -
However, in this subsection, we introduce an approximation!n this section, we use simulations to evaluate the effigienc
method to find the thresholds. The approximation is basgf the preceding feedback aggregation scheme and compare
on theoretical studies made in [11] and [12] where a randdhiVith other heuristic approaches, such as the simple geera
walk or martingale model is used to yield a relation betwedtpdregation and the weighted average aggregation. Weatelid
thresholds and false positive and false negative rates. [@d confirm our theoretical results on the number of acquain-
Pi, P be the probability of detection and the probabilitfances needed for consultat|on._ The results presentedsn_th
of false alarm of an IDSi after applying the sequentials_eCt'On_are prqd_uced by_averag!ng a large number of replica-
hypothesis testing for feedback aggregation. We need mpotgons with neghglble confidence intervals. The parametess

out that these probabilities are different from the protitaes US€ are shown in Table .

p%, Pl discussed in the previous subsection, which are the rdw Smulation Setup

detection probabilities without feedback in the collallive  The simulation environment uses an IDN&@fnodes. Each
network. LetP}, and P}, be reasonable desired performancidS is represented by two parameters, expertise |e\aid

IV. EXPERIMENTS AND RESULTS



TABLE | , - : :
EXPERIMENTAL PARAMETERS For a fixed difficulty level, the preceding model assigns

higher probabilities of producing correct intrusion diagis to
peers with higher level of expertise= 1 or d = 0 represent
Parameter Value meaning extreme cases where the peer can always accurately detect

TsA 0.5 decision threshold of the simple average model theﬁintrusion. This is reflected in the Beta distribution hwit
TWA 0.5 decision threshold of the weighted average modg} 5 — ~o.

d 0.5 difficulty levels of intrusions and test messages .

Ar Ap 0.9 discount factors if(15) F|gure[3 shows that both th.e FP and FN dec.rease when
7,7 0.5 probability of no-attack and under-attack the expertise level of an IDS increases. We notice that the
Coo, C11 0 cost of correct decisions curves of FP rate and FN rate overlap. This is because

the IDS detection density distributions are symmetric unde

decision threshold-,. At the beginning, each peer receive$ 0 andr .:.1' Figure[3 shovys that the FP r_ate decreages
an initial acquaintance list containing all the other néigh with the decision threshold while the FN rate increases with

nodes. In the process of the collaborative intrusion dietect thlefdedcl;smrk\ threshold. Wher(; the degsmr;l threhshocljd),l_s_
a node sends out requests to its acquaintances for intrus%n eﬁ Ida'cl ar|Ff po;tl)tlvek (un er—at;gc ) W gn It(e aaisio
assessments. The feedback collected are used to make a HH&IS old isl, all feedback are negative (no-attack).
decision, i.e., whether to raise an alarm or not. We impleémeR  petection Accuracy and Cost
three different feedback mechanisms, namely, simple geera o ¢ th Ci ant metrics t luat teedback
aggregation, weighted average aggregation, and hypsethesi ne ot the most important Metrics to evajuate a teedbac
testing aggregation. We compare their efficiency by the agggregation scheme is the cost of incorrect deC|S|0_ns.|$*n th
erage cost of false decisions experiment, we study the costs of the three aggregation imode
1) Simple Average Mode!: If the average of all feedback USiNg @ simulated network. We sé{ = 10 and fix the
exceeds a threshold, 4, then an alarm is raised 4 is set €xPertise level of all nodes t00.5 and setCip = Co1 = 1
t0 0.5 if no cost difference is considered for making FP anlit () for the faimess of comparison, since the simple ayera

FN decisions. The simple average mechanism to aggreg%'f@j th.e weighted average models do not account fo.r .the
feedback is adopted in the literature such as [1]. cost difference between FP and FN. We fix the decision
2) Weighed Average Model: Weights are assigned to feed_thresr_lold for egch IDSrg) to 0.1 for the first batch run ar!d_

back from different IDSs to calculate weighted averagéhe” increase it by.1 in each subsequent batch run until it
Weighted average is widely used to aggregate feedback, sffgiches0.9. We measure the cost of the three models. As
as [2] and [3], where weights are the trust values of IDS$1OWN in Figuré}, the costs yielded by the aggregation using
and trust values are calculated based on their past higforylYPOthesis testing remains the lowest among the three under
the weighted average is greater than a threshgld, then an all thr.eshold settings. The costs of the weighted .av.erage an
alarm is raisedry 4 is fixed t00.5 in our experiments becauseln® Simple average are close to each other. This is because
their models do not consider the cost difference between fpthis experiment, the weights of all IDSs are the same.

and FN. In this simulation, we adopt trust values from [3] akherefore, the difference between the weighted average and
the weights of feedback. the simple average is not substantial. We also observe that

B. Modeling of an Individual IDS cha_ngmg the threshold ha; a big impact on .the costs of the
] ) ] _ - weighted average and the simple average, while the coseof th
To simulate the intrusion detection capability of each nodgypothesis testing changes only slightly with the threggol

A Beta density function is given by increase when it deviates from5.

I S A1 In the next experiment, the expertise levels of all nodes
f(pla, 5) = B(a,p)’ (=" (23 remain0.5 and their decision thresholds vary frdiml to 0.9.
B (1—d) - I(1—d) We setCyy = Cp1 = 1 in the first batch run and increase
a=1+ a1 = Z)T’ =1+ d1—1) (1—r). Co1 by 1 in every subsequent batch run. We observe the costs

) under three different models. Figuré 5 shows that the costs
where B(a, 3) = fol to7 (1 — t)P~*dt, p € [0,1] is the of the simple average model and the weighted average model
probability of intrusion assessed by the host ID%p|a, ) increase linearly withCy; while cost of hypothesis testing
is the probability that a peer with expertise ledek [0,1] model grows the slowest among the three. This is because the
answers with a value op to an intrusion assessment othypothesis testing model has a flexible threshold to op&miz
difficulty level d € [0,1]. Higher values ofd are associated its cost. The hypothesis testing model has superiority when
with attacks that are difficult to detect, i.e., many peergfad the cost difference between FP and FN is large.
to identify them. Higher values dfimply a higher probability ) ,
of producing correct intrusion assessmente {0,1} is the D- Sequential Consultation
expected result of detection.= 1 indicates that there is an In this experiment, we study the number of acquaintances
intrusion andr = 0 indicates that there is no intrusion. needed for consultation to reach a predefined goal. Supbese t

Let 7, be the decision threshold of If p > 7, a peer sends TP lower-boundPp = 0.95 and FP upper-bounés = 0.1.
feedbackl (i.e., under-attack); otherwise, feedbdck.e., no- We observe the change of FP rate and TP rate with the number
attack) is generated. of acquaintances consulted)( Figure[®6 shows that FP rate
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decreases and TP rate increases witlConsulting higher ex- positive lower-bound. As future work, we intend to inveatig
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