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Abstract—In many hybrid wireless sensor networks’ applica-
tions, sensor nodes are deployed in hostile environments where
trusted and un-trusted nodes co-exist. In anchor-based hybrid
networks, it becomes important to allow trusted nodes to gain
full access to the location information transmitted in beacon
frames while, at the same time, prevent un-trusted nodes from
using this information. The main challenge is that un-trusted
nodes can measure the physical signal transmitted from anchor
nodes, even if these nodes encrypt their transmission. Using the
measured signal strength, un-trusted nodes can still tri-laterate
the location of anchor nodes. In this paper, we proposeHyberLoc,
an algorithm that provides anchor physical layer location privacy
in anchor-based hybrid sensor networks. The idea is for anchor
nodes to dynamically change their transmission power following
a certain probability distribution, degrading the localization
accuracy at un-trusted nodes while maintaining high localization
accuracy at trusted nodes. Given an average power constraint,
our analysis shows that thediscretized exponential distribution is
the distribution that maximizes location uncertainty at the un-
trusted nodes. Detailed evaluation through analysis, simulation,
and implementation shows that HyberLoc gives trusted nodes
up to 3.5 times better localization accuracy as compared to un-
trusted nodes.

I. I NTRODUCTION

Location discovery in wireless sensor networks (WSN)
has become a vital field of research due to its critical need
in many applications including location-based routing [1],
coverage [2], node identification, and information tagging.
Localization algorithms can be categorized as either anchor-
based or anchor-free [3]. Anchor-based algorithms depend on
the presence of a small set of nodes with known locations, i.e.
anchor nodes, that broadcast their location information tothe
network in specialbeacon frames. A node with an unknown
location estimates its distance to the anchor node, in a process
known as ranging, and combines the estimated distance to at
least three anchor nodes to estimate its location in 2D (Fig.1).
On the other hand, anchor-free localization algorithms do not
assume the existence of anchor nodes and estimate the relative
topology of the network. This paper focuses on anchor-based
localization algorithms.

In many applications of wireless sensor networks, sensor
nodes are deployed in hostile environments where trusted and
un-trusted nodes co-exist. In such hybrid networks, it becomes
important to allow trusted nodes to share information while, at
the same time, prevent un-trusted nodes from gaining access
to this information. In the context of location determination,

un-trusted nodes may try to access unauthorized information
either to gain access to network resources or to estimate the
location of key entities in the network, e.g. anchor nodes. For
example, in anchor-based networks, any attack that disables
the small set of anchor nodes may render the entire network
unoperational.

An anchor node may encrypt its beacon frames with a key
shared only with trusted nodes. This will prevent un-trusted
nodes from getting the information contained in the beacon
frames. Although encryption can provide location information
secrecy, it does not providephysical layer location privacy as
an un-trusted node may measure the received signal strength
(RSS) of encrypted frames and estimate the distance to anchor
nodes with a reasonable accuracy. In addition, un-trusted nodes
can collaborate together to determine the location of the anchor
node (Fig. 1) basedonly on the measured RSS.

In this paper, we propose theHyberLoc algorithm that
addresses the physical layer location privacy problem.Hy-
berLoc depends on making anchor nodes dynamically and
randomly change their transmission power, hence increasing
the localization error at un-trusted nodes. At the same time,
anchor nodes send the used transmit power encrypted in
beacon frames, allowing trusted nodes, that share common
information with anchor nodes, to remove the ambiguity of
the transmitted power. The shared information can be the key
used by anchors to encrypt their beacon frames. The shared
information can also be the type, parameters and seed of
the probability distribution used by anchors to generate the
random transmission power. One main question that our work
answers is what the optimal probability distribution that can
be used to minimize the localization accuracy at un-trusted
nodes under a certainaverage power constraintis.

Previous work in the area of secure localization has focused
mainly on two problems: location verification and robust self-
location estimation. The goal of location verification tech-
niques, e.g. [4], [5], is to prevent malicious nodes from
claiming to be at other locations to gain access to the network
resources. On the other hand, the goal of robust self-location
estimation techniques, e.g. [6], [7], is for a sensor node to
estimate its own location in the presence of attacks, such as
malicious anchor nodes. Recently, we addressed another aspect
of the the physical layer location privacy problem, which is
the un-observability of anchor nodes [8].
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Fig. 1. NodeS can estimate its location in 2D using the location beacons
received from the three anchor nodesA,B, andC and the estimated range to
them. Similarly, three un-trusted nodesA,B, andC can cooperate to estimate
the location of an anchor nodeS.

The rest of this paper is organized as follows. Section
II provides background information. Section III formulates
the problem. TheHyberLoc algorithm is proposed in Section
IV. Section V finds optimal probability distribution that can
be used to minimize the localization accuracy at un-trusted
nodes. Section VI evaluates the performance of theHyberLoc
algorithm through simulations and implementation. Section
VII concludes the paper.

II. BACKGROUND

A. Anchor-based vs. Anchor-free Localization

Location discovery algorithms for sensor networks can be
classified as either anchor-based or anchor-free. Anchor-based
algorithms, e.g. [9], [10], assume that a small percentage of the
nodes, i.e. anchor nodes, are aware of their positions. Anchor
nodes broadcast their location information to their neighbors
which use this information to estimate their own location. In
anchor-free algorithms, e.g. [11], [12], no special anchornodes
exist in the network. In this case, the algorithm estimates
relative positions, and the coordinate system is established
by a reference group of nodes. Relative positioning is suit-
able for some applications, e.g. location-aided routing [13].
The accuracy of anchor-free algorithms is typically less than
anchor-based algorithms. This paper focuses on anchor-based
algorithms.

B. Range Estimation

Ranging is the process of estimating node-to-node distances.
In order to determine its location in 2D, a sensor node needs to
estimate its range to three or more anchor nodes. Localization
methods are mostly based on either Time-of-Arrival (ToA),
Angle-of-Arrival methods (AoA), or Received-Signal-Strength
(RSS) methods. This paper focuses on the RSS-based range
estimation methods where the propagation loss can be calcu-
lated based on the difference in power between the transmitted
and received signals.Theoretical and empirical models areused
to translate this loss into a distance estimate. Combining the
positioning information received from at least three anchor

nodes with the estimated distances, a sensor node can estimate
its location in 2D (Fig. 1).

C. Cramer-Rao Lower Bound

In the field of estimation, the Cramer-Rao bound is a
lower bound on the covariance of an unbiased estimator. Any
estimator achieves this lower bound is said to be an efficient
estimator. In some cases, no estimator exists which achieves
this lower bound.

Cramer-Rao bound applies only to unbiased estimators
[14]. In other words, there may exist a biased estimator that
achieves a lower variance than Cramer-Rao lower bound. The
Cramer-Rao lower bound (CRLB) is the inverse of the Fisher
information matrixI(θ). The element(m,n) in I(θ) is given
by:

Im,n(θ) = −E[
∂2

∂θm∂θn
log f(Z|θ)] (1)

whereθ is the vector of parameters,θk is thekth parameter,
Z is the vector of observations, andf(Z|θ) is the likelihood
function.

III. PROBLEM FORMULATION

This section outlines the system model, security require-
ments, and signal model.

A. System Model

We assume a hybrid wireless sensor network where anchors,
trusted and un-trusted nodes co-exist. Anchor nodes period-
ically broadcast their encrypted beacon frames. The power
levels used by anchors are chosen following a certain probabil-
ity distribution with a constraint on the average transmission
power. All nodes, including un-trusted nodes, are assumed to
use the same hardware and use received signal strength for
distance estimation.

Furthermore, we assume that un-trusted nodes are passive,
i.e. they do not inject any traffic, and have full access to the
network traffic. In addition, we assume that anchor nodes and
trusted nodes are not compromised. The goal of the un-trusted
nodes is to estimate the distance to anchor nodes based on
the physical signal transmitted by these nodes. Finally, we
assume that un-trusted nodes use the Maximum Likelihood
(ML) estimation method to obtain transmission power levels
and estimate their locations.

B. Security Requirements

We have two main security requirements that should be
satisfied.

1) Location Information Secrecy: Anchor nodes should be
able to broadcast their position information periodicallyand
trusted nodes should be able to use this information to estimate
their position. On the other hand, un-trusted nodes should not
be able to use anchor nodes’ beacon frames to gain information
about anchor nodes’ locations. This can be achieved, for
example, by encrypting the anchor nodes’ beacons.



2) Physical Layer Location Privacy: Un-trusted nodes
should not be able to exploit the measured physical signal
(RSS) to estimate the location of anchor nodes. This paper
focuses on this security requirement.

C. Signal Model

We consider a signal propagation model that has a dominant
line-of-sight (LOS) component. In the presence of Additive
White Gaussian Noise (AWGN), the probability density func-
tion (PDF) of the received signal power [15] is:

f(z|h, x) = 1

2σ2
exp(−z + hx

2σ2
)I0(

√
zhx

σ2
) (2)

where
• z: is the received signal power.
• h: is the channel gain which is a function of distance.
• x: is the transmission power.
• 2σ2: is the total variance of noise.
• I0(x): is the modified Bessel function of order 0.

For a sensor node employing the ML estimation method to
determine the distance to a certain transmitting node, the
likelihood function (K) using m independent measurements
is:

K =
m
∏

k=1

1

2σ2
exp(−zk + hxk

2σ2
)I0(

√
zkhxk

σ2
) (3)

The ML technique is based on findingh andxk that maximize
K.

IV. H YBERLOC ALGORITHM

This section provides a detailed description of the proposed
HyberLoc algorithm and the optimal probability distribution
that could be used by the anchors.

A. Algorithm

The proposedHyberLoc algorithm addresses the physical
layer location privacy mentioned in section III-B. Before
transmitting a beacon frame, the anchor node chooses a
random transmit powerx, includes it in the beacon frame,
and transmits the encrypted beacon frame using the selected
transmit powerx.

When an un-trusted node receives a beacon frame, it cannot
determine the transmit powerx and hence has higher ambi-
guity which leads to lower accuracy in location estimation.
We want to emphasize here that encryption alone, without
changing the transmit power, is not enough as three un-trusted
nodes can cooperate to determine the location of the anchor
node, based on the measured RSS at the physical layer, as
shown in Fig. 1.

On the other hand, a trusted node receiving a beacon frame
can use the shared encryption key with the anchor node to
get the transmit power,x, that was included in the frame,
removing the ambiguity introduced by changing the transmit
power.

In the next section, we analytically find the probability
distribution that could be used by anchors to minimize the
localization accuracy at un-trusted nodes.

V. OPTIMAL DISTRIBUTION

A. Statistical Approach

One way of finding the probability distribution that mini-
mizes the localization accuracy at un-trusted nodes is to find
the probability distribution that maximizes the localization
variance at un-trusted node. Thus, we can find the CRLB for
the estimated distance at un-trusted nodes for every probabilis-
tic distribution. Then, choose the distribution with the highest
lower bound.

1) Analysis: As a result of the direct relationship between
the estimated channel gain (h) and the estimated distance, the
variance of the estimated channel gain perfectly reflects the
variance of the estimated distance.

To find the CRLB for the un-trusted estimated channel gain,
we calculate Fisher information matrix. For un-trusted nodes,
the unknowns are the channel gainh and the transmission
power sequencexk ∀ k = 1, 2, ......,m. In this case, the un-
trusted should estimatem + 1 parameters. Thus, the Fisher
information matrix is am+ 1×m+ 1 matrix.

For the Likelihood function in equation 3,Ii,j(θ) can be
calculated using:

1) For i = 1 andj = 2, 3, .....,m+ 1

∂2

∂h∂xj−1

logK =
−1

4
[
2σ2I0(

√
zj−1hxj−1

σ2 )
2

σ4I0(

√
zj−1hxj−1

σ2 )
2

(4)

−zj−1I0(

√
zj−1hxj−1

σ2 )
2

σ4I0(

√
zj−1hxj−1

σ2 )
2

+
zj−1I1(

√
zj−1hxj−1

σ2 )
2

σ4I0(

√
zj−1hxj−1

σ2 )
2
]

2) For i = 1 andj = 1

∂2

∂h2
logK =

m
∑

n=1

−1

4
znxn[

−
√

(znhxn)I0(
√
znhxn

σ2 )
2

h
√
znhxnσ4I0(

√
znhxn

σ2 )
2

(5)

+
2σ2I0(

√
znhxn

σ2 )I1(
√
znhxn

σ2 )

h
√
znhxnσ4I0(

√
znhxn

σ2 )
2

+
I1(

√
znhxn

σ2 )
2√

znhxn

h
√
znhxnσ4I0(

√
znhxn

σ2 )
2
]



3) For i = 2, ...,m+ 1 andj = 1

∂2

∂xi−1∂h
logK =

−1

4
[
2σ2I0(

√
zi−1hxi−1

σ2 )
2

σ4I0(

√
zi−1hxi−1

σ2 )
2

(6)

−zi−1I0(

√
zi−1hxi−1

σ2 )
2

σ4I0(

√
zi−1hxi−1

σ2 )
2

+
zi−1I1(

√
zi−1hxi−1

σ2 )
2

σ4I0(

√
zi−1hxi−1

σ2 )
2
]

4) For i = j = 2, ...,m+ 1

∂2

∂xj−1
2
logK = (7)

−hzj−1

4
[

−
√

(zj−1hxj−1)I0(

√
zj−1hxj−1

σ2 )
2

xj−1

√

zj−1hxj−1σ4I0(

√
zj−1hxj−1

σ2 )
2

+
2σ2I0(

√
zj−1hxj−1

σ2 )I1(

√
zj−1hxj−1

σ2 )

xj−1

√

zj−1hxj−1σ4I0(

√
zj−1hxj−1

σ2 )
2

+
I1(

√
zj−1hxj−1

σ2 )
2
√

zj−1hxj−1

xj−1

√

zj−1hxj−1σ4I0(

√
zj−1hxj−1

σ2 )
2
]

5) For i 6= 1, j 6= 1 and i 6= j

∂2

∂xi∂xj

logK = 0 (8)

2) Results: Using the above information matrix and aver-
aging over sufficient number of iterations, Fig. 2 shows the
CRLB for trusted and un-trusted estimated channel gain. Note
that the for trusted nodes, the CRLB is much lower than
un-trusted nodes’ CRLB as trusted nodes know exactly the
transmission power sequence used by anchors so they will
only have to estimate the channel gainh. For un-trusted nodes,
they will have to estimate not only the channel gain but also
the the transmission power sequencexk ∀ k = 1, ...,m.

3) Discussion: Fig. 2 shows that CRLB approach does not
guide us to the optimal probabilistic distribution that should be
used by anchors to maximize the estimated distance variance
measured at the un-trusted nodes. As is evident in the Fig. 2,
CRLB is almost the same regardless of distribution. However,
this approach shows the promise of the proposedHyberLoc
algorithm in degrading the localization accuracy at un-trusted
nodes.

In the next section, we use an information theoretic ap-
proach to find the variance-maximizing probabilistic distribu-
tion.

B. Information Theoretic Approach

As a criterion for selecting a probability distribution of
transmission power, we choose to find the distribution that
maximizes the entropy (uncertainty) [16] over all possible
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Fig. 2. The Cramer-Rao Lower Bound for trusted and un-trusted nodes using
exponential and normal distribution

power levels subject to an average power constraint (µ).
Based on the current sensor network hardware, e.g. [17],
transmission power can be selected from a set of pre-specified
discrete power levels. We formulate the problem as a convex
optimization problem that could be solved using Lagrange
multipliers.

1) Notations:

• x: is a discrete random variable representing the power
level used by anchors.

• n: is the number of possible power levels.
• µ: is a target average power that anchors are designed to

use.
• P (x): is the probability distribution used by anchors to

generatex.
• H(x): is the entropy of the probability distributionP (x)

given by:

H(x) = −
∑

x

P (x) logP (x) (9)

2) Optimization Problem:

max.−
n
∑

i=1

P (xi) logP (xi) (10)

s.t. :
n
∑

i=1

P (xi) = 1 (11)

n
∑

i=1

xiP (xi) = µ (12)

We define the Lagrangian,L, as:

L = −
n
∑

i=1

P (xi) logP (xi) + λ1

n
∑

i=1

P (xi) + λ2

n
∑

i=1

xiP (xi)

(13)

whereλ1 and λ2 are Lagrange multipliers. This problem is
convex and the optimalP (xi) can be obtained by differenti-



atingL with respect toP (xi) and equating to zero.

∂L

∂P (xi)
= − logP (xi)− 1 + λ1 + λ2xi = 0 (14)

P (xi) = exp(λ1 − 1) exp(λ2xi) (15)

P (xi) = k exp(−αxi) (16)

From constraints 11 and 12:
n
∑

i=1

k exp(−αxi)− 1 = 0 (17)

n
∑

i=1

xik exp(−αxi)− µ = 0 (18)

By solving Equations 17 and 18 simultaneously, the values for
k andα are determined.

3) Discussion: Equation 16 shows that the discretized
exponential distribution is the entropy-maximizing distribution
when there is a constraint on the average transmission power.
Thus, when the anchor nodes use a discretized exponential
distribution, they make it harder for un-trusted nodes to find
the xk sequence used, hence, minimize their localization
accuracy. On the other hand, the localization accuracy at
trusted nodes is not affected by the type of the distribution
as the transmit power is encrypted in the frame. Note that if
the average power is not constrained, the uniform distribution
would be the entropy-maximizing distribution.

VI. PERFORMANCEEVALUATION

In this section, we evaluate the performance of the proposed
HyberLoc algorithm using simulation and implementation. Our
goal is to show that when a proper probabilistic distribution
is used by anchors to randomize their transmission power,
a degradation in localization accuracy at un-trusted nodesis
achieved while the localization accuracy at trusted nodes is not
affected. We evaluate the performance under three different
probabilistic distributions: uniform, discretized normal, and
discretized exponential distributions (optimal distribution).

A. Performance Metric

The performance metric used is the standard deviation of
estimated distance error normalized by the true distance. It
reflects the localization accuracy over a sufficient number of
samples (frames). Our goal is to keep this metric as high as
possible for un-trusted nodes. On the other hand, we should
guarantee a reasonable anchor localization accuracy for trusted
nodes.

B. Simulation Experiment

1) Environment: The algorithm is implemented using Mat-
lab. Trusted and un-trusted nodes are placed at equal distance
from the anchor node. Since our goal is to quantify the
performance advantage of trusted nodes over un-trusted nodes,
without loss of generality, all experiments have been per-
formed using one anchor node, one trusted node and one un-
trusted node only. Anchors are assumed to have four possible
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(a) Average SNR = 16 dB.
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(c) Average SNR = 6.5 dB.

Fig. 3. Normalized standard deviation of distance error as afunction of the
number of frames used for estimating the distance using different probability
distributions.

power levels1. As previously mentioned, trusted and un-trusted
nodes use ML to localize the anchor node but only trusted

1Note that typical sensor nodes, e.g. [17], can have up to 31 power levels.
Since adding more power levels will increase the search timesignificantly at
un-trusted nodes, our results here present a lower bound on the enhancement
obtained using theHyberLoc algorithm.



Min. Avg. Max.

SNR= 16 dB 3.2 3.4 3.5
SNR= 9 dB 1.4 1.5 1.6

SNR= 6.5 dB 1.2 1.3 1.4

TABLE I
RATIO OF LOCALIZATION ACCURACY ENHANCEMENT BETWEEN THE

TRUSTED NODE AND UN-TRUSTED NODE WHEN USING THEHyberLoc
ALGORITHM FOR DIFFERENTSNR.

nodes know exactly the power level used for every frame. That
is, the unknown parameters to be estimated in Equation 3 are
h for trusted nodes, andh and all xk for un-trusted nodes.
For un-trusted nodes, the optimalxk sequence is obtained via
exhaustive search. In order to reduce the domain of exhaustive
search, the un-trusted nodes divide all received frames into
blocks of sizes, exhaustively search for the power level
sequence that maximizesK, and then average the estimates for
h obtained from each block. In our simulations,s is chosen to
be four. Largers does not increase the accuracy significantly
but increases the search time exponentially.

We evaluate the performance of theHyberLoc algorithm
under different signal to noise ratio (SNR) levels. Note that
since our metric is normalized by the actual distance between a
node and the anchor node, the absolute distance is not included
as a parameter.

2) Results: Fig. 3 provides the normalized standard de-
viation of estimated distance error for different probability
distributions of transmission power, obtained via Monte Carlo
simulations, as a function of the number of frames used
for estimating the distance for different levels of SNR. The
average power,µ, is set to -3 dBm. The figure verifies that the
discretized exponential distribution maximizes the normalized
standard deviation of estimated distance error. The figure also
shows that using theHyberLoc algorithm, the localization
accuracy at trusted nodes is at least 3.2, 1.4, and 1.2 times
better than that at un-trusted nodes for SNR= 16, 9, and 6.5
dB respectively. As the number of frames used in estimation
increases, the localization accuracy at both trusted and un-
trusted nodes increases.

As the SNR increases, the difference between the different
distributions increases as well as the difference between trusted
and un-trusted nodes.

Table I summarizes the results.

C. Implementation

1) Environment: We have implemented our algorithm on
TelosB motes [17] in an indoor environment replicating the
configuration used in Matlab simulations where the anchor-
trusted distance and anchor-untrusted distance are 1m. The
anchor node periodically broadcast its beacon frames. Both
trusted and un-trusted nodes measure the received signal
strength (RSS) and use it for distance estimation.

2) Results: Fig. 4 shows the effect of using theHyberLoc
algorithm on the normalized standard deviation of estimated
distance error using different probability distributions. The fig-
ure confirms that when the anchor uses a discretized exponen-

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 20  30  40  50  60  70  80  90  100

N
or

m
al

iz
ed

 S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 D

is
ta

nc
e 

E
rr

or

Number of Frames

Un-trusted, using exponential distribution
Un-trusted, using normal distribution
Un-trusted, using uniform distribution

Trusted

Fig. 4. Results of normalized standard deviation of estimated distance error
via implementing HyberLoc on TelosB motes.

tial distribution, the maximum degradation in the localization
accuracy at the un-trusted node is achieved.

Unlike the simulation results (Fig. 3), the figure shows some
crossovers between uniform and normal distributions curves
as a result of the multi path fading encountered in indoor
environments.

D. Summary

In this section, we evaluated the performance of the pro-
posed HyberLoc algorithm through simulations and imple-
mentation. The results show that theHyberLoc algorithm can
cause degradation in the localization accuracy at un-trusted
nodes without affecting the accuracy at trusted nodes. The
results also show that the discretized exponential distribution
minimizes the accuracy at un-trusted nodes validating the
analytical results in Section V.

VII. C ONCLUSION

In this paper, we focused on the physical layer location
privacy problem, where an anchor node is required to hide its
physical location from un-trusted nodes. We have proposed
the HyberLoc algorithm for solving the physical layer loca-
tion privacy and evaluated its performance through analysis,
simulations and implementation. We proved analytically that
the discrete exponential distribution is the entropy-maximizing
distribution under a given average transmit power constraint.
Our results show that theHyberLoc algorithm can cause
degradation in localization accuracy at un-trusted nodes (up
to 3.5 times worse) without limiting the localization accuracy
at trusted nodes. In addition, it has a low overhead and does
not need any additional hardware, making it suitable for the
resource-constrained sensor networks.
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