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Abstract—In many hybrid wireless sensor networks’ applica-
tions, sensor nodes are deployed in hostile environments &te
trusted and un-trusted nodes co-exist. In anchor-based hyid
networks, it becomes important to allow trusted nodes to gai
full access to the location information transmitted in beaon
frames while, at the same time, prevent un-trusted nodes frm
using this information. The main challenge is that un-trused
nodes can measure the physical signal transmitted from anan
nodes, even if these nodes encrypt their transmission. Ugjrthe
measured signal strength, un-trusted nodes can still tridterate
the location of anchor nodes. In this paper, we proposelyberLoc,
an algorithm that provides anchor physical layer location givacy
in anchor-based hybrid sensor networks. The idea is for anabr
nodes to dynamically change their transmission power follwing
a certain probability distribution, degrading the localization
accuracy at un-trusted nodes while maintaining high locakzation
accuracy at trusted nodes. Given an average power constrain
our analysis shows that thediscretized exponential distribution is
the distribution that maximizes location uncertainty at the un-
trusted nodes. Detailed evaluation through analysis, sination,
and implementation shows thatHyberLoc gives trusted nodes
up to 3.5 times better localization accuracy as compared ton+
trusted nodes.

I. INTRODUCTION
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un-trusted nodes may try to access unauthorized informatio
either to gain access to network resources or to estimate the
location of key entities in the network, e.g. anchor nodes. F
example, in anchor-based networks, any attack that disable
the small set of anchor nodes may render the entire network
unoperational.

An anchor node may encrypt its beacon frames with a key
shared only with trusted nodes. This will prevent un-trdste
nodes from getting the information contained in the beacon
frames. Although encryption can provide location inforioat
secrecy it does not providghysical layer location privacy as
an un-trusted node may measure the received signal strength
(RSS) of encrypted frames and estimate the distance to ancho
nodes with a reasonable accuracy. In addition, un-trustdés
can collaborate together to determine the location of tltl@an
node (Fig[l) basednly on the measured RSS.

In this paper, we propose thilyberLoc algorithm that
addresses the physical layer location privacy probléety-
berLoc depends on making anchor nodes dynamically and
randomly change their transmission power, hence incrgasin
the localization error at un-trusted nodes. At the same,time

Location discovery in wireless sensor networks (WSNnchor nodes send the used transmit power encrypted in

has become a vital field of research due to its critical nedgacon frames, allowing trusted nodes, that share common
in many applications including location-based routing, [1jnformation with anchor nodes, to remove the ambiguity of
coverage [[2], node identification, and information tagginghe transmitted power. The shared information can be the key
Localization algorithms can be categorized as either anchased by anchors to encrypt their beacon frames. The shared
based or anchor-fregl[3]. Anchor-based algorithms dependiaoformation can also be the type, parameters and seed of
the presence of a small set of nodes with known locations, itee probability distribution used by anchors to generate th
anchor nodes, that broadcast their location informatiothéo random transmission power. One main question that our work
network in speciabeacon frames. A node with an unknownanswers is what the optimal probability distribution thanc
location estimates its distance to the anchor node, in aepeocbe used to minimize the localization accuracy at un-trusted
known as ranging, and combines the estimated distance tohates under a certaBwverage power constraintis.
least three anchor nodes to estimate its location in 2D [Big.  Previous work in the area of secure localization has focused
On the other hand, anchor-free localization algorithms dib nmainly on two problems: location verification and robust-sel
assume the existence of anchor nodes and estimate thegeldtication estimation. The goal of location verification tech
topology of the network. This paper focuses on anchor-baseidues, e.g.[[4], [[5], is to prevent malicious nodes from
localization algorithms. claiming to be at other locations to gain access to the nétwor
In many applications of wireless sensor networks, sensasources. On the other hand, the goal of robust self-lmtati
nodes are deployed in hostile environments where trustdd astimation techniques, e.d.l [6]./[7], is for a sensor node to
un-trusted nodes co-exist. In such hybrid networks, it bee® estimate its own location in the presence of attacks, such as
important to allow trusted nodes to share information white malicious anchor nodes. Recently, we addressed anothectasp
the same time, prevent un-trusted nodes from gaining acce$she the physical layer location privacy problem, which is
to this information. In the context of location determiatj the un-observability of anchor nodes [8].
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nodes with the estimated distances, a sensor node can &stima
its location in 2D (Fig[L).

C. Cramer-Rao Lower Bound

In the field of estimation, the Cramer-Rao bound is a

lower bound on the covariance of an unbiased estimator. Any

p— estimator achieves this lower bound is said to be an efficient
, estimator. In some cases, no estimator exists which achieve

this lower bound.

Cramer-Rao bound applies only to unbiased estimators

[14]. In other words, there may exist a biased estimator that
achieves a lower variance than Cramer-Rao lower bound. The

Cramer-Rao lower bound (CRLB) is the inverse of the Fisher

Fig. 1. NodeS can estimate its location in 2D using the location beaco i ; i i i
received from the three anchor nodésB, andC and the estimated range tonﬁqforma'tIon matrlxl(e). The elemen(m, n) n 1(9) IS given

them. Similarly, three un-trusted nodds B, andC' can cooperate to estimate by:

the location of an anchor nodg. 9

06,,00,,

The rest of this paper 1 org_anlzed as follows. Secnovr\}heree is the vector of parameters;, is the k' parameter,

[ provides background information. Sectign]Ill formulate . . . o
. : : .~ 7 is the vector of observations, anfdZ|0) is the likelihood

the problem. TheHyberLoc algorithm is proposed in Sec:tlonfunction
V] Section[V finds optimal probability distribution that rca '
be used to _minimize the localization accuracy at un-trusted I1l. PROBLEM FORMULATION
nodes. Section VI evaluates the performance ofHlgieerLoc ] ] ) ) ]
algorithm through simulations and implementation. Sectio 'his section outlines the system model, security require-

I n(0) = —E| log f(Z10)] (1)

VM concludes the paper. ments, and signal model.
Il. BACKGROUND A. System Model
A. Anchor-based vs. Anchor-free Localization We assume a hybrid wireless sensor network where anchors,

Location discovery algorithms for sensor networks can Bg!Sted and un-trusted nodes co-exist. Anchor nodes period
classified as either anchor-based or anchor-free. Anchseey ic@lly broadcast their encrypted beacon frames. The power
algorithms, e.g/[9],[10], assume that a small percentégjeeo levels used by anchors are chosen following a certain pibbab
nodes, i.e. anchor nodes, are aware of their positions. @ncHfy distribution with a constraint on the average transioiss
nodes broadcast their location information to their neagsb POWer. All nodes, including un-trusted nodes, are assumed t
which use this information to estimate their own locatiam. 1US€ the same hardware and use received signal strength for
anchor-free algorithms, e.@. [11].]12], no special anatuges distance estimation. _
exist in the network. In this case, the algorithm estimates Furthermore, we assume that un-trusted nodes are passive,

relative positions, and the coordinate system is estadish-€- they do not inject any traffic, and have full access to the
by a reference group of nodes. Relative positioning is sufietwork traffic. In addition, we assume that anchor nodes and

able for some applications, e.g. location-aided routing].[1 trusted nodes are not compromised. The goal of the un-ttuste

The accuracy of anchor-free algorithms is typically lesanth nodes is_to es_timate the d_istance to anchor nodes_, based on
anchor-based algorithms. This paper focuses on anchedbd&€ Physical signal transmitted by these nodes. Finally, we

algorithms. assume that un-trusted nodes use the Maximum Likelihood
(ML) estimation method to obtain transmission power levels
B. Range Estimation and estimate their locations.

Ranging is the process of estimating node-to-node distanc
In order to determine its location in 2D, a sensor node need
estimate its range to three or more anchor nodes. Localizati We have two main security requirements that should be
methods are mostly based on either Time-of-Arrival (ToARatisfied.
Angle-of-Arrival methods (AoA), or Received-Signal-Sigth 1) Location Information Secrecy: Anchor nodes should be
(RSS) methods. This paper focuses on the RSS-based raalgle to broadcast their position information periodicadlyd
estimation methods where the propagation loss can be caltusted nodes should be able to use this information to agtim
lated based on the difference in power between the traresiittheir position. On the other hand, un-trusted nodes shooid n
and received signals.Theoretical and empirical modelssed be able to use anchor nodes’ beacon frames to gain informatio
to translate this loss into a distance estimate. Combirtieg tabout anchor nodes’ locations. This can be achieved, for
positioning information received from at least three amchexample, by encrypting the anchor nodes’ beacons.

. Security Requirements



2) Physical Layer Location Privacy: Un-trusted nodes V. OPTIMAL DISTRIBUTION
should not be able to exploit the measured physical signal
(RSS) to estimate the location of anchor nodes. This paper
focuses on this security requirement. A. Satistical Approach

C. Sgnal Model

~ We consider a signal propagation model that has a dominanpne way of finding the probability distribution that mini-
line-of-sight (LOS) component. In the presence of Additivizes the localization accuracy at un-trusted nodes is tb fin
White Gaussian Noise (AWGN), the probability density funghe probability distribution that maximizes the localipat

tion (PDF) of the received signal power [15] is: variance at un-trusted node. Thus, we can find the CRLB for
2+ hx “hi the estimated distance at un-trusted nodes for every pilabab
F(zlh,2) = o5 exp(=——=)lo(—5~) (2) tic distribution. Then, choose the distribution with thetést
lower bound.

where
« z: is the received signal power. 1) Analysis: As a result of the direct relationship between
« h: is the channel gain which is a function of distance. the estimated channel gaih)(and the estimated distance, the
o x: is the transmission power. variance of the estimated channel gain perfectly refleas th
« 202: is the total variance of noise. variance of the estimated distance.
« Io(): is the modified Bessel function of order 0. To find the CRLB for the un-trusted estimated channel gain,

For a sensor node employing the ML estimation method {ge calculate Fisher information matrix. For un-trusted emd
determine the distance to a certain transmitting node, tﬂ% unknowns are the channel gdmand the transmission

likelihood function (<) usingm independent measurementpower sequence;, vV k = 1,2, ...... ,m. In this case, the un-
is: trusted should estimate: + 1 parameters. Thus, the Fisher
ﬁ 1 2 + hay, I (1 /—Zkh:vk) 3 information matrix is am + 1xm + 1 matrix.
o 20 202 o? For the Likelihood function in equatidnl 3, ;(#) can be

The ML technique is based on findihgandz,, that maximize calculated using:

K. 1) Fori=1andj=2,3,.....m+1

IV. HYBERLOC ALGORITHM
This section provides a detailed description of the progose

2
I—r|]yberL0(|:datI)gorithr(1j1 t(;;mdhthe OEtimaI probability distribution 92 s K _1[20210(\/4 1haj_ L) @
that could be used by the anchors. A log K =— 5
| T o
A. Algorithm -
The proposedHyberLoc algorithm addresses the physical Zj_ljo(i\/zﬂ'*lz’”j*l)
layer location privacy mentioned in sectién_I-B. Before —= : ‘; :
transmitting a beacon frame, the anchor node chooses a oA I (V)
random transmit poweg, includes it in the beacon frame 2
! ! \/zj—1hz
and transmits the encrypted beacon frame using the selected +ij111(%) ]
transmit powerz. N 2
When an un-trusted node receives a beacon frame, it cannot ol o2 )

determine the transmit powar and hence has higher ambi-

guity which leads to lower accuracy in location estimation.

We want to emphasize here that encryption alone, without 2) For

changing the transmit power, is not enough as three unettust

nodes can cooperate to determine the location of the anchor )

node, based on the measured RSS at the physical layer, as 92 08 K zm: — —+/ (znhxy)Io( VZ"’””"
= o

i=1landj=1

ShOWﬂ in F|ng. ahQ 4 m 2
On the other hand, a trusted node receiving a beacon frame n=1 hV ZnhnotIo( )5
can use the shared encryption key with the anchor node to )
get the transmit powerg, that was included in the frame, +2021 (VZ"’””" )Il(vzgéwn)
removing the ambiguity introduced by changing the transmit o o)
Cowor g guity y ging h /—ZnhanAIO(\/—nh Veuhiy )
In the next section, we analytically find the probability . Il(—\/zg @)2 e

distribution that could be used by anchors to minimize the . \/W 2
localization accuracy at un-trusted nodes. hy/znhanot Io(¥225)
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V) Untrusted, using exponential distribution —&—
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5 log K = (7
aacj—l Fig. 2. The Cramer-Rao Lower Bound for trusted and un-tcustedes using
2 exponential and normal distribution

\/ h
_hZJ 1 —4/ 27 1h$J 1 Io 5o ] T 1)
4 \/T 2
xj—l\/ zj—1thwj_10tlo(————) power levels subject to an average power constraint (

20210(\/471;1%71)Il(\/z];l;wjfl) Based_on_ the current sensor network hardware, €.d. [_1_7],
g g 5 transmission power can be selected from a set of pre-spcifie
xj,l\/mo‘lfo(vzji;hqu) discrete power levels. We formulate the problem as a convex
9 optimization problem that could be solved using Lagrange
. (RS T R | multipliers.
$j_1\/2j_1h$j—10'410(—W)2 1) ’\.I(:-.tatlon-s. H H
: : o « z: is a discrete random variable representing the power
5) Fori#1,j#1andi#j level used by anchors.
9 o n: is the number of possible power levels.
logK =0 (8) o u: is a target average power that anchors are designed to
8:318 use.

2) Results: Using the above information matrix and aver- « P(z): is the probability distribution used by anchors to
aging over sufficient number of iterations, Fig. 2 shows the generater.
CRLB for trusted and un-trusted estimated channel gaineNot « H(z): is the entropy of the probability distributioR(z)
that the for trusted nodes, the CRLB is much lower than given by:
un-trusted nodes’ CRLB as trusted nodes know exactly the
transmission power sequence used by anchors so they will ZP ) log P(z 9)
only have to estimate the channel gair-or un-trusted nodes,
they will have to estimate not only the channel gain but also 2) Optimization Problem:
the the transmission power sequengey k =1,....m

3) Discussion: Fig.[2 shows that CRLB approach does not -
guide us to the optimal probabilistic distribution that slibbe A = Z; P(wi)log P(x:) (10)
used by anchors to maximize the estimated distance variance R
measured at the un-trusted nodes. As is evident in the[FFig. 2, St Z P(z;) =1 (11)
CRLB is almost the same regardless of distribution. However i—1
this approach shows the promise of the propolkigterLoc
algorithm in degrading the localization accuracy at ursted Z%‘P(wi) =M (12)
nodes. '

In the next section, we use an information theoretic agve define the Lagrangiad,, as:
proach to find the variance-maximizing probabilistic disir

tion. L=—3"P(a)log Plz)) + M S Pla) + de 3 wiP(x)
B. Information Theoretic Approach i=1 i=1 i=1 (13)

As a criterion for selecting a probability distribution of
transmission power, we choose to find the distribution thathere \; and A\, are Lagrange multipliers. This problem is
maximizes the entropy (uncertainty) [16] over all possibleonvex and the optimaP(x;) can be obtained by differenti-



ating L with respect toP(z;) and equating to zero. S o008 ‘
w ¢ Un-trusted, using exponential distribution ——
oL § 007 | Un-trusted, using normal distribution —1: |
—— = —log P(x;) — 1 e— 14 i) 4 Un-trusted, using uniform distribution —#
oP(z) og P(x;) + A+ Az =0 (14) g \ usted, using uni T|ruuSLd
p - = 0.06 Ny
(z;) = exp(A1 — 1) exp(rex;)  (15) < \ N\
P(x;) = kexp(—az;)  (16) RN
S o004 ]
From constraintg 11 arid 11 2: g —
n g 0.03
Z kexp(—ax;)) —1=0 a7) 8 oot
i=1 g
n 5 0.01 i i i i ‘
Z(Eikexp(—a(gi) —u=0 (18) 20 30 40 50 60 70 80 90 100
i=1 Number of Frames
By solving Equationg-17 arid 18 simultaneously, the values fo (a) Average SNR = 16 dB.
k and« are determined.
0.09

3) Discussion: Equation[I6 shows that the discretized
exponential distribution is the entropy-maximizing distition
when there is a constraint on the average transmission power
Thus, when the anchor nodes use a discretized exponential
distribution, they make it harder for un-trusted nodes tal fin
the x; sequence used, hence, minimize their localization

T
Un-trusted, using exponential distribution —&—
Un-trusted, using normal distribution —@—
Un-trusted, using uniform distribution ——&—
Trusted ——

0.08

0.07

0.06

Normalized Standard Deviation of Distance Error

accuracy. On the other hand, the localization accuracy at 0-05\

trusted nodes is not affected by the type of the distribution 0.04 \\

as the transmit power is encrypted in the frame. Note that if

the average power is not constrained, the uniform distiobut 0.03

would be the entropy-maximizing distribution. 0.02 ‘ ‘ ‘ ‘

20 30 40 50 60 70 80 90 100

VI. PERFORMANCEEVALUATION Number of Frames

In this section, we evaluate the performance of the proposed (b) Average SNR = 9 dB.
HyberLoc algorithm using simulation and implementation. Our
goal is to show that when a proper probabilistic distribaitio 01 :
: H : feoi Un-trusted, using exponential distribution —&—
is used by. anghors to ra}ndomlze their transmission power, 008 Un-trusted, using normal distribution —&— |
a degradation in localization accuracy at un-trusted nasles Un-trusted, using uniform distribution —d—
0.08 Trusted —#— .|

achieved while the localization accuracy at trusted noslesi
affected. We evaluate the performance under three differen
probabilistic distributions: uniform, discretized norinand
discretized exponential distributions (optimal disttiba).

0.07

0.06 \
0.05 \\
0.04 ‘\-\

0.03

A. Performance Metric

The performance metric used is the standard deviation of
estimated distance error normalized by the true distartce. |
reflects the localization accuracy over a sufficient number o 002 20 30 40 50 60 70 80 ;O 100
samples (frames). Our goal is to keep this metric as high as
possible for un-trusted nodes. On the other hand, we should
guarantee a reasonable anchor localization accuracyufstett

Normalized Standard Deviation of Distance Error

Number of Frames

(c) Average SNR = 6.5 dB.

nodes. Fig. 3. Normalized standard deviation of distance error &mation of the
number of frames used for estimating the distance usingrdift probability
B. Smulation Experiment distributions.

1) Environment: The algorithm is implemented using Mat-
lab. Trusted and un-trusted nodes are placed at equal cistapower leveld. As previously mentioned, trusted and un-trusted
from the anchor node. Since our goal is to quantify theodes use ML to localize the anchor node but only trusted
performance advantage of trusted nodes over un-trustegsnod

. . . 1 i
without loss of generality, all experiments have been per- Note that typical sensor nodes, elg.][17], can have up to 8Eptevels.
f d . h de. one trusted node and one Since adding more power levels will increase the search simmificantly at
ormed using one anchor noae, u Wlirusted nodes, our results here present a lower bounbeoarnthancement

trusted node only. Anchors are assumed to have four possitieined using thétyberLoc algorithm.



| | Min. | Avg. [ Max. |

5
SNR=16dB | 3.2 34 35 fim -trusted, using exponential distribution —&—
SNR= 9 dB 1.4 1.5 1.6 § 0.055 Un-trusted, using normal distribution —@— -
SNR= 6.5 dB 1.2 1.3 1.4 ] n-trusted, using uniform distribution ——&—
‘(Qﬂ 0.05 Trusted —#— |
TABLE | 5
RATIO OF LOCALIZATION ACCURACY ENHANCEMENT BETWEEN THE .5
TRUSTED NODE AND UN-TRUSTED NODE WHEN USING THEHybeI’LOC f;‘
ALGORITHM FOR DIFFERENTSNR. g
E
S .
@
& 0.025 \\
nodes know exactly the power level used for every frame. That % 0.02
is, the unknown parameters to be estimated in Equéalion 3 are £ 0015 ‘ ‘ ‘ :
h for trusted nodes, andl and all z; for un-trusted nodes. = 20 30 40 50 60 70 80 90 100

For un-trusted nodes, the optimal sequence is obtained via Number of Frames

exhaustive search. In order to reduce the domain of exlausti

search, the un-trusted nodes divide all received frames ifiig. 4. Results of normalized standard deviation of estuhatistance error
blocks of sizes, exhaustively search for the power level'® MPlementing HyberLoc on TelosB motes.

sequence that maximizés, and then average the estimates for

h obtained from each block. In our simulatiosis chosen to tial distribution, the maximum degradation in the localiaa

be four. Largers does not increase the accuracy significantlgccuracy at the un-trusted node is achieved
but increases the search time exponentially. '

. Unlike the simulation results (Figl 3), the figure shows some
we eyaluate the performg nce c.)f thiyberLoc algorithm crossovers between uniform and normal distributions @irve
under different signal to noise ratio (SNR) levels. Notet th

. S o : : 3s a result of the multi path fading encountered in indoor
since our metric is normalized by the actual distance bmvaeegnvironments

node and the anchor node, the absolute distance is not attlu
as a parameter. D. Summary

~2) Results: Fig. [3 provides the normalized standard de- | his section, we evaluated the performance of the pro-
w_atpn Qf estimated Q|st.ance error for _dn‘fergnt probipil posed HyberLoc algorithm through simulations and imple-
distributions of transmission power, obtained via Montél€a antation. The results show that thigber Loc algorithm can

simulations, as a function of the number of frames used se degradation in the localization accuracy at unedust
for estimating the distance for different levels of SNR. Thggqes without affecting the accuracy at trusted nodes. The

average poweyy, is set to -3 dBm. The figure verifies that thgegits also show that the discretized exponential distich
discretized exponential distribution maximizes the ndized inimizes the accuracy at un-trusted nodes validating the

standard deviation of estimated distance error. The figisee 3analytical results in SectidalV.

shows that using thédyberLoc algorithm, the localization

accuracy at trusted nodes is at least 3.2, 1.4, and 1.2 times VIl. CONCLUSION

better than that at un-trusted nodes for SNIRS,9, and 6.5 | this paper, we focused on the physical layer location

dB respectively. As the number of frames used in estimatigivacy problem, where an anchor node is required to hide its
increases, the localization accuracy at both trusted and lr!ﬂ}]ysicaj location from un-trusted nodes. We have proposed
trusted nodes increases. the HyberLoc algorithm for solving the physical layer loca-
As the SNR increases, the difference between the d|ﬁerqmn privacy and evaluated its performance through arﬁ'ys|
distributions increases as well as the difference betwmsied simulations and imp'ementation_ We proved ana|ytica”&tth
and un-trusted nodes. the discrete exponential distribution is the entropy-maxing
Table[l summarizes the results. distribution under a given average transmit power constrai
C. Implementation Our resu_lts §how t.hat.thtHyberLoc algorithm can cause
degradation in localization accuracy at un-trusted nodgs (

1) Emvironment: We ha\_/e |mplem§nted our a'g‘_’r'thm 0Ny 3.5 times worse) without limiting the localization acaay
TelosB motes[[17] in an indoor environment replicating thSt trusted nodes. In addition, it has a low overhead and does

conﬂgura_tlon used in Matlab 5|mulat|0ns_where the anchqrbt need any additional hardware, making it suitable for the
trusted distance and anchor-untrusted distance are 1m. urce-constrained sensor networks

anchor node periodically broadcast its beacon frames. Botl
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