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Abstract—A single source network is said to benemory-free if
all of the internal nodes (those except the source and the ig)
do not employ memory but merely send linear combinations of
the symbols received at their incoming edges on their outgog
edges. In this work, we introduce network-error correction for
single source, acyclic, unit-delay, memory-free networkswith
coherent network coding for multicast. A convolutional coc is
designed at the source based on the network code in order to
correct network-errors that correspond to any of a given set
of error patterns, as long as consecutive errors are separat
by a certain interval which depends on the convolutional cod
selected. Bounds on this interval and the field size required
for constructing the convolutional code with the required free
distance are also obtained. We illustrate the performance fo
convolutional network error correcting codes (CNECCs) degned
for the unit-delay networks using simulations of CNECCs on a
example network under a probabilistic error model.

|I. INTRODUCTION

correcting codes (which we shall henceforth refer to as
CNECCs) have been employed for network error correction
in instantaneous networks in [16].

A network use€[16] is a single usage of all the edges of
the network to multicast utmost min-cut number of symbols
to each of the sinks. Arrror patternis a subset of the set of
edges of the network which are in error. It was shown in [16]
that any network error which has its error pattern amongst a
given set of error patterns can be corrected by a proper ehoic
of a convolutional code at the source, as long as consecutive
network errors are separated by a certain number of network
uses. Bounds were derived on the field size for the consbucti
of such CNECCs, and on the minimum separation in network
uses required between any two network errors for them to be
correctable.

Unit-delay networks[13] are those in which every link
between two nodes has a single unit of delay associated with

Network coding was introduced in [1] as a means tib. In this work, we generalize the approach of [16] to theecas

improve the rate of transmission in networks, and ofteneaehi

of network error correction for acyclic, unit-delay, memor

capacity in the case of single source networks. Linear niétwdree networks. We consider single source acyclic, unigylel
coding was introduced in [2]. An algebraic formulation ofmemory-free networks where coherent network coding (fer th

network coding was discussed in [3] for both instantaneo
networks and networks with delays.
Network error correction, which involved a trade-off be

pgrpose of multicasting information to a set of sinks) haarbe
implemented and thereby address the following problem.
- Given an acyclic, unit-delay, single source, memory-free

tween the rate of transmission and the number of correctabriwork with a linear multicast network code, and a set of
network-edge errors, was introduced in [4] as an extensienor patterns®, how to design a convolutional code at the
of classical error correction to a general network settingource which will correct network errors corresponding to
Along with subsequent works [5] and [6], this generalizeel tithe error patterns in®, as long as consecutive errors are

classical notions of the Hamming weight, Hamming distanceg¢parated by a certain number of network uses?
minimum distance and various classical error control cgdin The main contributions of this paper are as follows.

bounds to their network counterparts. In all of these woitks,
is assumed that the sinks and the source know the network
topology and the network code, which is referred to as e
coherent network codingNetwork error correcting codes were
also developed fonon-coherent (channel oblivious) network
coding in [7], [8] and [9]. Network error correction under
probabilistic error settings has been studied in [10]. Most
recently, multishot subspace codes were introduced inffirl]
the subspace channel [7] based on block-coded modulation.

A set of code symbols generated at the source at any
particular time instant is called generationof code symbols.
So far, network error correcting schemes have been studied
only for acyclicinstantaneougdelay-free) networks in which
each node could take a linear combination of symbols of only
the same generation.

Convolutional network codes were discussed in [12]-[14] «
and a connection between network coding and convolutional
coding was analyzed in [15]. Convolutional network error

Network error correcting codes for unit-delay, memory-
free networks are discussed for the first time.

A convolutional code construction for the given acyclic,
unit-delay, memory-free network that corrects a given
pattern of network errors (provided that the occurrence
of consecutive errors is separated by certain number of
network uses) is given. For the same network, if the
network code is changed, then the convolutional code
obtained through our construction algorithm may also
change. Several results of this paper can be treated as
a generalization of those in [16].

We derive a bound on the minimum field size required
for the construction of CNECCs for unit-delay networks
with the required minimum distance, following a similar
approach as in [16].

We also derive a bound on the minimum number of
network uses that two error events must be separated by
in order that they get corrected.
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« We also introduceprocessing functionsit the sinks in transmit a linear combination of the incoming symbols orirthe
order to address the realizability issues that arise in tbetgoing edges.
decoding of CNECCs for unit-delay networks. Let s € V be the source node anfl be the set of all
« We show that the unit-delay network demands a CNEC@ceivers. Let,. be the unicast capacity for a sink ndflec 7
whose free distance should be at least as much as that.efthe maximum number of edge-disjoint paths frero T'.
any CNECC for the corresponding instantaneous netwofken
to correct the same number of network errors. n = minn
« Using a probabilistic error model on a modified butterfly rer
unit-delay memory-free network, we use simulations t& the max-flow min-cut capacity of the multicast connection
study the performance of different CNECCs.
« Towards achieving convolutional network error corre®. Network code

tion, we ao_ldress the issue of network coding for an We follow [3] in describing the network code. For each node
acyclic, unit-delay, memory-free network. As a by-

. . X v €V, let the set of all incoming edges be denotedlhyv).
product, we prove that an-dimensional linear network Then|T';(v)| = 6;(v) is the in-degree ob. Similarly the set

code (a set of local kernels at the nodes) for an acycligf all outgoing edges is defined i (v), and the out-degree

i_nstantaneous networ_k continL_Jes to_beradimensional oSthe nodes is given by|T'o(v)| = o (v). For anye € £ and

linear network code (i.e the dimension d_oes not _reducge V, let head(e) = v, if v is such that € T';(v). Similarly,

for the same acyclic network, however being ofunlt-dela%t tail(e) = v, if v is such thate € To(v). We will assume
and memory-free nature. an ancestral ordering ofi of the acyclic graphg.

The rest of the paper is organized as follows. In Sedfibn I, The network code can be defined by the local kernel
we discuss the general network coding set-up and netwQftrices of sized; (v) x do(v) for each nodev € V with
errors. In Sectiori I, we give a construction for an inpugnries fromF,. The global encoding kernels for each edge
convolutional code for the given acyclic, unit-delay, memo can pe recursively calculated from these local kernels.
fr_ee network which shall correct errors corresponding t0 aTpe network transfer matrix, which governs the input-otitpu
given set of error patterns and also derive some bounds on Fb%tionship in the network, is defined as given in [3] for an

field size and minimum separation in network uses betwegngimensional network code. Towards this end, the matrices
two correctable network errors. In Section] IV, we give SOM& i and B (for every sinkT € T are defined as follows.

examples for this construction. In Sectigd V we provide The entries of the: x |€| matrix A are defined as
a comparison between CNECCs for instantaneous networks

[16] and those for unit-delay, memory-free networks of this Aij = { aie, fej€ FQ(s)
paper. In Sectiof VI, we discuss the results of simulations - 0 otherwise

of different CNECCs run on a modified butterfly networkyherea; ., € I, is the local encoding kerel coefficient at
assuming a probabilistic model on edge errors in the netwogke source coupling inputwith edgee; € T'o(s)
We conclude this paper in Sectibn VIl with some remarks and

T

some directions for further research. The entries of the€| x || matrix K are defined as
Il. PROBLEM FORMULATION - CNECCS FOR UNITDELAY, K;j= Big I head(e;) = tail(e;)
' 0 otherwise

MEMORY-FREE NETWORKS
where the set of3;; < F, is the local encoding

) ) ) ) ) kernel coefficient betweene; and e;, at the node
We consider acyclic networks with delays in this paper, the_ head(e;) = tail(e;).

model for which is as in [3], [13]. An acyclic network can be
represented as an acyclic directed multi-graph (a graph thar, every sinkl' € T, the entries of thé€| x n matrix BT
can have parallel edges between nodgs) (V,&) whereV .. defined as
is the set of all vertices anél is the set of all edges in the i
network. BT = { €y i ifej € F{(T)
We assume that every edge in the directed multi-graph i 0 otherwise
representing the network has us#pacity(can carry utmost where alle., ; € F,.
one symbol fromF,). Network links with capacities greater For unit-delay, memory-free networks, we have
than unit are modeled as parallel edges. The network has 1
delays, i.e, every edge in the directed graph represertiieg t F(z):= (I - 2K)
input has a unit delay associated with it, represented by W@ere 1 is the |£| x |€]| identity matrix. Now we have the
parametet. Such networks are known asit-delay networks  following definition.
Those network links with delays greater than unit are matlele pefinition 1 ( [3]): The network transfer matrixMy(z),
as serially concatenated edges in the directed multi-gfEi  corresponding to a sink nod& € 7 is a full rank (over
nodes of the network may receive information of differer]ltq(z)) n x n_matrix defined as
generations on their incoming edges at every time instaat. W
assume that the internal nodes are memory-free and merely My (z) := AF(2)B" = AFr(2).

A. Network model



With an n-dimensional network code, the input and th&hen the output convolutional codk- is generated by
output of the network are-tuples of elements frorf, [[2]].
Definition [1 implies that ifz(2) € Fy[[2]] is the input to
the unit-delay, memory-free network, then at any particula
sink T € T, we have the outputy(z) € F7[[z]], to be D Network errors
y(z) = z(2)M7(2). Observing a ‘snap-shot’ of the network at any particular
time instant, we define the following terms. Asmror pattern
dh. as stated previously, is a subset&fwhich indicates the
edges of the network in error. Agrror vectorw is al x ||
) _ _ vector which indicates the error occurred at each edge. An

A primer on the basics of convolutional codes can bgyor vector is said to match an error pattéie w € p) if
found in AppendiXA. Assuming that am-dimensional linear 4| non-zero components ab occur only on the edges ip.
network code multicast has been implemented in the giva error pattern set® is a collection of subsets af, each of
single source unit-delay, memory-free network, we extéed t\yhich is an error pattern.

definitions of the input and output convolutional codes of | ot z(z) € F[[2]] be the input to the network , and €
q ’

CNECCs for instantaneous networks from [16] to the um%q\a be the error vector corresponding to the network errors

delay, memory-free case. that occurred at any time instant(i € ZJ, referenced from

. Definition 2: An mput convolutional codeCs, corres_pond- the first input time instant). Then, the outpyt(z) € F}'[[2]]
ing to an acyclic, unit-delay, memory-free network is a cony, any particular sinl” € 7 can be expressed as
volutional code of ratek/n(k < n) with a input generator

matrix G;(z) implemented at the source of the network. y(2) = (2)Mp(2) + wz'Fr(z).

Definition 3: The output convolutional codeCr, corre-
sponding to a sink nod& < 7 in the acyclic, unit-delay,
memory-free network is thek/n(k < n) convolutional code
generated by theutput generator matrixGo r(z) which is y(z) = x(2)Mr(z) + w(z)Fr(z)
given by

Gor(z) = [2 +2% 22434 24] .

C. CNECC:s for single source, unit-delay, memory-free n
works

In case there are a number of errors at a number of time
instants, we have the formulation as

Gor(z) = Gr(z)Mr(2) yvherein every monomial ol (z) € It?“c?[[z]] of .the formwi.zi
incorporates the error vectaw; € F;~' occurring at the time
with Mr(z) being the full rank network transfer matrixinstant;.
corresponding to an-dimensional network code.
[1l. CNECCs FOR UNIFDELAY, MEMORY-FREE
NETWORKS- CODE CONSTRUCTION AND CAPABILITY

A. Network code for acyclic unit-delay memory-free network

In Sectior1I[-B, we give a construction of a CNECC for a
given acyclic, unit-delay, memory-free network. Towardatt
end, we first address the problem of constructing network
codes for acyclic, unit-delay, memory-free networks. aligh
network code constructions have been given for acycli@amst
taneous networks [17], the problem of constructing network
codes for acyclic, unit-delay, memory-free networks is not
directly addressed. The following lemma shows that solving
ann-dimensional network code design problem for an acyclic,
unit-delay, memory-free network is equivalent to solvihgtt
of the corresponding acyclic instantaneous network with th
same number of dimensions.

Lemma 1:Let G(V,€) be a single source acyclic, unit-

Example 1:Consider the single source, single sink networ_ﬂelay’ memory-free netV\_/ork, _ar@nst be the corresponding
as shown in Fi@]1. Let the field under consideratioffheThe Instantaneous netv_vork ("? with the same graph as th&, of
local kernels at the intermediate node are unity. Theretfuze but no delay associated with the edges). Aebe the set of all

network transfer matrix at the sink is (assuming the give%(”) x 60(”_) matricesy v € V), i.e, the _S‘?t of Ioc_aI enqodmg
ancestral ordering) kernel matrices at each node, describingrérdimensional

network code (oveF,) for G;,.s: (n’ < min-cut of the source-
|1z 0 sink connections irG;, ;). Then the network code described
MT(Z) = i ;o .
by A continues to be am’-dimensional network code (over
F, (%)) for the unit-delay, memory-free netwotk
Proof: Let Mt be then’ x n’ network transfer matrix of
any particular sink nod& € T in G;,s:, and Mr(z) be the
Gi(z)=[1+2* 1+z+2%. n’ x n' network transfer matrix of the same sifikin G. We

Fig. 1. A simple min-cu network with one source and one sink

Suppose we choose the input convolutional cageto be
generated by the matrix



first note that the matriXd/; can be obtained from/(z) by
substitutingz = 2° = 1, i.e,

]\/[T = ]\/[T(Z)|z:1-

Given thatMy is full rank overF,, we will prove thatMr(z)
is full rank overF,(z) by contradiction.

Suppose thad/r(z) was not full rank oveff,(z), then we
will have

iy aZ 2)
2. fmmile) =mw(?) (1)
=1
wherem;(z) is thei'® row of Mr(z) anda;(z2), bi(z) € F,[2]
Vi=1,2,..,n are such thab;(z) # 0,a,;(z) # 0 for at least
onei, andged(a;(z),bi(2)) =1, ¥ 1.
We have the following two cases
Case 1b;(2)|.=1 # 0 Vi.
Substitutingz = 1 in (), we have
Z b—ml =My (2)

i=1 v

wherea; = a;(2)|.=1,b; = bi(2)]
is theit® row of M.

2=1 andm; = m;(2)].—1

Clearly m,,, # 0 since My is full rank, and hence the left
hand side of[{R) can’t be zero. Therefore some non- zerorllnea

combination of the first’ — 1 rows of M is equal to ItSn
row, which contradicts the given statement thdt- is full
rank overF,. ThereforeMr(z) must be full rank oveff,(z).
Case 2 b;(z)|.=1 = 0 for at least one.
Let 7/ C {1,2,...,n'} such that(z — 1)?'|b;(z) for some
positive integen’. Let p be an integer such that

max
p= €L’ p

Now, from (1) we haven

i=n'—1

> (z-1p

=1

ai(z)
bz(z)

Let Z C {1,2,..,n'} such that(z — 1)P|b;(2) V i € T.
Then we must have thatz — 1) t a;(2) V i € Z, since
ged(ai(z),bi(2)) = 1. Also, letb)(z) = b;(2)/(z—1)? € Fy[z]
Vi € Z. Hence we have

(-3 (31~ e
where b, =

bi(2)].=1 € F,\ {0}, since (z—1) { bi(2).
Substitutingz = 1 in (3), we have

m;(z) = (z = 1)’mu () (3)

i.e, a non-zero linear combination of the rows &f is
equal to zero, which contradicts the full-rankness\ff, thus
proving thatMr(z) has to be full rank oveF,(z). [ |

B. Construction

This subsection presents the main contribution of this work
We assume an dimensional network code:(being the min-
cut) on this network has implemented on the given network
which is used to multicast information to a set of sinks. We
describe a construction of an input convolutional code for
the given acyclic, unit-delay, memory-free network whiemnc
correct network errors with patterns in a given error patter
set, as long as they are separated by certain number of rietwor
uses.

Let Mr(z) = AFr(z) be then x n network transfer matrix
from the source to any particular sink € 7. Let ® be the
error pattern set given. We then define firecessing matrix
at sink T Pr(z), to be a polynomial matrix as

Pr(z) = p,(2) Mz (2)

where p,.(z) € F,[z] is someprocessing functiorchosen
such thatPr(z) is a polynomial matrix. Now, we have the
construction of a CNECC for the given network as follows.

1) We first compute the set of all error vectors having their
error pattern ind that is defined as follows

We = U {’LU = (wl,wg,...,ll}‘ﬂ) € F!f‘ | w € p} .
ped
2) Let

Wr = {wFr(z) | w € Ws} (4)

be computed for each sirik. This is the set ofi-tuples
(with elements froniF,[z]) at the sinkT" due to errors
in the given error patterns € ®.

3) Let the setV, C F}[z]

= |J {wr(2)Pr(z) | we(z) e Wr}  (5)
TeT
be computed.
4) Let
te=  max wpy (ws(2)) -

wherewy indicates the Hamming weight oveé,.
5) Choose an input convolutional co@gwith free distance
at least2t; + 1 as the CNECC for the given network.

C. Decoding

Before we discuss the decoding of CNECCs designed ac-
cording to Subsectidn1I9B, we state some of the resultefro
[16] related to the bounded distance decoding of convatatio
codes in this section.

Let C be a rateb/c convolutional code with a gener-
ator matrix G(z). Then, corresponding to the information
sequenceuq, u1,..(u; € Fg) and the codeword sequence
v, V1, ...(v; € IF;), we can associate an encoder state se-
quenceo, o1, .., Whereo, indicates the content of the delay
elements in the encoder at a timeWe define the set of
output symbols as

V[o,5) = [V0, V1, s V1]



The parametefy;,, .. (C) [16] is defined as follows. represent the output sequences at gihkvhere

Tay,..(C) := vm’j?é%’;fm J+1 [v1(2) v2(2) ... vn(2)
whereSy,... [16] is defined as the set of all possible truncated = u(2)Gor(2) = u(2)Gr(2)Mr(2)
codeword sequencas, ;, of weight less thaniy,..(C) that

start in the zero state is defined as follows u(z) being thek length vector of input sequences, and

Sdfme = {U[O,j) | WH (U[O,j)) < dfree(C),O'o =0,Vj> O} [wl(z) wQ(z) wn(z)]
wherewy indicates the Hamming weight ove,. represent the corresponding error sequences. Now, theitoutp
Then, we have the following proposition. sequences are multiplied with the processing of the network

Proposition 1 ( [16] ): The minimum Hamming weight transfer matrixPr(z), so that decoding can be done on the

trellis decoding algorithm can correct all error sequencegliis of the input convolutional code. Hence, we have
which have the property that the Hamming weight of the

error sequence in any consecutifg, . (C) segments (a [v)(z) vy (z) ... v/(2)]
segment being the set ofcode symbols generated for every — / /
¢ information symbols) is utmo piree(©)=1 Wi(2) 02(z) .o w2 Prlz)
| T2 — | = u(2)p, (2)G1(2) + [wi(2) wa2) .. wa(2)] Pr(2)
Now, we discuss the decoding of CNECCs for unit-delay o , , , 0
memory-free networks. Le&G(z) be thek x n generator = u(2)p, (2)Gr(2) + [wi(z) wh(2) - w(2)] (10)
matrix of the input convolutional code],, obtained from wherew’(z) = [w,(2) wh(2) ... w! ()] now indicate the

the given construction. Let'o r(z) = G1(2)Mr(z) be the
generator matrix of the output convolutional code, at sink
T € T, with Mz(z) being its network transfer matrix.

For each sinkl" € T, let

set of modified error sequences that are to be corrected. Now
the sink T decodes to the minimum distance path on the
trellis of the code generated by.(z)G;(z), which is the input
convolutional code a&/;(z) andp,.(2)G;(z) are equivalent

tr = max wg(w,(2)). generator matrices.
w, (2)EWr Remark 1:In [16], the approach to the construction of a
Let m7 be the largest integer such that CNECC for an instantaneous network was the same as in here.
djrec(Cr) > 2mrtr + 1. (©) However, the setV; was defined in [16] as
Clearly,m7 > 0. Each sink can choose decoding on the trellis W = U {WTMEI | w, € WT}
of the input or its output convolutional code based on the TeT
characteristics of the output convolutional code as fodlow = U {wFrM;' |wep} (11)
Case-A: This is applicable in the event of all of the TET,ped
following conditions being satisfied.
i) Wh_ere th_e neMork transfer matridd and Frr correspond to
my > 1 @ a sinkT' in the instantaneous network.
- In this paper, the definition forV, is as in [5) and involves
i.) the processing matri®r(z) instead of the inverse of the net-
Tis,..(Cr) < mpTy;,,. (Cs). (8) work transfer matrix. The processing functipp(z) for a sink

e ~1
iii.) The output convolutional code generator matri;.'sh;ntroficed bel_cal;ﬁe of (tjhe Ifactfthat th_el maézbg .(Z) th
Go(2) is non-catastrophic. ©) might not be realizable and also for easily obtaining the

Hamming weight of therror vector reflectiongw, (z) € W)

. . . . _1
In this case, the sin’ performs minimum distance decoding?y_"€MoVing rational functions ia/z *(z). _ _
directly on the trellis of the output convolutional cod;. The degree of the processing functipn(z) directly in-
Case-B:This is applicable if at least one of tBeconditions fluences the memory requirements at the sinks and therefore

of Case-A is not satisfied, i.e, if either of the followingShould be kept as minimal as possible. Therefore, with
co.nd|t|ons hil(; M (e M(2)
I) mr T Det (Mr(2))
i)  mp>1 and Ty, . (Cr)>mrTy,,.,. (Cs).
iii.) The output convolutional code generator matrixvhere then x n matrix M(z) is the adjoint ofMr(z), ideally
Go,r(z) is catastrophic. we may choose,.(z) as follows.
This method involves processing (matrix multiplicationings

Pr(z)) at the sinkT. We have the following formulation at _ Det (Mz(2)) 12
) pr(2) (12)
the sink7". Let 9(z)

[v1(2) v4(2) ... v (2)] =[v1(2) va(2) ... vn(2)] where g(z) = ged (m; ;(z), ¥V 1<4,5 <n), m;;(z) being

+[wi(z) wa(2) ... wn(z)] the (i,7)*" element of M ().



D. Error correcting capability then

In this subsection we prove a main result of the paper
given by Theoreni]1 which characterizes the error correcting ,, (e, 7 (ws(2)) < rn(n+1) (Tieay —1) +1].
capability of the code obtained via the construction of ®gbs
tion [l-B] We recall the following observation that in eyer whereW; is as in [5) in Subsectidn II[1B.
network useyp encoded symbols which is equal to the number  Proof: Any elementw,(z) € W, indicates then length
of symbols corresponding to one segment of the trellis, @re dequences that would result in an output veator( z) at some
be multicast to the sinks. sink T as a result of an error vectas in the network at time
Theorem 1:The codeC, resulting from the construction of 0, i.e

Subsectio IlI-B can correct all network errors that hawrth
pattern as some € ® as long as any two consecutive network w,(z) = wFr(2)p, (Z)Mgl(z) =w,(2)p, (Z)]fol(z)
errors are separated Wy, .. (Cs) network uses.

Proof: We first prove the theorem in the event of Case- Because of the fact that any polynomialfit{z) has degree
A of the decoding. Suppose the network errors are sugbmost7.., — 1, any error vectorw at time0 can result in

that consecutive network errors are separated’y..(Cs) non-zero symbols (ovef?) in w,.(z) at any sinkI” from the
network uses. Then the vector of error sequences atBink gt time instant only upto utmosk,;q, — 1 time instants.

w,.(2), is such that in ever{ly, . . (Cs) segments, the error

sequence has utmast Hamming weight (oveF,). Therefore Tieray—1
in mrTy,,..(Cs) segments, the Hamming weight of the error w,(z) = Z w, 2
sequence would be utmostrtr. =0 '

Then the given condition{8) would imply that in every
T4,,..(Cr) segments of the output trellis, the error sequenceserew,., € Fy.
have Hamming weight utmostrt,. Condition [T) together  The numerator polynomial of any elementz) € F,(z)
with (@) and Propositiofi]1 implies that these error sequencsf the matrix Mfl(z) has degree utmost (Tieray — 1)
are correctable. This proves the given claim that erroré wiTherefore, considering the polynomial processing matrix
their error pattern in® will be corrected as long as no tWop,(z) = pT(z)Mgl(z), we note that any element from
consecutive error events occur withiip, .. (Cs) network uses. Pr(z) has utmost [ (Tyeiay — 1) + 1] non-zero components
In fact, condition [(¥) and[{6) implies that network errorgoverF,), the worst case being non-overlapping ‘blocks’ of
with pattern in® will be corrected at sinkl', as long as n (7.4, — 1) + 1 non-zero components each.
consecutive error events are separatedy. . (Cr). Therefore the first non-zero symbol of . () (overFy) at
Now we consider Case B of the decoding. Suppose that ts&me time instant can result in utmosin (Tieray — 1) + 1]
set of error sequences in the formulation giveri(z), is due non-zero symbols imw,(z) (over F7). Henceforth, every
to network errors that have their pattern as sgn@®, such consecutive non-zero symbol (ovEF) of w, (z) will result
that any two consecutive such network errors are separgtedi® utmost additional F? symbols inw,(z). Therefore any

at least7y,, .. (Cs) network uses. w,(z) € Wy is of the form

Therefore, along with step of the construction, we have
that the maximum Hamming weight of the error sequence r[(n+1)(Taetay—1)+1]
w’(z) in any consecutivd, .. (Cs) segments (network uses) ws(2) = Z w2
would be utmost,. Because of the free distance of the code i=0

chosen and along with Propositibh 1, we have that such errors
will get corrected when decoding on the trellis of the inpuvherews ; € Fy. Therefore the Hamming weight (ovéY,)
convolutional code. m of anyw,(z) € W is utmostrn [(n + 1) (Tyetay — 1) + 1],
thus proving the lemma. ]
] ) Our bound on the field size requirement of CNECCs for
E. Bounds on the field size afd,,.. (C) unit-delay networks is based on the bound on field size
1) Bound on field sizeTowards obtaining a bound on thefor the construction of Maximum Distance Separable (MDS)
sufficient field size for the construction of a CNECC meetingonvolutional codes [18], a primer on which can be found in
our free distance requirement, we first prove the followingppendix(B.
lemmas. Lemma 3:A (n, k) MDS convolutional cod€ (over some
Lemma 2:Given an acyclic, unit-delay, memory-free netfield F,) with degreeé = [(2t —1)k/n] can correct any
work G(V, £) with a given error pattern s€t, let Ty.;,,—1 be error sequence which has the property that the Hamming
the maximum degree of any polynomial in t&z) matrix. weight(overF,) of the error sequence in any consecutive
Let wy indicate the Hamming weight ovef,. If r is the Ty, .. (C) segments is utmost
maximum number of non-zero coefficients of the polynomials Proof: Because the generalized Singleton bound is satis-
p,(z) corresponding to all sinks iff, i.e fied with equality by the MDS convolutional code, we have

r=maxwy (pr(2)), diree(C) = (n—k)(|6/k] + 1)+ 0+ 1.



Substituting[(2¢ — 1) k/n] for ¢, we have Thus, withd = 2rk [(n + 1) (Tgetay — 1) + 1] as in Corol-
lary[d, an input MDS convolutional cod® can be constructed
dfree(C) overF, if

= (- (120 ) o por - vy 41 2 [(n +1) (Taetwy — 1) 4+ 1

k nl(g—=1) and gq> — +2.
(2t —1) 2t—1)k -
dfree(C) = (n — k) ( e T Such an MDS convolutional code
the requirements in the construction
= dfree(C) > 2t + 1.
free(C) (dfree(Cs) > 2rn[(n+ 1) (Taetay — 1) + 1] + 1 > 2t, + 1),
Thus the free distance of the codeis at least2t + 1, and and hence the theorem is proved. [ |

therefore by Propositionl 1, such a code can correct all error2) Bound onTy,, .. (Cs): Towards obtaining a bound on

sequences which have the property that in any consecutiig,.. (Cs), we first restate the following bound proved in [16].

Ty,,..(C) segments, the Hamming weight (ovEp) of the

error sequence is utmost [ ] Proposition 2: LetC be a(c, b, §) convolutional code. Then
For an MDS convolutional code being chosen as the input

convolutional code (CNECC), we therefore have the follayin Tagyee(€) < (dfree (€) = 1) 0+ 1. (13)

corollary Thus, for a network error correcting MDS convolutional
Corollary 1: Let G(V,€) be an acyclic, unit-delay, codeC, for the unit-delay network, we have the following

memory-free network with a network code over a suffibound onTy;, .. (Cs).

ciently large fieldF, and & be an error pattern set, the Corollary 2: Let the CNECC C;, be a (n,k,d =

errors corresponding to which are to be corrected.(Ark) 2rk[(n + 1) (T4eray — 1) +1]) MDS convolutional code,

input MDS convolutional codeC, over F, with degree wherer andTy.,, are as in Lemmal2. Then

6 = 2rk[(n+1) (Tgeiay — 1) + 1] can be used to correct

all networ[lg—error)s(with ytheir)errol pattern i provided that Ldsr. (Cs) < 4r®nk [(n+ 1) (Taetay — 1) +1I°

consecutive network-errors are separated by at Egst, (Cs) +2rk (n = k) [(n+1) (Taetay — 1) + 1] + 1.

network uses, where andTy.;,, are as in Lemmal2.

Proof: From LemmdR, we have that in the construction
of Subsectiof 1B, the maximum Hamming weightof any direc(C) =(n—k)([6/k] +1)+0+1
element in the setV; is utmostrn [(n + 1) (Tgeiay — 1) + 1] . )

For an input MDS convolutior[lgal cogé’s toybe z:apa]ble With & = 2rk{(n +1) (Taetay — 1) + 1], we have
of correcting such errors with Hamming weight utmosi,..(Cs) = (n — k) {2r [(n + 1) (Tuetay — 1) + 1] + 1}
rn[(n+ 1) (Tgeiay — 1) + 1], according to Lemmia 3, a degree 42k [(n+ 1) (Tgetay — 1) + 1] + 1

d=2rk[(n+1) (T4eray — 1) + 1] would suffice. |
The following theorem gives a sulfficient field size for thdree (Cs)=2rn[(n+1) (Taelay — 1) + 1 +n—k+1

required network error correctin@, k) input convolutional Substituting this value Ofl e (Cs) and § in (I3), we have
code C; to be constructed with the required free distanggroved that
condition e (Cs) > 2ts + 1). ) 9

Theorem 2:The codeC, can be constructed and used td dsre. (Cs) < 4r°nk[(n +1) (Taeiay — 1) + 1]
multicast £ symbols to the set of sink§ along with the +2rk(n—k)[(n+1) (Tgetay — 1) + 1] + 1.
required error correction in the given acyclic, unit-delay

Proof: For MDS convolutional codes, we have

memory-free network with min-cut (n > k), if the field -
sizeq is such that IV. ILLUSTRATIVE EXAMPLES
nl(g—1) A. Code construction for a modified Butterfly network:
) and Let us consider the modified butterfly network as shown
q > maz {|7~|7 2rn” [(n +1) (Taetay —1) +1] + 2}. in Fig. [2, with one of the edges at the bottleneck node (of
n—k the original unmodified butterfly network) having twice the

Proof: From the sufficient condition for the existence ofl€lay as any other edge, thus forcing an inter-generatieati

with a set of sinksT", we have node defining the network code are the same as in that of
the instantaneous butterfly case. We assume the network code
q>|T| to be overF, and we design a convolutional code ovgy

Now we prove the other conditions. From the constructiotrqat will correct all single edge errors in the network, &d,

in [19], we know that gn, k, ) MDS convolutional code can hetwork error vectors of Ha'”f_‘m”f‘g weight utmds_t .
: For this network, the matrixd is a2 x 10 matrix having
be constructed ovdr, if

a 2 x 2 identity submatrix at the columns corresponding to
on? edges; andey, and having zeros everywhere else. We assume

nl(g —1) and 1> 7 (n—k) +2. BTt and B™: are10 x 2 matrices such that they have2a 2



and

PG = MG = | 5 5] an

Therefore,WW, can be computed to be as in[18) at the top
of the next page. Thus we have= 2, which means that we
need a convolutional code with free distance at léadtet
the chosen input convolutional code be generated by the
generator matrix

Gi(z)=[1+2> 1+z+2%.

This code has a free distandg,...(Cs) = 5 andTy;,, . (Cs) =

6. Therefore this code can be used to correct single edge
errors in the butterfly network as long as consecutive errors
are separated b§ network uses. With this code, the output
convolutional cod&€r, at sink7} is generated by the matrix

Gor (2) = [z+2° 2%+ 2%+ 2°]

Now Cr, has dfee(Cr,) = 5 and Ty, (Cr,) = 9 >
Ty,...(Cs). As condition [(8) is not satisfied, Case-B applies
and hence the sink; has to use the processing matfiy, (z),
and then decode on the trellis of the input convolutionakcod
Upon performing a similar analysis for sifik, we have Table

[ as shown at the top of the next page.

Fig. 2. Modified butterfly network with global kernels

identity submatrix at rowsg, es andeg, e1o respectively. With B- 4C2 combination network over ternary field
the given network code, we thus have the network transferWe now give a code construction for double edge error

matrices at sinkl; and7T; as follows correction in the,Cs combination network with a network
L 3 code overFs, shown in Fig[B with the giver dimensional
My, (z) = { 0 4 ] = AFr,(2) network code, the network transfer matrices and the prougss
matrices (upon choosing the processing functippgz) =
where pr(z) = z V1 < i < 6) corresponding to thé sinks are
. 0 0 0 0 1000 017 indicated in Tablé]l.
Fri(2) = 3ot 22 2 22 0 21 00
and 0
M) = | L 0| = arme)
where

F()— z3z4z2z3z20z010T
LEZL 0 2 0 0 0 0000 1

For single edge errors, we have the error pattern set to be
O ={{e;}:i=1,2,..,9,10}.
And thus the sedVs is the set of all vector&, that have
Hamming weight utmost. The set9Vr, andWr, as in [14)
and [1%) at the top of the next page. Now
1 [ 24 23
—1 o
M=% 5 7

z

and

_ 1 z 0
MT21(Z) = A [ A L3 } .
Fig. 3. 4C> unit-delay network
To obtain the processing matricéy, (z) and Pr,(z), let us
choose the processing functigns (z) = 24 andp,, (2) = 28, The matrix F'rr, (z) corresponding to sinK is the2 x 16

Then we have matrix as follows

3,2 T
PTl(Z)ZPTl(z)MTll(Z):[ 0 1] (16) Fr,(z) = g 8 8 (1) 0 .



Wr, = {(O, 0),(0,1),(1,0), (0, 2), (0, 2%), (0, 2, (0, 2%), (2, z?’)} (14)

Wr, = {(O, 0),(0,1),(1,0), (2,0), (2% 0), (23,0), (0, 2%), (2%, z)} (15)

Ws = {(0,0), (z%,2%),(0,1), (0, 2), (0,2%), (0,2%), (0, 2%), (2,0), (,0), (*,0) } . (18)
TABLE |

MODIFIED BUTTERFLY NETWORK WITHCs[dfree(Cs) = 5, Tuy,,, (Cs) = 6]

Sink | Output convolutional code generator matrix [Go 1, (2)] | dree(Cr,), Ta,,..(Cr,) | Decoding on
T [z +25 25 +27+ 2] 5,9 Input trellis
Ty 23+ 22 +2° 2+ 2%+ 23 6,12 Input trellis
For each sink, we have a similat-(z) matrix with az-scaled V. COMPARISON BETWEENCNECGS FOR
identity submatrix and an identity submatrix and zeros bt al INSTANTANEOUS AND UNIT-DELAY, MEMORY-FREE
other entries. NETWORKS
For double edge error correction, the error patternds& | the following discussion, we compare the CNECCs for

a given instantaneous network constructed in [16] and the
CNECCs of Subsectidn II[iB for the corresponding unit-gela
memory-free network.
With the given acyclic graptg(V, ), we will compare
hth maximum Hamming weight, of any n-tuple, overF,|z]
(ws(z) € Ws, whereW, is as in [3)) in the case of the unit-
delay, memory-free network with the graghand overF,
War, = {w,, (2)Pr,(2) | w,, (2) € Wr, } (ws € W, whereW; is as in[(11)) in the case of instantaneous
' 2 2 network with the graplg.
is computed to be as ii{R0), also shown at the top of the nextConsider someaw,(z) € W, such that

page. Similarly the set®), . (V1< <6)and we(2) = wFp(2)Pr(2) = wp, (z)FT(z)MT’l(z)

® = {{ei,e;}:i,j=1,2,..,15,16 andi # j} .

And therefore, we have the sétVs as the set of alll6
length tuples fromFs; with Hamming weight utmos®. The
setWr, V i can be computed to be as shown[in](19) at t
top of the next page. Now, the set

W = U Ws T, = [ws,1(2), ws 2(2); v, Ws 0 (2)] (21)
TieT wherep,.(z) and Pr(z) indicate the processing function and
are computed. It is seen that for this network, matrix chosen according td_{([12) for some sifik € 7,
and w, ;(z) € F,[z]. We haveMy(z)|,=1 = My and also
ts = max wy (ws(z)) =4 Fr(z)|.=1 = Fr, the network transfer matrix and ther
wa(2)EWs matrix of the sink7" in the instantaneous network. Now, by
and (27)), we have the:-length vectorw; ;,,: corresponding to the
error vectorw as
tr, = max wy (w.,.(2)) =2, V1<i<6. _
L w,, (2)EWT; H ( Ti( )) Ws inst = wFTMjfl — %
Pr (2)|Z:1

Therefore we need a convolutional code with free distemceyhere
to correct such errors. Let this input convolutional catle
overF3 be chosen as the code generated by

_ Det (Mr(2)) |1
pT(2)|Z:1 - g(z)|z:1

by (I2). Now Det (M1(2)) |.=1 = Det (Mr) # 0 since Mr

is full rank. Also,g(z)|.=1 # 0 for the same reason. Therefore,
This code is found to havéy,..(Cs) = 9 with Ty, (C;) = Pr (2)|2=1 # 0. Thus we have

14. Thus it can correct all double edge network errors as long Wit (Weinet) < wir (ws(2)). (22)
as consecutive network errors are separatedibynetwork ' -
uses. The output convolutional cod&s,, .. (Cr,), their free Therefore a CNECC for an instantaneous network may require
distance and’y,, . (Cr,) are computed and tabulated in Table lesser free distance to correct networks errors matchieg o
[Mat the top of the next page. For this example, all the sinks# the given set of pattern®, while the CNECC for the
satisfy the conditiond{7) an{](8) for Case-A of the decodiraprresponding unit-delay, memory-free network may resuir
and therefore decode on the trellises of the correspondiadarger free distance to provide the same error correction
output convolutional codes. according to the construction of Subsection T1I-B.

Gi(z) = [1—|—z2+z4—|—z5 2+z—|—2z2+2z4+z5}.



10

(2,0), (0, 2), (1,0), (0,1), (22,0), (0,2z), (2,0),
(07 2)’ (Z7 Z)? (Z7 22)7 (2Z7 Z)? (2'2’2'2)’ (Z—"_l?o)’ (Z+2’O)7
Wr, =< (224+1,0), (22+2,0), (z,1), (2,2), (22,1), (22,2), (1, 2), (29)
(1,22), (2,2),  (2,22), (0,z+1), (0,2+2), (0,2z+1), (0,22+2),
(1,1), (1,2), (2,1), (2,2), (0,0)
(2,22), (0,2), (1,2), (0,1), (22, 2), (0,2z),
(2,1), (0,2), (2,0), (2, 2), (2z,2z), (22,0),
W — (z+1,2242), (2+2,2241), (2z24+1,z2+2), (2z2+2,241), (2,22+1), (2,22+2), (20)
S (22,2 + 1), (22,2 +2), (1,2), (1,2z), (2,2), (2,22),
0,z +1), 0,z +2), 0,2z + 1), 0,2z + 2), (1,0), (1,1),
(2,2), (2,0), (0,0)
TABLE Il
4C> COMBINATION NETWORK WITH Cs[d frec(Cs) = 9, Tay, ., (Cs) = 14]
Sink | Network transfer matrix Processing matrix Output convolutional code dfree(CT;), | Decoding on
gen. matrix [Go, 1, (2)] Tiy..(Cry)
T My, (2) = ( 8 S ) Pr (z) = ( (1) (1) ) [4 23 +25 4+ 25 22422 4223 + 225 + 6] 59 Output trellis
T> M, (z) = ( 8 z ) Pr,(z) = ( (1) ? ) [2+ 23+ 25+ 28 22 + 229 6,11 Output trellis
T3 M, (2) = ( 8 2Zz ) Pr,(2) = ( (2) ? ) [2 423 4 25 + 26 22 4222 4 223 4 229] 6,11 Output trellis
Ty | Mr(z) = ( 0z ) Pr,(z) = ( )2 ) [22 + 22 + 223 4 225 4 26 22 4 226] 7,12 Output trellis
Ts | Mr(2) = ( 2 2ZZ ) Pr,(2) = ( g (2) ) [22 4 22 + 225 + 225 4+ 26 22 + 222 4 223 + 229] 9,14 Output trellis
To | Mr,(z) = ( z ;Z ) Pr,(z) = ( g f ) [22 4 226 2z + 222 + 223 + 225) 6,13 Output trellis

An example of this case is the code construction for doubM;1 matrix which does not require any memory elements
edge error correction for theCs combination instantaneousto implement.
network in [16] and for the,Cy unit-delay network in this
paper in Subsection TVIB. It can be seen that while for the VI. SIMULATION RESULTS
instantaneous network, the maximum Hamming weight of a
wy € Wy is 2, the maximum Hamming weight of any, (z) €
W; in the unit-delay network ist. Thus a code with free We define a probabilistic error model for a unit delay
distance5 suffices for the instantaneous network, while thBetwork G(V, £) by defining the probabilities of any set of

code for the unit-delay network has to have a free distance (i < |€]) edges of the network being in error at any given
to ensure the required error correction as per the conaructtime instant as follows. Across time instants, we assume tha

in Subsection 1II-B. the network errors are i.i.d. according to this distribatio

It is in general not easy to obtain the general conditions
under which equality will hold in[{22), as both the topology
and the network code of the network influence the Hamming

ngght of any element i;. For specific e>_(amples _hOWever-wherel < i < ||, andp,q < 1 are real numbers indicating
this can be checked. An example of this case is given jRe probability of any single edge error in the network and

between the single edge-error correcting code construldio the probability of no edges in error respectively, such that
the butterfly network (ovelFs) for the instantaneous case in, + Z\?I '

1
[16] (the additional intermediate nodégad(es) = vy = =P =1
tail(es), does not matter for the instantaneous case), and . ) -
for the unit-delay case in this paper in Subsection Jv-AB: Simulations on the modified butterfly network
In both the cases, we hawg = 2, which means that an With the probability model as ii(23) and {24) wit§] = 10
input convolutional code with free distanéeis sufficient to for the modified butterfly network as in Figl. 2, we simulate the
correct all single edge network errors. However, as we seeparformance of3 input convolutional codes implemented on
Subsectiof TV-A, processing matrices with memory elementtsis network with the sinks performing hard decision dengdi
need to be used at the sinks for the unit-delay case, whia the trellis of the input convolutional code. In the foliog
the processing matrix in the instantaneous case is just tiscussion we refer to sinkg andTy of Fig.[2 as Sink 1 and

W. A probabilistic error model

Prob.(i network edges being in erfoe p' (23)
Prob.(no edges are in errpe ¢ (24)
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Sink 2. The3 input convolutional codes and the rationality
behind choosing them are given as follows.

« Code(; is generated by the generator matrix
Gn(z)=[1+=z 1],

with djre(C1) = 3 and Ty, .. (C1) = 2. This code is
chosen only to illustrate the error correcting capability o
codes with low values off,..(C) andTy,,.. (C).

« Code(; is generated by the generator matrix

with less free distance. We recall from Propositidn 1
that both the Hamming weight of error events and the
separation between any two consecutive error events are
important to correct them. Because of the fads low
in the d¢r.. dominated region, the Hamming weight of
the modified error sequences &f{10) is less, and the
error events that occur are also separated by sufficient
number of network uses. Therefore the condition on the
separation of error events according to Proposifibn 1 is
automatically satisfied even for largg;, .. (C) codes.

Therefore codes which have more free distance (though

having moreTy,, .. (C)) correct more errors than codes

with low free distance (though having legs, . (C)). It

is noted that in this region the codl (which was de-

signed for correcting double edge errors on the unit-delay

network) performs better tha@, (which was designed
for correcting double edge errors on the instantaneous
version of the network).

o Ty,,.. dominated regionin the T,, . dominated region,
codes with lowerTy,, . (C) perform better than codes
with higher Ty, .. (C), even though their free distances
might actually indicate otherwise. This is because of
the fact that the error events related to the modified

Gr(z)=[14+2* 1+z+2%,

With dfrce(C2) = 5 andTy,, .. (C2) = 6. This code cor-
rects all double edge errors in the instantaneous version
(with all edge delays being zero) of Fid. 2 as long as they
are separated by network uses.

« Code(; is generated by the generator matrix

Gr,(z) = [1+z+z4 1+z2—|—z3+z4],

with dgre.(C3) = 7 and Ty, . (C3) = 12. This code
corrects all double edge errors in the unit-delay network
given in Fig.[2 as long as they are separated 1By
network uses.

We note here that values dfy, . (C) of the 3 codes
are directly proportional to their free distances, i.e, tioele
with greater free distance has higlgy, __(C). Also we note

error sequences df (1L0) occur more frequently with lesser
separation of network uses (ass higher). Therefore the
codes with lowefly, .. (C) are able to correct more errors

that with each of thes@ codes as the input convolutional
codes, the output convolutional codes violate at least dne o
the conditions of ‘Case-A" of decoding, i.€,](7},(8), &d.(9)
Therefore, hard decision Viterbi decoding is performedtoan t
trellis of the input convolutional code.

Fig.[4 and Fig[h illustrate the BERs for different values
for the parametep (the probability of a single edge error) of

(23). Clearly the BER values fall with decreasing between Sink 1 and Sink 2 is probably due to the unequal
It may be observed that between any two of theodes, oo protection to the two code symbols. When the code is
sayC; andC; (i,j = 1,2,3) there exist a particular value of. . o caq: i.e. withGp, (z) = [I 1+ 2], itis observed

p = pi,; where the BER performance corresponding to the g, e performance at the sinks are also interchanged for
codes gets reversed, i.e, if co@ehas better BER performanceunchanged error characteristics

thanC; for anyp > p; ;, thenC; performs better thad; for
anyp < p; ;. Although such a cross-over value pexists for
each pair of codes, we see thatattodes have approximately
the same crossovervalue in Fig[4 p ~ 0.16) and similarly In this work, we have extended the approach of [16] to
in Fig.[3 (p ~ 0.15). introduce network error correction for acyclic, unit-dgla

With respect to such crossover points between the two codaeemory-free networks. A construction of CNECCs for acyclic
C; and C;, we can divide the performance curve into twainit-delay, memory-free networks has been given, which cor
regions which we call asl,,,. dominated region’y values rects errors corresponding to a given set of patterns as long
being greater than the crossoyeralue) and d¢,.. dominated as consecutive errors are separated by a certain number of
region’ (p values being lesser than the crossopevalue), network uses. Bounds are derived on the field size required fo
indicating the parameter which controls the performance tife construction of a CNECC with the required error cormcti
the codes in each of those regions respectively. Again,Usecacapability and also on the minimum separation in network
of the 3 crossover points being approximately equal to ongses between any two consecutive network errors. Simoktio
another in each of Fig.l4 and Fifl 5, we divide the enti@ssuming a probabilistic error model on a modified butter-
performance graph of all th& codes into two regions. Thefly network indicate the implementability and performance
following discussion gives an intuition into why the paramtractability of such CNECCs. The following problems remain
etersTy,,..(C) anddy,..(C) control the performance in theto be investigated.
corresponding regions. « Investigation of error correction bounds for network error

e dfree dominated regionin the dy,... dominated region, correction in unit-delay, memory-free networks.

codes with higher free distance perform better than thoses Joint design of the CNECC and network code.

(even though the errors themselves must accumulate less
Hamming weight to be corrected) than the codes with
higherTy,,..(C) which demand more separation in net-
work uses between error events for them to be corrected
(despite having a greater flexibility in the Hamming
weight accumulated by the correctable error events).

Remark 2: The difference in the performance of code

VII. CONCLUDING REMARKS
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Probability of single error error(p) vs BER at Sink 1
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Fig. 4. BER at Sink 1

« Investigation of distance bounds for CNECCs.

(6]

« Design of appropriate processing matrices at the sinks
to minimize the maximum Hamming weight of the error 7

sequences.

« Construction of CNECCs which are optimal in some

sense.

(8]

« Further analytical studies on the performance of CNECCs

on unit-delay networks.

ACKNOWLEDGMENT

[9]

This work was supported partly by the DRDO-IISc pro-[10]
gram on Advanced Research in Mathematical Engineering to

B. S. Rajan.

REFERENCES

[1] R. Ahlswede, N. Cai, R. Li and R. Yeung, “Network Inforraat
Flow”, |IEEE Transactions on Information Theory, vol.46,.40July
2000, pp. 1204-1216.

[2] N. Cai, R. Li and R. Yeung, “Linear Network Coding”, IEEEans-
actions on Information Theory, vol. 49, no. 2, Feb. 2003, 3f1-381.

[3] R. Koetter and M. Medard, “An Algebraic Approach to Netko
Coding”, IEEE/ACM Transactions on Networking, vol. 11, r.Oct.
2003, pp. 782-795.

[4] Raymond W. Yeung and Ning Cai, “Network error correctiqgrart 1
and part 2", Comm. in Inform. and Systems, vol. 6, 2006, pp369

[5] Zhen Zhang, “Linear network-error Correction Codes icket Net-
works”, IEEE Transactions on Information Theory, vol. 54, 4, Jan.
2008, pp. 209-218.

[11]

(12]

(13]

(14]

[15]

(16]

Shenghao Yang and Yeung, R.W., “Refined Coding Boundadtwork
error Correction”, ITW on Information Theory for Wirelessetworks,
July 1-6, 2007, Bergen, Norway, pp. 1-5.

R. Koetter and F.R. Kschischang, “Coding for Errors armddtres in
Random Network Coding”, IEEE Transactions on Informatidredry,
vol. 54, no. 8, Aug. 2008, pp.3579-3591.

D. Silva,F. R Kschischang, and R. Koetter, “A Rank-MetApproach
to Error Control in Random Network Coding”, IEEE Transantoon
Information Theory, vol. 54, no. 9, Sept. 2008, pp. 39517396

T. Etzion and N. Silberstein, “Error-Correcting Codes
in Projective Spaces via Rank-Metric Codes and Ferrers
Diagrams”, [arXiv:0807.4846v3[cs.IT], July 2008, Availab at:

http://arxiv.org/abs/0807.4846.

D. Silva,F. R Kschischang, and R. Koetter, “Capacity rahdom
network coding under a probabilistic error model”, 24th mBigl
Symposium on Communications, June 24-26, 2008, Kingst@®®,U
pp. 9-12.

Roberto W. Nobrega and Bartolomeu F. Uchda-Filho, utfi4
shot codes for Network Coding: Bounds and a Multilevel con-
struction”, [arXiv:0901.1655v1 [cs.IT], Jan. 2009, Avale at:
http://arxiv.org/abs/0901.1655.

E. Erez and M. Feder, “Convolutional network codes’|TISlune 27-
July 2, 2004, Chicago, lllinois, USA, pp. 146.

N. Cai, R. Li, R. Yeung, Z. Zhang, “Network Coding Thebry
Foundations and Trends in Communications and Informatibeoty,
vol. 2, no.4-5, 2006.

S. R. Li and R. Yeung, “On Convolutional Network CodingSIT,
July 9-14, 2006, Seattle, Washington, USA, pp. 1743-1747.

C. Fragouli, and E. Soljanin, “A connection betweenwwk coding
and convolutional codes”, ICC, June 20-24, 2004, Parisndaa2004,
vol. 2, pp. 661-666.

K. Prasad and B. Sundar Rajan, “Convolutional codesNetwork-
error correction”/ arXiv:0902.4177v3 [cs.IT], August Z)QAvailable


http://arxiv.org/abs/0807.4846
http://arxiv.org/abs/0807.4846
http://arxiv.org/abs/0901.1655
http://arxiv.org/abs/0901.1655
http://arxiv.org/abs/0902.4177

13

Probability of single edge error (p) vs BER at Sink 2

05 5 T T T T

<]

0.45
0.4

035 .

0.25F A

0.2

BER at Sink 2

0.151

0.1r

0.05

Al

. Code 1 (Free dist. = 3, T, = 2.)
free H

6.

. Code 2 (Inst.) (Free dist. = 5, TO| =

free
=7,T, =12)

free

_._Code 3 (Free dist.

d, dominated
<—— free >

region

Td dominated region

free
\

| | |
8.5 0.45 0.35 0.3

0.4

| | |
0.25 0.2 0.15

Probability of single edge error (p)

Fig. 5. BER at Sink 2

at: | http://arxiv.org/abs/0902.4177. A shortened versibthis paper is

to appear in the proceedings of Globecom 2009, Nov. 30 - Dec.

Honolulu, Hawaii, USA.

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, &n,Jand
L. M. G. M. Tolhuizen, “Polynomial Time Algorithms for Multast
Network Code Construction”, IEEE transactions on infoiioratheory,
vol. 51, no. 6, pp. 1973-1982, June 2005.

J. Rosenthal and R. Smaradanche, “Maximum Distancear@ble
Convolutional Codes”, Appl.Algebra Engrg. Comm. Compuatl, 10,
no. 1, June 1999, pp. 15-32.

J. Rosenthal, H. Gluesing-Luerssen, and R.SmaraéafiConstruction
of MDS convolutional codes”, Appl.Algebra Engrg. Comm. Gauh,
vol. 47, no. 5, July 2001, pp. 2045-2049.

R. Johannesson and K.S Zigangirov, Fundamentals of/@uational
Coding, John Wiley, 1999.

G. D. Forney, “Bases of Rational Vector Spaces with imgtibns to
multivariable linear systems”, SIAM J. Contr., vol. 13, 1%.1975, pp.
493-520.

[17]

(18]

(19]

(20]

(21]

APPENDIXA
CONVOLUTIONAL CODES-BASIC RESULTS

Thus, Fy[z] C Fy[[z]]. We denote the set of-tuples over
f,[[2] asF?[[z]]. Also, a rational function:(z) = Z((j)) with
b(0) # 0 is said to berealizable A matrix populated entirely
with realizable functions is called a realizable matrix.

For a convolutional code, thimformation sequence: =
[wo, w1, ..., ut] (u; € IFZ) and thecodeword sequend@utput
sequencey = [vg, V1, ..., V] (vi € IF;) can be represented in
terms of the delay parameteras

and

Definition 4 ( [20]): A convolutional code C of rate
b/c (b < c¢)is defined as

C={v(z) € Fgllz]] | v(2) = u(2)G(2)}

whereG(z) is abx ¢ generator matrwith entries fromF,(z)

We review the basic concepts related to convolutional codesid rankb overF,(z), andwv(z) being the codeword sequence

used extensively throughout the rest of the papergk-power
of a prime, letF, denote the finite field witly elementsF, (]
denotethe ring of univariate polynomiali® z with coefficients
from F,, F,(z) denotethe field of rational functionswith
variable z and coefficients fronF, and F,[[z]] denotethe
ring of formal power seriesvith coefficients fromF,. Every
element ofF,[[z]] of the formz(z) = >°3° z;2',z; € F,.

arising from the information sequence(z) € F[[z]].

Two generator matrices are said to bguivalentif they
encode the same convolutional codepdlynomial generator
matrix[20] for a convolutional cod€ is a generator matrix for
C with all its entries froniF,[z]. It is known that every convo-
lutional code has a polynomial generator matrix [20]. Alao,
generator matrix for a convolutional codedatastrophic[20]
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if there exists an information sequence with infinitely many A method of constructing MDS convolutional codes based

non-zero components, that results in a codeword with ondyr the connection between quasi-cyclic codes and convolu-

finitely many non-zero components. tional codes was given in [19]. The ordered Forney indices
For a polynomial generator matri%(z), let ¢;;(z) be the for such codes are of the form

element ofG(z) in the i*" row and thej‘* column, and

VG =vy=..=V < V41 =..= V.

Vi = medeg(gij(z)) wherev, = |6/k| andvy, = |6/k] + 1.

i It is known [19] that the field size required for a(n, k, §)
be thei"" row degreeof G(z). Let convolutional code with dy,..(C) meeting the generalized
b Singleton bound in the construction in [19] needs to be a@rim
5= Z vi power such that

i=1 q 7’L2
—1)andg>6—< +2. 25
be thedegreeof G(z). nlla=1) 7= k(n—k) + (25)

Definition 5 ( [20] ): A polynomial generator matrix is
called basicif it has a polynomial right inverse. It is called
minimal if its degreed is minimum among all generator
matrices ofC.

Forney in [21] showed that the ordered $et,vs, ..., vp }
of row degrees (indices) is the same for all minimal basic
generator matrices of (which are all equivalent to one
another). Therefore the ordered row degrees and the degree
o can be defined for a convolutional code A rate b/c
convolutional code with degreg will henceforth be referred
to as a(c, b, 9) code. Also, any minimal basic generator matrix
for a convolutional code is non-catastrophic.

Definition 6 ( [20] ): A convolutional encodes a physical
realization of a generator matrix by a linear sequentialuiir
Two encoders are said to bequivalent encodersf they
encode the same code.rAinimal encodeis an encoder with
the minimal number of delay elements among all equivalent
encoders.

The weight of a vectow(z) € Fg[[z]] is the sum of the
Hamming weights (ovelf,) of all its Fg-coefficients. Then
we have the following definitions.

Definition 7 ( [20]): The free distanceof a convolutional
codeC is given as

dfree(C) = min{wt(v(z))|v(z) € C,v(z) # 0}

APPENDIXB
MDS CONVOLUTIONAL CODES

We discuss some results on the existence and construction
of Maximum Distance Separable (MDS) convolutional codes.

The following bound on the free distance, and the existence
of codes meeting the bound, called MDS convolutional codes,
was proved in [18].

Theorem 3 ( [18]): For every base field® and every rate
k/n convolutional codeC of degreed, the free distance is
bounded as

dfree(C) < (n—k)([6/k] +1)+6+1

TheorenB is known as thgeneralized Singleton bound
Theorem 4 ( [18]): For any positive integers < n, § and
for any primep there exists a field, of characteristip, and
a ratek/n convolutional code&C of degrees overF,, whose
free distance meets the generalized Singleton bound.
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