
ar
X

iv
:0

90
3.

19
67

v3
 [

cs
.IT

]
9

S
ep

 2
00

9

Network error correction for unit-delay,
memory-free networks using convolutional codes

K. Prasad and B. Sundar Rajan, Senior member, IEEE

Abstract—A single source network is said to bememory-free if
all of the internal nodes (those except the source and the sinks)
do not employ memory but merely send linear combinations of
the symbols received at their incoming edges on their outgoing
edges. In this work, we introduce network-error correction for
single source, acyclic, unit-delay, memory-free networkswith
coherent network coding for multicast. A convolutional code is
designed at the source based on the network code in order to
correct network-errors that correspond to any of a given set
of error patterns, as long as consecutive errors are separated
by a certain interval which depends on the convolutional code
selected. Bounds on this interval and the field size required
for constructing the convolutional code with the required free
distance are also obtained. We illustrate the performance of
convolutional network error correcting codes (CNECCs) designed
for the unit-delay networks using simulations of CNECCs on an
example network under a probabilistic error model.

I. I NTRODUCTION

Network coding was introduced in [1] as a means to
improve the rate of transmission in networks, and often achieve
capacity in the case of single source networks. Linear network
coding was introduced in [2]. An algebraic formulation of
network coding was discussed in [3] for both instantaneous
networks and networks with delays.

Network error correction, which involved a trade-off be-
tween the rate of transmission and the number of correctable
network-edge errors, was introduced in [4] as an extension
of classical error correction to a general network setting.
Along with subsequent works [5] and [6], this generalized the
classical notions of the Hamming weight, Hamming distance,
minimum distance and various classical error control coding
bounds to their network counterparts. In all of these works,it
is assumed that the sinks and the source know the network
topology and the network code, which is referred to as
coherent network coding. Network error correcting codes were
also developed fornon-coherent (channel oblivious) network
coding in [7], [8] and [9]. Network error correction under
probabilistic error settings has been studied in [10]. Most
recently, multishot subspace codes were introduced in [11]for
the subspace channel [7] based on block-coded modulation.

A set of code symbols generated at the source at any
particular time instant is called agenerationof code symbols.
So far, network error correcting schemes have been studied
only for acyclic instantaneous(delay-free) networks in which
each node could take a linear combination of symbols of only
the same generation.

Convolutional network codes were discussed in [12]–[14]
and a connection between network coding and convolutional
coding was analyzed in [15]. Convolutional network error

correcting codes (which we shall henceforth refer to as
CNECCs) have been employed for network error correction
in instantaneous networks in [16].

A network use[16] is a single usage of all the edges of
the network to multicast utmost min-cut number of symbols
to each of the sinks. Anerror pattern is a subset of the set of
edges of the network which are in error. It was shown in [16]
that any network error which has its error pattern amongst a
given set of error patterns can be corrected by a proper choice
of a convolutional code at the source, as long as consecutive
network errors are separated by a certain number of network
uses. Bounds were derived on the field size for the construction
of such CNECCs, and on the minimum separation in network
uses required between any two network errors for them to be
correctable.

Unit-delay networks[13] are those in which every link
between two nodes has a single unit of delay associated with
it. In this work, we generalize the approach of [16] to the case
of network error correction for acyclic, unit-delay, memory-
free networks. We consider single source acyclic, unit-delay,
memory-free networks where coherent network coding (for the
purpose of multicasting information to a set of sinks) has been
implemented and thereby address the following problem.

Given an acyclic, unit-delay, single source, memory-free
network with a linear multicast network code, and a set of
error patternsΦ, how to design a convolutional code at the
source which will correct network errors corresponding to
the error patterns inΦ, as long as consecutive errors are
separated by a certain number of network uses?

The main contributions of this paper are as follows.
• Network error correcting codes for unit-delay, memory-

free networks are discussed for the first time.
• A convolutional code construction for the given acyclic,

unit-delay, memory-free network that corrects a given
pattern of network errors (provided that the occurrence
of consecutive errors is separated by certain number of
network uses) is given. For the same network, if the
network code is changed, then the convolutional code
obtained through our construction algorithm may also
change. Several results of this paper can be treated as
a generalization of those in [16].

• We derive a bound on the minimum field size required
for the construction of CNECCs for unit-delay networks
with the required minimum distance, following a similar
approach as in [16].

• We also derive a bound on the minimum number of
network uses that two error events must be separated by
in order that they get corrected.

http://arxiv.org/abs/0903.1967v3

2

• We also introduceprocessing functionsat the sinks in
order to address the realizability issues that arise in the
decoding of CNECCs for unit-delay networks.

• We show that the unit-delay network demands a CNECC
whose free distance should be at least as much as that of
any CNECC for the corresponding instantaneous network
to correct the same number of network errors.

• Using a probabilistic error model on a modified butterfly
unit-delay memory-free network, we use simulations to
study the performance of different CNECCs.

• Towards achieving convolutional network error correc-
tion, we address the issue of network coding for an
acyclic, unit-delay, memory-free network. As a by-
product, we prove that ann-dimensional linear network
code (a set of local kernels at the nodes) for an acyclic,
instantaneous network continues to be ann-dimensional
linear network code (i.e the dimension does not reduce)
for the same acyclic network, however being of unit-delay
and memory-free nature.

The rest of the paper is organized as follows. In Section II,
we discuss the general network coding set-up and network
errors. In Section III, we give a construction for an input
convolutional code for the given acyclic, unit-delay, memory-
free network which shall correct errors corresponding to a
given set of error patterns and also derive some bounds on the
field size and minimum separation in network uses between
two correctable network errors. In Section IV, we give some
examples for this construction. In Section V we provide
a comparison between CNECCs for instantaneous networks
[16] and those for unit-delay, memory-free networks of this
paper. In Section VI, we discuss the results of simulations
of different CNECCs run on a modified butterfly network
assuming a probabilistic model on edge errors in the network.
We conclude this paper in Section VII with some remarks and
some directions for further research.

II. PROBLEM FORMULATION - CNECCS FOR UNIT-DELAY,
MEMORY-FREE NETWORKS

A. Network model

We consider acyclic networks with delays in this paper, the
model for which is as in [3], [13]. An acyclic network can be
represented as an acyclic directed multi-graph (a graph that
can have parallel edges between nodes)G = (V , E) whereV
is the set of all vertices andE is the set of all edges in the
network.

We assume that every edge in the directed multi-graph
representing the network has unitcapacity(can carry utmost
one symbol fromFq). Network links with capacities greater
than unit are modeled as parallel edges. The network has
delays, i.e, every edge in the directed graph representing the
input has a unit delay associated with it, represented by the
parameterz. Such networks are known asunit-delay networks.
Those network links with delays greater than unit are modeled
as serially concatenated edges in the directed multi-graph. The
nodes of the network may receive information of different
generations on their incoming edges at every time instant. We
assume that the internal nodes are memory-free and merely

transmit a linear combination of the incoming symbols on their
outgoing edges.

Let s ∈ V be the source node andT be the set of all
receivers. Letn

T
be the unicast capacity for a sink nodeT ∈ T

i.e the maximum number of edge-disjoint paths froms to T .
Then

n = min
T∈T

n
T

is the max-flow min-cut capacity of the multicast connection.

B. Network code

We follow [3] in describing the network code. For each node
v ∈ V , let the set of all incoming edges be denoted byΓI(v).
Then |ΓI(v)| = δI(v) is the in-degree ofv. Similarly the set
of all outgoing edges is defined byΓO(v), and the out-degree
of the nodev is given by|ΓO(v)| = δO(v). For anye ∈ E and
v ∈ V , let head(e) = v, if v is such thate ∈ ΓI(v). Similarly,
let tail(e) = v, if v is such thate ∈ ΓO(v). We will assume
an ancestral ordering onE of the acyclic graphG.

The network code can be defined by the local kernel
matrices of sizeδI(v) × δO(v) for each nodev ∈ V with
entries fromFq. The global encoding kernels for each edge
can be recursively calculated from these local kernels.

The network transfer matrix, which governs the input-output
relationship in the network, is defined as given in [3] for an
n dimensional network code. Towards this end, the matrices
A,K,andBT (for every sinkT ∈ T are defined as follows.

The entries of then× |E| matrix A are defined as

Ai,j =

{

αi,ej if ej ∈ ΓO(s)
0 otherwise

whereαi,ej ∈ Fq is the local encoding kernel coefficient at
the source coupling inputi with edgeej ∈ ΓO(s).

The entries of the|E| × |E| matrix K are defined as

Ki,j =

{

βi,j if head(ei) = tail(ej)
0 otherwise

where the set ofβi,j ∈ Fq is the local encoding
kernel coefficient betweenei and ej , at the node
v = head(ei) = tail(ej).

For every sinkT ∈ T , the entries of the|E|×n matrixBT

are defined as

BT
i,j =

{

ǫej ,i if ej ∈ ΓI(T)
0 otherwise

where allǫej ,i ∈ Fq.
For unit-delay, memory-free networks, we have

F (z) := (I − zK)−1

where I is the |E| × |E| identity matrix. Now we have the
following definition.

Definition 1 ([3]): The network transfer matrix, MT (z),
corresponding to a sink nodeT ∈ T is a full rank (over
Fq(z)) n× n matrix defined as

MT (z) := AF (z)BT = AFT (z).

3

With an n-dimensional network code, the input and the
output of the network aren-tuples of elements fromFq[[z]].
Definition 1 implies that ifx(z) ∈ Fn

q [[z]] is the input to
the unit-delay, memory-free network, then at any particular
sink T ∈ T , we have the output,y(z) ∈ Fn

q [[z]], to be
y(z) = x(z)MT (z).

C. CNECCs for single source, unit-delay, memory-free net-
works

A primer on the basics of convolutional codes can be
found in Appendix A. Assuming that ann-dimensional linear
network code multicast has been implemented in the given
single source unit-delay, memory-free network, we extend the
definitions of the input and output convolutional codes of
CNECCs for instantaneous networks from [16] to the unit-
delay, memory-free case.

Definition 2: An input convolutional code, Cs, correspond-
ing to an acyclic, unit-delay, memory-free network is a con-
volutional code of ratek/n(k < n) with a input generator
matrix GI(z) implemented at the source of the network.

Definition 3: The output convolutional codeCT , corre-
sponding to a sink nodeT ∈ T in the acyclic, unit-delay,
memory-free network is thek/n(k < n) convolutional code
generated by theoutput generator matrixGO,T (z) which is
given by

GO,T (z) = GI(z)MT (z)

with MT (z) being the full rank network transfer matrix
corresponding to ann-dimensional network code.

Fig. 1. A simple min-cut2 network with one source and one sink

Example 1:Consider the single source, single sink network
as shown in Fig.1. Let the field under consideration beF2. The
local kernels at the intermediate node are unity. Thereforethe
network transfer matrix at the sink is (assuming the given
ancestral ordering)

MT (z) =

[

z 0
0 z2

]

Suppose we choose the input convolutional codeCs to be
generated by the matrix

GI(z) =
[

1 + z2 1 + z + z2
]

.

Then the output convolutional codeCT is generated by

GO,T (z) =
[

z + z3 z2 + z3 + z4
]

.

D. Network errors

Observing a ‘snap-shot’ of the network at any particular
time instant, we define the following terms. Anerror pattern
ρ, as stated previously, is a subset ofE which indicates the
edges of the network in error. Anerror vectorw is a 1× |E|
vector which indicates the error occurred at each edge. An
error vector is said to match an error pattern(i.e w ∈ ρ) if
all non-zero components ofw occur only on the edges inρ.
An error pattern setΦ is a collection of subsets ofE , each of
which is an error pattern.

Let x(z) ∈ Fn
q [[z]] be the input to the network , andw ∈

F
|E|
q be the error vector corresponding to the network errors

that occurred at any time instanti (i ∈ Z+
0 , referenced from

the first input time instant). Then, the output,y(z) ∈ Fn
q [[z]]

at any particular sinkT ∈ T can be expressed as

y(z) = x(z)MT (z) +wziFT (z).

In case there are a number of errors at a number of time
instants, we have the formulation as

y(z) = x(z)MT (z) +w(z)FT (z)

wherein every monomial ofw(z) ∈ F
|E|
q [[z]] of the formwiz

i

incorporates the error vectorwi ∈ F
|E|
q occurring at the time

instanti.

III. CNECCS FOR UNIT-DELAY, MEMORY-FREE

NETWORKS - CODE CONSTRUCTION ANDCAPABILITY

A. Network code for acyclic unit-delay memory-free networks

In Section III-B, we give a construction of a CNECC for a
given acyclic, unit-delay, memory-free network. Towards that
end, we first address the problem of constructing network
codes for acyclic, unit-delay, memory-free networks. Although
network code constructions have been given for acyclic instan-
taneous networks [17], the problem of constructing network
codes for acyclic, unit-delay, memory-free networks is not
directly addressed. The following lemma shows that solving
ann-dimensional network code design problem for an acyclic,
unit-delay, memory-free network is equivalent to solving that
of the corresponding acyclic instantaneous network with the
same number of dimensions.

Lemma 1:Let G(V , E) be a single source acyclic, unit-
delay, memory-free network, andGinst be the corresponding
instantaneous network (i.e with the same graph as that ofG,
but no delay associated with the edges). LetN be the set of all
δI(v)× δO(v) matrices∀ v ∈ V , i.e, the set of local encoding
kernel matrices at each node, describing ann′-dimensional
network code (overFq) for Ginst (n′ ≤ min-cut of the source-
sink connections inGinst). Then the network code described
by N continues to be ann′-dimensional network code (over
Fq(z)) for the unit-delay, memory-free networkG.

Proof: Let MT be then′ ×n′ network transfer matrix of
any particular sink nodeT ∈ T in Ginst, andMT (z) be the
n′ × n′ network transfer matrix of the same sinkT in G. We

4

first note that the matrixMT can be obtained fromMT (z) by
substitutingz = z0 = 1, i.e,

MT = MT (z)|z=1.

Given thatMT is full rank overFq, we will prove thatMT (z)
is full rank overFq(z) by contradiction.

Suppose thatMT (z) was not full rank overFq(z), then we
will have

i=n′−1
∑

i=1

ai(z)

bi(z)
mi(z) = mn′(z) (1)

wheremi(z) is theith row of MT (z) andai(z), bi(z) ∈ Fq[z]
∀ i = 1, 2, .., n′ are such thatbi(z) 6= 0, ai(z) 6= 0 for at least
one i, andgcd(ai(z), bi(z)) = 1, ∀ i.

We have the following two cases
Case 1: bi(z)|z=1 6= 0 ∀i.

Substitutingz = 1 in (1), we have

i=n′−1
∑

i=1

ai
bi
mi = mn′ (2)

whereai = ai(z)|z=1, bi = bi(z)|z=1 andmi = mi(z)|z=1

is the ith row of MT .

Clearlymn′ 6= 0 sinceMT is full rank, and hence the left
hand side of (2) can’t be zero. Therefore some non-zero linear
combination of the firstn′−1 rows ofMT is equal to itsn′

th

row, which contradicts the given statement thatMT is full
rank overFq. ThereforeMT (z) must be full rank overFq(z).

Case 2: bi(z)|z=1 = 0 for at least onei.
Let I ′ ⊆ {1, 2, ..., n′} such that(z − 1)p

′

|bi(z) for some
positive integerp′. Let p be an integer such that

p = max
i∈I′

p′

Now, from (1) we haven

i=n′−1
∑

i=1

(z − 1)p
ai(z)

bi(z)
mi(z) = (z − 1)pmn′(z) (3)

Let I ⊆ {1, 2, .., n′} such that(z − 1)p|bi(z) ∀ i ∈ I.
Then we must have that(z − 1) ∤ ai(z) ∀ i ∈ I, since
gcd(ai(z), bi(z)) = 1. Also, letb′i(z) = bi(z)/(z−1)p ∈ Fq[z]
∀ i ∈ I. Hence we have
(

(z − 1)p
ai(z)

bi(z)

)

|z=1 =

(

ai(z)

b′i(z)

)

|z=1 =
ai
b′i

∈ Fq\ {0} .

where b′i = b′i(z)|z=1 ∈ Fq\ {0}, since (z − 1) ∤ b′i(z).
Substitutingz = 1 in (3), we have

∑

i∈I

ai
b′i
mi = 0

i.e, a non-zero linear combination of the rows ofMT is
equal to zero, which contradicts the full-rankness ofMT , thus
proving thatMT (z) has to be full rank overFq(z).

B. Construction

This subsection presents the main contribution of this work.
We assume ann dimensional network code (n being the min-
cut) on this network has implemented on the given network
which is used to multicast information to a set of sinks. We
describe a construction of an input convolutional code for
the given acyclic, unit-delay, memory-free network which can
correct network errors with patterns in a given error pattern
set, as long as they are separated by certain number of network
uses.

Let MT (z) = AFT (z) be then×n network transfer matrix
from the source to any particular sinkT ∈ T . Let Φ be the
error pattern set given. We then define theprocessing matrix
at sink T, PT (z), to be a polynomial matrix as

PT (z) = p
T
(z)M−1

T (z)

where p
T
(z) ∈ Fq[z] is someprocessing functionchosen

such thatPT (z) is a polynomial matrix. Now, we have the
construction of a CNECC for the given network as follows.

1) We first compute the set of all error vectors having their
error pattern inΦ that is defined as follows

WΦ =
⋃

ρ∈Φ

{

w = (w1, w2, ..., w|E|) ∈ F|E|
q | w ∈ ρ

}

.

2) Let
WT := {wFT (z) | w ∈ WΦ} (4)

be computed for each sinkT . This is the set ofn-tuples
(with elements fromFq[z]) at the sinkT due to errors
in the given error patternsρ ∈ Φ.

3) Let the setWs ⊂ Fn
q [z]

Ws :=
⋃

T∈T

{w
T
(z)PT (z) | wT

(z) ∈ WT } (5)

be computed.
4) Let

ts = max
ws(z)∈Ws

wH (ws(z)) .

wherewH indicates the Hamming weight overFq.
5) Choose an input convolutional codeCs with free distance

at least2ts + 1 as the CNECC for the given network.

C. Decoding

Before we discuss the decoding of CNECCs designed ac-
cording to Subsection III-B, we state some of the results from
[16] related to the bounded distance decoding of convolutional
codes in this section.

Let C be a rateb/c convolutional code with a gener-
ator matrix G(z). Then, corresponding to the information
sequenceu0,u1, ..(ui ∈ Fb

q) and the codeword sequence
v0,v1, ...(vi ∈ Fc

q), we can associate an encoder state se-
quenceσ0,σ1, .., whereσt indicates the content of the delay
elements in the encoder at a timet. We define the set ofj
output symbols as

v[0,j) := [v0,v1, ...,vj−1]

5

The parameterTdfree
(C) [16] is defined as follows.

Tdfree
(C) := max

v[0,j)∈Sdfree

j + 1

whereSdfree
[16] is defined as the set of all possible truncated

codeword sequencesv[0,j) of weight less thandfree(C) that
start in the zero state is defined as follows

Sdfree
:=

{

v[0,j) | wH

(

v[0,j)

)

< dfree(C),σ0 = 0, ∀ j > 0
}

wherewH indicates the Hamming weight overFq.
Then, we have the following proposition.
Proposition 1 ([16]): The minimum Hamming weight

trellis decoding algorithm can correct all error sequences
which have the property that the Hamming weight of the
error sequence in any consecutiveTdfree

(C) segments (a
segment being the set ofc code symbols generated for every
c information symbols) is utmost

⌊

dfree(C)−1
2

⌋

.
Now, we discuss the decoding of CNECCs for unit-delay

memory-free networks. LetGI(z) be the k × n generator
matrix of the input convolutional code,Cs, obtained from
the given construction. LetGO,T (z) = GI(z)MT (z) be the
generator matrix of the output convolutional code,CT , at sink
T ∈ T , with MT (z) being its network transfer matrix.

For each sinkT ∈ T , let

tT = max
w

T
(z)∈WT

wH(w
T
(z)).

Let mT be the largest integer such that

dfree(CT) ≥ 2mT tT + 1. (6)

Clearly,mT ≥ 0. Each sink can choose decoding on the trellis
of the input or its output convolutional code based on the
characteristics of the output convolutional code as follows

Case-A: This is applicable in the event of all of the
following conditions being satisfied.

i.)
mT ≥ 1 (7)

ii.)
Tdfree

(CT) ≤ mTTdfree
(Cs). (8)

iii.) The output convolutional code generator matrix
GO,T (z) is non-catastrophic. (9)

In this case, the sinkT performs minimum distance decoding
directly on the trellis of the output convolutional code,CT .

Case-B:This is applicable if at least one of the3 conditions
of Case-A is not satisfied, i.e, if either of the following
conditions hold

i.) mT = 0
ii.) mT ≥ 1 and Tdfree

(CT) > mTTdfree
(Cs).

iii.) The output convolutional code generator matrix
GO,T (z) is catastrophic.

This method involves processing (matrix multiplication using
PT (z)) at the sinkT. We have the following formulation at
the sinkT . Let

[v′1(z) v′2(z) ... v′n(z)] = [v1(z) v2(z) ... vn(z)]

+ [w1(z) w2(z) ... wn(z)]

represent the output sequences at sinkT , where

[v1(z) v2(z) ... vn(z)]

= u(z)GO,T (z) = u(z)GI(z)MT (z)

u(z) being thek length vector of input sequences, and

[w1(z) w2(z) ... wn(z)]

represent the corresponding error sequences. Now, the output
sequences are multiplied with the processing of the network
transfer matrixPT (z), so that decoding can be done on the
trellis of the input convolutional code. Hence, we have

[v′′1 (z) v′′2 (z) ... v′′n(z)]

= [v′1(z) v′2(z) ... v′n(z)]PT (z)

= u(z)p
T
(z)GI(z) + [w1(z) w2(z) ... wn(z)]PT (z)

= u(z)p
T
(z)GI(z) + [w′

1(z) w′
2(z) ... w′

n(z)] (10)

wherew′(z) = [w′
1(z) w′

2(z) ... w′
n(z)] now indicate the

set of modified error sequences that are to be corrected. Now
the sink T decodes to the minimum distance path on the
trellis of the code generated byp

T
(z)GI(z), which is the input

convolutional code asGI(z) and p
T
(z)GI(z) are equivalent

generator matrices.
Remark 1: In [16], the approach to the construction of a

CNECC for an instantaneous network was the same as in here.
However, the setWs was defined in [16] as

Ws :=
⋃

T∈T

{

w
T
M−1

T | w
T
∈ WT

}

=
⋃

T∈T ,ρ∈Φ

{

wFTM
−1
T | w ∈ ρ

}

(11)

where the network transfer matrixMT andFT correspond to
a sinkT in the instantaneous network.

In this paper, the definition forWs is as in (5) and involves
the processing matrixPT (z) instead of the inverse of the net-
work transfer matrix. The processing functionp

T
(z) for a sink

T is introduced because of the fact that the matrixM−1
T (z)

might not be realizable and also for easily obtaining the
Hamming weight of theerror vector reflections(ws(z) ∈ Ws)
by removing rational functions inM−1

T (z).

The degree of the processing functionp
T
(z) directly in-

fluences the memory requirements at the sinks and therefore
should be kept as minimal as possible. Therefore, with

M−1
T (z) =

M(z)

Det (MT (z))

where then×n matrixM(z) is the adjoint ofMT (z), ideally
we may choosep

T
(z) as follows.

p
T
(z) =

Det (MT (z))

g(z)
(12)

where g(z) = gcd (mi,j(z), ∀ 1 ≤ i, j ≤ n), mi,j(z) being
the (i, j)th element ofM(z).

6

D. Error correcting capability

In this subsection we prove a main result of the paper
given by Theorem 1 which characterizes the error correcting
capability of the code obtained via the construction of Subsec-
tion III-B. We recall the following observation that in every
network use,n encoded symbols which is equal to the number
of symbols corresponding to one segment of the trellis, are to
be multicast to the sinks.

Theorem 1:The codeCs resulting from the construction of
Subsection III-B can correct all network errors that have their
pattern as someρ ∈ Φ as long as any two consecutive network
errors are separated byTdfree

(Cs) network uses.
Proof: We first prove the theorem in the event of Case-

A of the decoding. Suppose the network errors are such
that consecutive network errors are separated byTdfree

(Cs)
network uses. Then the vector of error sequences at sinkT ,
w

T
(z), is such that in everyTdfree

(Cs) segments, the error
sequence has utmosttT Hamming weight (overFq). Therefore
in mTTdfree

(Cs) segments, the Hamming weight of the error
sequence would be utmostmT tT .

Then the given condition (8) would imply that in every
Tdfree

(CT) segments of the output trellis, the error sequences
have Hamming weight utmostmT tT . Condition (7) together
with (6) and Proposition 1 implies that these error sequences
are correctable. This proves the given claim that errors with
their error pattern inΦ will be corrected as long as no two
consecutive error events occur withinTdfree

(Cs) network uses.
In fact, condition (7) and (6) implies that network errors

with pattern inΦ will be corrected at sinkT , as long as
consecutive error events are separated byTdfree

(CT).
Now we consider Case B of the decoding. Suppose that the

set of error sequences in the formulation given,w
′(z), is due

to network errors that have their pattern as someρ ∈ Φ, such
that any two consecutive such network errors are separated by
at leastTdfree

(Cs) network uses.
Therefore, along with step4 of the construction, we have

that the maximum Hamming weight of the error sequence
w

′(z) in any consecutiveTdfree
(Cs) segments (network uses)

would be utmostts. Because of the free distance of the code
chosen and along with Proposition 1, we have that such errors
will get corrected when decoding on the trellis of the input
convolutional code.

E. Bounds on the field size andTdfree
(Cs)

1) Bound on field size:Towards obtaining a bound on the
sufficient field size for the construction of a CNECC meeting
our free distance requirement, we first prove the following
lemmas.

Lemma 2:Given an acyclic, unit-delay, memory-free net-
work G(V , E) with a given error pattern setΦ, let Tdelay−1 be
the maximum degree of any polynomial in theF (z) matrix.
Let wH indicate the Hamming weight overFq. If r is the
maximum number of non-zero coefficients of the polynomials
p

T
(z) corresponding to all sinks inT , i.e

r = max
T∈T

wH (p
T
(z)) ,

then

max
ws(z)∈Ws

wH (ws(z)) ≤ rn [(n+ 1) (Tdelay − 1) + 1] .

whereWs is as in (5) in Subsection III-B.
Proof: Any elementws(z) ∈ Ws indicates then length

sequences that would result in an output vectorw
T
(z) at some

sink T as a result of an error vectorw in the network at time
0, i.e

ws(z) = wFT (z)pT
(z)M−1

T (z) = w
T
(z)p

T
(z)M−1

T (z)

Because of the fact that any polynomial inF (z) has degree
utmostTdelay − 1, any error vectorw at time0 can result in
non-zero symbols (overFn

q) in w
T
(z) at any sinkT from the

0th time instant only upto utmostTdelay − 1 time instants.

w
T
(z) =





Tdelay−1
∑

i=0

w
T,i

zi



 .

wherew
T,i

∈ Fn
q .

The numerator polynomial of any elementa(z) ∈ Fq(z)
of the matrix M−1

T (z) has degree utmostn (Tdelay − 1).
Therefore, considering the polynomial processing matrix
PT (z) = p

T
(z)M−1

T (z), we note that any element from
PT (z) has utmostr [n (Tdelay − 1) + 1] non-zero components
(overFq), the worst case beingr non-overlapping ‘blocks’ of
n (Tdelay − 1) + 1 non-zero components each.

Therefore the first non-zero symbol ofw
T
(z) (overFn

q) at
some time instant can result in utmostr [n (Tdelay − 1) + 1]
non-zero symbols inws(z) (over Fn

q). Henceforth, every
consecutive non-zero symbol (overFn

q) of w
T
(z) will result

in utmost additionalr Fn
q symbols inws(z). Therefore any

ws(z) ∈ Ws is of the form

ws(z) =





r[(n+1)(Tdelay−1)+1]
∑

i=0

ws,iz
i





wherews,i ∈ Fn
q . Therefore the Hamming weight (overFq)

of any ws(z) ∈ Ws is utmostrn [(n+ 1) (Tdelay − 1) + 1],
thus proving the lemma.
Our bound on the field size requirement of CNECCs for
unit-delay networks is based on the bound on field size
for the construction of Maximum Distance Separable (MDS)
convolutional codes [18], a primer on which can be found in
Appendix B.

Lemma 3:A (n, k) MDS convolutional codeC (over some
field Fq) with degreeδ = ⌈(2t− 1)k/n⌉ can correct any
error sequence which has the property that the Hamming
weight(over Fq) of the error sequence in any consecutive
Tdfree

(C) segments is utmostt.
Proof: Because the generalized Singleton bound is satis-

fied with equality by the MDS convolutional code, we have

dfree(C) = (n− k)(⌊δ/k⌋+ 1) + δ + 1.

7

Substituting⌈(2t− 1)k/n⌉ for δ, we have

dfree(C)

= (n− k)

(

⌈(2t− 1) k/n⌉

k
+ 1

)

+ ⌈(2t− 1)k/n⌉+ 1

dfree(C) ≥ (n− k)

(

(2t− 1)

n
+ 1

)

+
(2t− 1)k

n
+ 1

=⇒ dfree(C) ≥ 2t+ 1.

Thus the free distance of the codeC is at least2t + 1, and
therefore by Proposition 1, such a code can correct all error
sequences which have the property that in any consecutive
Tdfree

(C) segments, the Hamming weight (overFq) of the
error sequence is utmostt.

For an MDS convolutional code being chosen as the input
convolutional code (CNECC), we therefore have the following
corollary

Corollary 1: Let G(V , E) be an acyclic, unit-delay,
memory-free network with a network code over a suffi-
ciently large fieldFq and Φ be an error pattern set, the
errors corresponding to which are to be corrected. An(n, k)
input MDS convolutional codeCs over Fq with degree
δ = 2rk [(n+ 1) (Tdelay − 1) + 1] can be used to correct
all network-errors with their error pattern inΦ provided that
consecutive network-errors are separated by at leastTdfree

(Cs)
network uses, wherer andTdelay are as in Lemma 2.

Proof: From Lemma 2, we have that in the construction
of Subsection III-B, the maximum Hamming weightts of any
element in the setWs is utmostrn [(n+ 1) (Tdelay − 1) + 1] .
For an input MDS convolutional codeCs to be capable
of correcting such errors with Hamming weight utmost
rn [(n+ 1) (Tdelay − 1) + 1], according to Lemma 3, a degree
δ = 2rk [(n+ 1) (Tdelay − 1) + 1] would suffice.

The following theorem gives a sufficient field size for the
required network error correcting(n, k) input convolutional
code Cs to be constructed with the required free distance
condition (dfree(Cs) ≥ 2ts + 1).

Theorem 2:The codeCs can be constructed and used to
multicast k symbols to the set of sinksT along with the
required error correction in the given acyclic, unit-delay,
memory-free network with min-cutn (n > k), if the field
sizeq is such that

n|(q − 1)

and

q > max

{

|T |,
2rn2 [(n+ 1) (Tdelay − 1) + 1]

n− k
+ 2

}

.

Proof: From the sufficient condition for the existence of
a linear multicast network code for a single source network
with a set of sinksT , we have

q > |T |.

Now we prove the other conditions. From the construction
in [19], we know that a(n, k, δ) MDS convolutional code can
be constructed overFq if

n|(q − 1) and q >
δn2

k (n− k)
+ 2.

Thus, withδ = 2rk [(n+ 1) (Tdelay − 1) + 1] as in Corol-
lary 1, an input MDS convolutional codeCs can be constructed
overFq if

n|(q−1) and q >
2rn2 [(n+ 1) (Tdelay − 1) + 1]

n− k
+2.

Such an MDS convolutional code
the requirements in the construction
(dfree(Cs) ≥ 2rn [(n+ 1) (Tdelay − 1) + 1] + 1 ≥ 2ts + 1),
and hence the theorem is proved.

2) Bound onTdfree
(Cs): Towards obtaining a bound on

Tdfree
(Cs), we first restate the following bound proved in [16].

Proposition 2: Let C be a(c, b, δ) convolutional code. Then

Tdfree
(C) ≤ (dfree (C)− 1) δ + 1. (13)

Thus, for a network error correcting MDS convolutional
code Cs for the unit-delay network, we have the following
bound onTdfree

(Cs).
Corollary 2: Let the CNECC Cs be a (n, k, δ =

2rk [(n+ 1) (Tdelay − 1) + 1]) MDS convolutional code,
wherer andTdelay are as in Lemma 2. Then

Tdfree
(Cs) ≤ 4r2nk [(n+ 1) (Tdelay − 1) + 1]2

+ 2rk (n− k) [(n+ 1) (Tdelay − 1) + 1] + 1.

Proof: For MDS convolutional codes, we have

dfree(C) = (n− k)(⌊δ/k⌋+ 1) + δ + 1

With δ = 2rk [(n+ 1) (Tdelay − 1) + 1], we have

dfree(Cs) = (n− k) {2r [(n+ 1) (Tdelay − 1) + 1] + 1}

+ 2rk [(n+ 1) (Tdelay − 1) + 1] + 1

dfree(Cs) = 2rn [(n+ 1) (Tdelay − 1) + 1] + n− k + 1

Substituting this value ofdfree(Cs) and δ in (13), we have
proved that

Tdfree
(Cs) ≤ 4r2nk [(n+ 1) (Tdelay − 1) + 1]

2

+ 2rk (n− k) [(n+ 1) (Tdelay − 1) + 1] + 1.

IV. I LLUSTRATIVE EXAMPLES

A. Code construction for a modified Butterfly network:

Let us consider the modified butterfly network as shown
in Fig. 2, with one of the edges at the bottleneck node (of
the original unmodified butterfly network) having twice the
delay as any other edge, thus forcing an inter-generation linear
combination at the bottleneck node. The local kernels at the
node defining the network code are the same as in that of
the instantaneous butterfly case. We assume the network code
to be overF2 and we design a convolutional code overF2

that will correct all single edge errors in the network, i.e,all
network error vectors of Hamming weight utmost1.

For this network, the matrixA is a 2 × 10 matrix having
a 2 × 2 identity submatrix at the columns corresponding to
edgese1 ande2, and having zeros everywhere else. We assume
BT1 andBT2 are10× 2 matrices such that they have a2× 2

8

Fig. 2. Modified butterfly network with global kernels

identity submatrix at rowse6, e8 ande9, e10 respectively. With
the given network code, we thus have the network transfer
matrices at sinkT1 andT2 as follows

MT1(z) =

[

z z3

0 z4

]

= AFT1(z)

where

FT1(z) =

[

z 0 0 0 0 1 0 0 0 0
z3 z4 z2 z3 z2 0 z 1 0 0

]T

and

MT2(z) =

[

z3 0
z4 z

]

= AFT2(z)

where

FT2(z) =

[

z3 z4 z2 z3 z2 0 z 0 1 0
0 z 0 0 0 0 0 0 0 1

]T

.

For single edge errors, we have the error pattern set to be

Φ = {{ei} : i = 1, 2, ..., 9, 10} .

And thus the setWΦ is the set of all vectorsF2 that have
Hamming weight utmost1. The setsWT1 andWT2 as in (14)
and (15) at the top of the next page. Now

M−1
T1

(z) =
1

z5

[

z4 z3

0 z

]

and

M−1
T2

(z) =
1

z4

[

z 0
z4 z3

]

.

To obtain the processing matricesPT1(z) andPT2(z), let us
choose the processing functionsp

T1
(z) = z4 andp

T2
(z) = z3.

Then we have

PT1(z) = p
T1
(z)M−1

T1
(z) =

[

z3 z2

0 1

]

(16)

and

PT2(z) = p
T2
(z)M−1

T2
(z) =

[

1 0
z3 z2

]

. (17)

Therefore,Ws can be computed to be as in (18) at the top
of the next page. Thus we havets = 2, which means that we
need a convolutional code with free distance at least5. Let
the chosen input convolutional codeCs be generated by the
generator matrix

GI(z) =
[

1 + z2 1 + z + z2
]

.

This code has a free distancedfree(Cs) = 5 andTdfree
(Cs) =

6. Therefore this code can be used to correct single edge
errors in the butterfly network as long as consecutive errors
are separated by6 network uses. With this code, the output
convolutional codeCT1 at sinkT1 is generated by the matrix

GO,T1(z) =
[

z + z3 z3 + z4 + z6
]

Now CT1 has dfree(CT1) = 5 and Tdfree
(CT1) = 9 >

Tdfree
(Cs). As condition (8) is not satisfied, Case-B applies

and hence the sinkT1 has to use the processing matrixPT1(z),
and then decode on the trellis of the input convolutional code.
Upon performing a similar analysis for sinkT2, we have Table
I as shown at the top of the next page.

B. 4C2 combination network over ternary field

We now give a code construction for double edge error
correction in the4C2 combination network with a network
code overF3, shown in Fig. 3 with the given2 dimensional
network code, the network transfer matrices and the processing
matrices (upon choosing the processing functionspTi

(z) =
pT (z) = z ∀ 1 ≤ i ≤ 6) corresponding to the6 sinks are
indicated in Table II.

Fig. 3. 4C2 unit-delay network

The matrixFT1 (z) corresponding to sinkT1 is the2 × 16
matrix as follows

FT1(z) =

[

z 0 0 0 1 0 0......0
0 z 0 0 0 1 0......0

]T

.

9

WT1 =
{

(0, 0), (0, 1), (1, 0), (0, z), (0, z2), (0, z3), (0, z4), (z, z3)
}

(14)

WT2 =
{

(0, 0), (0, 1), (1, 0), (z, 0), (z2, 0), (z3, 0), (0, z4), (z4, z)
}

(15)

Ws =
{

(0, 0), (z3, z2), (0, 1), (0, z), (0, z2), (0, z3), (0, z4), (z, 0), (z2, 0), (z3, 0)
}

. (18)

TABLE I
MODIFIED BUTTERFLY NETWORK WITHCs[dfree(Cs) = 5, Tdfree

(Cs) = 6]

Sink Output convolutional code generator matrix [GO,Ti
(z)] dfree(CTi

), Tdfree
(CTi

) Decoding on
T1

[

z + z3 z3 + z4 + z6
]

5,9 Input trellis
T2 [z3 + z4 + z6 z + z2 + z3] 6,12 Input trellis

For each sink, we have a similarFT (z) matrix with az-scaled
identity submatrix and an identity submatrix and zeros at all
other entries.

For double edge error correction, the error pattern setΦ is

Φ = {{ei, ej} : i, j = 1, 2, ..., 15, 16 and i 6= j} .

And therefore, we have the setWΦ as the set of all16
length tuples fromF3 with Hamming weight utmost2. The
setWTi

∀ i can be computed to be as shown in (19) at the
top of the next page. Now, the set

Ws,T2 =
{

w
T2
(z)PT2(z) | wT2

(z) ∈ WT2

}

is computed to be as in (20), also shown at the top of the next
page. Similarly the setsWs,Ti

(∀ 1 ≤ i ≤ 6) and

Ws =
⋃

Ti∈T

Ws,Ti

are computed. It is seen that for this network,

ts = max
ws(z)∈Ws

wH (ws(z)) = 4

and

tTi
= max

w
Ti

(z)∈WTi

wH

(

w
Ti
(z)

)

= 2, ∀ 1 ≤ i ≤ 6.

Therefore we need a convolutional code with free distance9
to correct such errors. Let this input convolutional codeCs
overF3 be chosen as the code generated by

GI(z) =
[

1 + z2 + z4 + z5 2 + z + 2z2 + 2z4 + z5
]

.

This code is found to havedfree(Cs) = 9 with Tdfree
(Cs) =

14. Thus it can correct all double edge network errors as long
as consecutive network errors are separated by14 network
uses. The output convolutional codesTdfree

(CTi
), their free

distance andTdfree
(CTi

) are computed and tabulated in Table
II at the top of the next page. For this example, all the sinks
satisfy the conditions (7) and (8) for Case-A of the decoding
and therefore decode on the trellises of the corresponding
output convolutional codes.

V. COMPARISON BETWEENCNECCS FOR

INSTANTANEOUS AND UNIT-DELAY, MEMORY-FREE

NETWORKS

In the following discussion, we compare the CNECCs for
a given instantaneous network constructed in [16] and the
CNECCs of Subsection III-B for the corresponding unit-delay,
memory-free network.

With the given acyclic graphG(V , E), we will compare
the maximum Hamming weightts of anyn-tuple, overFq[z]
(ws(z) ∈ Ws, whereWs is as in (5)) in the case of the unit-
delay, memory-free network with the graphG and overFq

(ws ∈ Ws whereWs is as in (11)) in the case of instantaneous
network with the graphG.

Consider somews(z) ∈ Ws such that

ws(z) = wFT (z)PT (z) = wp
T
(z)FT (z)M

−1
T (z)

= [ws,1(z), ws,2(z), ..., ws,n(z)] (21)

wherep
T
(z) andPT (z) indicate the processing function and

matrix chosen according to (12) for some sinkT ∈ T ,
and ws,i(z) ∈ Fq[z]. We haveMT (z)|z=1 = MT and also
FT (z)|z=1 = FT , the network transfer matrix and theFT

matrix of the sinkT in the instantaneous network. Now, by
(21), we have then-length vectorws,inst corresponding to the
error vectorw as

ws,inst = wFTM
−1
T =

ws(z)|z=1

p
T
(z)|z=1

where

p
T
(z)|z=1 =

Det (MT (z)) |z=1

g(z)|z=1

by (12). NowDet (MT (z)) |z=1 = Det (MT) 6= 0 sinceMT

is full rank. Also,g(z)|z=1 6= 0 for the same reason. Therefore,
p

T
(z)|z=1 6= 0. Thus we have

wH (ws,inst) ≤ wH (ws(z)) . (22)

Therefore a CNECC for an instantaneous network may require
a lesser free distance to correct networks errors matching one
of the given set of patternsΦ, while the CNECC for the
corresponding unit-delay, memory-free network may require
a larger free distance to provide the same error correction
according to the construction of Subsection III-B.

10

WTi
=























(z, 0), (0, z), (1, 0), (0, 1), (2z, 0), (0, 2z), (2, 0),
(0, 2), (z, z), (z, 2z), (2z, z), (2z, 2z), (z + 1, 0), (z + 2, 0),

(2z + 1, 0), (2z + 2, 0), (z, 1), (z, 2), (2z, 1), (2z, 2), (1, z),
(1, 2z), (2, z), (2, 2z), (0, z + 1), (0, z + 2), (0, 2z + 1), (0, 2z + 2),
(1, 1), (1, 2), (2, 1), (2, 2), (0, 0)























(19)

Ws,T2 =































(z, 2z), (0, z), (1, 2), (0, 1), (2z, z), (0, 2z),
(2, 1), (0, 2), (z, 0), (z, z), (2z, 2z), (2z, 0),

(z + 1, 2z + 2), (z + 2, 2z + 1), (2z + 1, z + 2), (2z + 2, z + 1), (z, 2z + 1), (z, 2z + 2),
(2z, z + 1), (2z, z + 2), (1, z), (1, 2z), (2, z), (2, 2z),
(0, z + 1), (0, z + 2), (0, 2z + 1), (0, 2z + 2), (1, 0), (1, 1),

(2, 2), (2, 0), (0, 0)































(20)

TABLE II
4C2 COMBINATION NETWORK WITH Cs[dfree(Cs) = 9, Tdfree

(Cs) = 14]

Sink Network transfer matrix Processing matrix Output convolutional code dfree(CTi
), Decoding on

gen. matrix [GO,Ti
(z)] Tdfree

(CTi
)

T1 MT1
(z) =

„

z 0
0 z

«

PT1
(z) =

„

1 0
0 1

«

ˆ

z + z3 + z5 + z6 2z + z2 + 2z3 + 2z5 + z6
˜

5,9 Output trellis

T2 MT2
(z) =

„

z z

0 z

«

PT2
(z) =

„

1 2
0 1

«

[z + z3 + z5 + z6 z2 + 2z6] 6,11 Output trellis

T3 MT3
(z) =

„

z z

0 2z

«

PT3
(z) =

„

2 2
0 1

«

[z + z3 + z5 + z6 2z + 2z2 + 2z3 + 2z5] 6,11 Output trellis

T4 MT4
(z) =

„

0 z

z z

«

PT4
(z) =

„

1 2
2 0

«

[2z + z2 + 2z3 + 2z5 + z6 z2 + 2z6] 7,12 Output trellis

T5 MT5
(z) =

„

0 z
z 2z

«

PT5
(z) =

„

2 2
2 0

«

[2z + z2 + 2z3 + 2z5 + z6 2z + 2z2 + 2z3 + 2z5] 9,14 Output trellis

T6 MT6
(z) =

„

z z

z 2z

«

PT6
(z) =

„

2 2
2 1

«

[z2 + 2z6 2z + 2z2 + 2z3 + 2z5] 6,13 Output trellis

An example of this case is the code construction for double
edge error correction for the4C2 combination instantaneous
network in [16] and for the4C2 unit-delay network in this
paper in Subsection IV-B. It can be seen that while for the
instantaneous network, the maximum Hamming weight of any
ws ∈ Ws is 2, the maximum Hamming weight of anyws(z) ∈
Ws in the unit-delay network is4. Thus a code with free
distance5 suffices for the instantaneous network, while the
code for the unit-delay network has to have a free distance9
to ensure the required error correction as per the construction
in Subsection III-B.

It is in general not easy to obtain the general conditions
under which equality will hold in (22), as both the topology
and the network code of the network influence the Hamming
weight of any element inWs. For specific examples however,
this can be checked. An example of this case is given in
between the single edge-error correcting code construction for
the butterfly network (overF2) for the instantaneous case in
[16] (the additional intermediate node,head(e4) = v3 =
tail(e5), does not matter for the instantaneous case), and
for the unit-delay case in this paper in Subsection IV-A.
In both the cases, we havets = 2, which means that an
input convolutional code with free distance5 is sufficient to
correct all single edge network errors. However, as we see in
Subsection IV-A, processing matrices with memory elements
need to be used at the sinks for the unit-delay case, while
the processing matrix in the instantaneous case is just the

M−1
T matrix which does not require any memory elements

to implement.

VI. SIMULATION RESULTS

A. A probabilistic error model

We define a probabilistic error model for a unit delay
network G(V , E) by defining the probabilities of any set of
i (i ≤ |E|) edges of the network being in error at any given
time instant as follows. Across time instants, we assume that
the network errors are i.i.d. according to this distribution.

Prob.(i network edges being in error) = pi (23)

Prob.(no edges are in error) = q (24)

where1 < i ≤ |E|, andp, q ≤ 1 are real numbers indicating
the probability of any single edge error in the network and
the probability of no edges in error respectively, such that
q +

∑|E|
i=1 p

i = 1.

B. Simulations on the modified butterfly network

With the probability model as in (23) and (24) with|E| = 10
for the modified butterfly network as in Fig. 2, we simulate the
performance of3 input convolutional codes implemented on
this network with the sinks performing hard decision decoding
on the trellis of the input convolutional code. In the following
discussion we refer to sinksT1 andT2 of Fig. 2 as Sink 1 and

11

Sink 2. The3 input convolutional codes and the rationality
behind choosing them are given as follows.

• CodeC1 is generated by the generator matrix

GI1(z) = [1 + z 1] ,

with dfree(C1) = 3 and Tdfree
(C1) = 2. This code is

chosen only to illustrate the error correcting capability of
codes with low values ofdfree(C) andTdfree

(C).
• CodeC2 is generated by the generator matrix

GI2(z) =
[

1 + z2 1 + z + z2
]

,

with dfree(C2) = 5 andTdfree
(C2) = 6. This code cor-

rects all double edge errors in the instantaneous version
(with all edge delays being zero) of Fig. 2 as long as they
are separated by6 network uses.

• CodeC3 is generated by the generator matrix

GI3(z) =
[

1 + z + z4 1 + z2 + z3 + z4
]

,

with dfree(C3) = 7 and Tdfree
(C3) = 12. This code

corrects all double edge errors in the unit-delay network
given in Fig. 2 as long as they are separated by12
network uses.

We note here that values ofTdfree
(C) of the 3 codes

are directly proportional to their free distances, i.e, thecode
with greater free distance has higherTdfree

(C). Also we note
that with each of these3 codes as the input convolutional
codes, the output convolutional codes violate at least one of
the conditions of ‘Case-A’ of decoding, i.e, (7),(8), or (9).
Therefore, hard decision Viterbi decoding is performed on the
trellis of the input convolutional code.

Fig. 4 and Fig. 5 illustrate the BERs for different values
for the parameterp (the probability of a single edge error) of
(23). Clearly the BER values fall with decreasingp.

It may be observed that between any two of the3 codes,
sayCi andCj (i, j = 1, 2, 3) there exist a particular value of
p = pi,j where the BER performance corresponding to the two
codes gets reversed, i.e, if codeCi has better BER performance
thanCj for any p > pi,j , thenCj performs better thanCi for
anyp < pi,j . Although such a cross-over value ofp exists for
each pair of codes, we see that all3 codes have approximately
the same crossoverp value in Fig. 4 (p ≈ 0.16) and similarly
in Fig. 5 (p ≈ 0.15).

With respect to such crossover points between the two codes
Ci and Cj, we can divide the performance curve into two
regions which we call as ‘Tdfree

dominated region’ (p values
being greater than the crossoverp value) and ‘dfree dominated
region’ (p values being lesser than the crossoverp value),
indicating the parameter which controls the performance of
the codes in each of those regions respectively. Again, because
of the 3 crossover points being approximately equal to one
another in each of Fig. 4 and Fig. 5, we divide the entire
performance graph of all the3 codes into two regions. The
following discussion gives an intuition into why the param-
etersTdfree

(C) and dfree(C) control the performance in the
corresponding regions.

• dfree dominated region: In the dfree dominated region,
codes with higher free distance perform better than those

with less free distance. We recall from Proposition 1
that both the Hamming weight of error events and the
separation between any two consecutive error events are
important to correct them. Because of the factp is low
in the dfree dominated region, the Hamming weight of
the modified error sequences of (10) is less, and the
error events that occur are also separated by sufficient
number of network uses. Therefore the condition on the
separation of error events according to Proposition 1 is
automatically satisfied even for largeTdfree

(C) codes.
Therefore codes which have more free distance (though
having moreTdfree

(C)) correct more errors than codes
with low free distance (though having lessTdfree

(C)). It
is noted that in this region the codeC3 (which was de-
signed for correcting double edge errors on the unit-delay
network) performs better thanC2 (which was designed
for correcting double edge errors on the instantaneous
version of the network).

• Tdfree
dominated region: In theTdfree

dominated region,
codes with lowerTdfree

(C) perform better than codes
with higher Tdfree

(C), even though their free distances
might actually indicate otherwise. This is because of
the fact that the error events related to the modified
error sequences of (10) occur more frequently with lesser
separation of network uses (asp is higher). Therefore the
codes with lowerTdfree

(C) are able to correct more errors
(even though the errors themselves must accumulate less
Hamming weight to be corrected) than the codes with
higherTdfree

(C) which demand more separation in net-
work uses between error events for them to be corrected
(despite having a greater flexibility in the Hamming
weight accumulated by the correctable error events).

Remark 2:The difference in the performance of codeC1
between Sink 1 and Sink 2 is probably due to the unequal
error protection to the two code symbols. When the code is
‘reversed’ ,i.e. withGI1(z) = [1 1 + z], it is observed
that the performance at the sinks are also interchanged for
unchanged error characteristics.

VII. C ONCLUDING REMARKS

In this work, we have extended the approach of [16] to
introduce network error correction for acyclic, unit-delay,
memory-free networks. A construction of CNECCs for acyclic,
unit-delay, memory-free networks has been given, which cor-
rects errors corresponding to a given set of patterns as long
as consecutive errors are separated by a certain number of
network uses. Bounds are derived on the field size required for
the construction of a CNECC with the required error correction
capability and also on the minimum separation in network
uses between any two consecutive network errors. Simulations
assuming a probabilistic error model on a modified butter-
fly network indicate the implementability and performance
tractability of such CNECCs. The following problems remain
to be investigated.

• Investigation of error correction bounds for network error
correction in unit-delay, memory-free networks.

• Joint design of the CNECC and network code.

12

00.050.10.150.20.250.30.350.40.450.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Probability of single edge error (p)

B
E

R
 a

t
S

in
k

1
Probability of single error error(p) vs BER at Sink 1

Code 1 (Free dist. = 3, T
d

free

 = 2.)

Code 2 (Inst.) (Free dist. = 5, T
d

free

 = 6.)

Code 3 (Free dist. = 7, T
d

free

 = 12.)

d
free

 dominated region

T
d

free

 dominated region

Fig. 4. BER at Sink 1

• Investigation of distance bounds for CNECCs.
• Design of appropriate processing matrices at the sinks

to minimize the maximum Hamming weight of the error
sequences.

• Construction of CNECCs which are optimal in some
sense.

• Further analytical studies on the performance of CNECCs
on unit-delay networks.

ACKNOWLEDGMENT

This work was supported partly by the DRDO-IISc pro-
gram on Advanced Research in Mathematical Engineering to
B. S. Rajan.

REFERENCES

[1] R. Ahlswede, N. Cai, R. Li and R. Yeung, “Network Information
Flow”, IEEE Transactions on Information Theory, vol.46, no.4, July
2000, pp. 1204-1216.

[2] N. Cai, R. Li and R. Yeung, “Linear Network Coding”, IEEE Trans-
actions on Information Theory, vol. 49, no. 2, Feb. 2003, pp.371-381.

[3] R. Koetter and M. Medard, “An Algebraic Approach to Network
Coding”, IEEE/ACM Transactions on Networking, vol. 11, no.5, Oct.
2003, pp. 782-795.

[4] Raymond W. Yeung and Ning Cai, “Network error correction, part 1
and part 2”, Comm. in Inform. and Systems, vol. 6, 2006, pp. 19-36.

[5] Zhen Zhang, “Linear network-error Correction Codes in Packet Net-
works”, IEEE Transactions on Information Theory, vol. 54, no. 1, Jan.
2008, pp. 209-218.

[6] Shenghao Yang and Yeung, R.W., “Refined Coding Bounds fornetwork
error Correction”, ITW on Information Theory for Wireless Networks,
July 1-6, 2007, Bergen, Norway, pp. 1-5.

[7] R. Koetter and F.R. Kschischang, “Coding for Errors and Erasures in
Random Network Coding”, IEEE Transactions on Information Theory,
vol. 54, no. 8, Aug. 2008, pp.3579-3591.

[8] D. Silva,F. R Kschischang, and R. Koetter, “A Rank-Metric Approach
to Error Control in Random Network Coding”, IEEE Transactions on
Information Theory, vol. 54, no. 9, Sept. 2008, pp. 3951-3967.

[9] T. Etzion and N. Silberstein, “Error-Correcting Codes
in Projective Spaces via Rank-Metric Codes and Ferrers
Diagrams”, arXiv:0807.4846v3[cs.IT], July 2008, Available at:
http://arxiv.org/abs/0807.4846.

[10] D. Silva,F. R Kschischang, and R. Koetter, “Capacity ofrandom
network coding under a probabilistic error model”, 24th Biennial
Symposium on Communications, June 24-26, 2008, Kingston, USA,
pp. 9-12.

[11] Roberto W. Nóbrega and Bartolomeu F. Uchôa-Filho, “Multi-
shot codes for Network Coding: Bounds and a Multilevel con-
struction”, arXiv:0901.1655v1 [cs.IT], Jan. 2009, Available at:
http://arxiv.org/abs/0901.1655.

[12] E. Erez and M. Feder, “Convolutional network codes”, ISIT, June 27-
July 2, 2004, Chicago, Illinois, USA, pp. 146.

[13] N. Cai, R. Li, R. Yeung, Z. Zhang, “Network Coding Theory”,
Foundations and Trends in Communications and Information Theory,
vol. 2, no.4-5, 2006.

[14] S. R. Li and R. Yeung, “On Convolutional Network Coding”, ISIT,
July 9-14, 2006, Seattle, Washington, USA, pp. 1743-1747.

[15] C. Fragouli, and E. Soljanin, “A connection between network coding
and convolutional codes”, ICC, June 20-24, 2004, Paris, France, 2004,
vol. 2, pp. 661-666.

[16] K. Prasad and B. Sundar Rajan, “Convolutional codes forNetwork-
error correction”, arXiv:0902.4177v3 [cs.IT], August 2009, Available

http://arxiv.org/abs/0807.4846
http://arxiv.org/abs/0807.4846
http://arxiv.org/abs/0901.1655
http://arxiv.org/abs/0901.1655
http://arxiv.org/abs/0902.4177

13

00.050.10.150.20.250.30.350.40.450.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Probability of single edge error (p)

B
E

R
 a

t
S

in
k

2
Probability of single edge error (p) vs BER at Sink 2

Code 1 (Free dist. = 3, T
d

free

 = 2.)

Code 2 (Inst.) (Free dist. = 5, T
d

free

 = 6.)

Code 3 (Free dist. = 7, T
d

free

 = 12.)

d
free

 dominated

region

T
d

free

 dominated region

Fig. 5. BER at Sink 2

at: http://arxiv.org/abs/0902.4177. A shortened versionof this paper is
to appear in the proceedings of Globecom 2009, Nov. 30 - Dec. 4,
Honolulu, Hawaii, USA.

[17] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. M. G. M. Tolhuizen, “Polynomial Time Algorithms for Multicast
Network Code Construction”, IEEE transactions on information theory,
vol. 51, no. 6, pp. 1973-1982, June 2005.

[18] J. Rosenthal and R. Smaradanche, “Maximum Distance Separable
Convolutional Codes”, Appl.Algebra Engrg. Comm. Comput.,vol. 10,
no. 1, June 1999, pp. 15-32.

[19] J. Rosenthal, H. Gluesing-Luerssen, and R.Smaradanche, “Construction
of MDS convolutional codes”, Appl.Algebra Engrg. Comm. Comput.,
vol. 47, no. 5, July 2001, pp. 2045-2049.

[20] R. Johannesson and K.S Zigangirov, Fundamentals of Convolutional
Coding, John Wiley, 1999.

[21] G. D. Forney, “Bases of Rational Vector Spaces with applications to
multivariable linear systems”, SIAM J. Contr., vol. 13, no.3, 1975, pp.
493-520.

APPENDIX A
CONVOLUTIONAL CODES-BASIC RESULTS

We review the basic concepts related to convolutional codes,
used extensively throughout the rest of the paper. Forq, power
of a prime, letFq denote the finite field withq elements,Fq[z]
denotethe ring of univariate polynomialsin z with coefficients
from Fq, Fq(z) denote the field of rational functionswith
variable z and coefficients fromFq and Fq[[z]] denote the
ring of formal power serieswith coefficients fromFq. Every
element ofFq[[z]] of the form x(z) =

∑∞
i=0 xiz

i, xi ∈ Fq.

Thus, Fq[z] ⊂ Fq[[z]]. We denote the set ofn-tuples over
Fq[[z]] asFn

q [[z]]. Also, a rational functionx(z) = a(z)
b(z) with

b(0) 6= 0 is said to berealizable. A matrix populated entirely
with realizable functions is called a realizable matrix.

For a convolutional code, theinformation sequenceu =
[u0,u1, ...,ut] (ui ∈ Fb

q) and thecodeword sequence(output
sequence)v = [v0,v1, ...,vt]

(

vi ∈ Fc
q

)

can be represented in
terms of the delay parameterz as

u(z) =

t
∑

i=0

uiz
i and v(z) =

t
∑

i=0

viz
i

Definition 4 ([20]): A convolutional code, C of rate
b/c (b < c) is defined as

C = {v(z) ∈ Fc
q[[z]] | v(z) = u(z)G(z)}

whereG(z) is ab×c generator matrixwith entries fromFq(z)
and rankb overFq(z), andv(z) being the codeword sequence
arising from the information sequence,u(z) ∈ Fb

q[[z]].
Two generator matrices are said to beequivalentif they

encode the same convolutional code. Apolynomial generator
matrix [20] for a convolutional codeC is a generator matrix for
C with all its entries fromFq[z]. It is known that every convo-
lutional code has a polynomial generator matrix [20]. Also,a
generator matrix for a convolutional code iscatastrophic[20]

http://arxiv.org/abs/0902.4177

14

if there exists an information sequence with infinitely many
non-zero components, that results in a codeword with only
finitely many non-zero components.

For a polynomial generator matrixG(z), let gij(z) be the
element ofG(z) in the ith row and thejth column, and

νi := max
j

deg(gij(z))

be theith row degreeof G(z). Let

δ :=

b
∑

i=1

νi

be thedegreeof G(z).
Definition 5 ([20]): A polynomial generator matrix is

called basic if it has a polynomial right inverse. It is called
minimal if its degree δ is minimum among all generator
matrices ofC.

Forney in [21] showed that the ordered set{ν1, ν2, ..., νb}
of row degrees (indices) is the same for all minimal basic
generator matrices ofC (which are all equivalent to one
another). Therefore the ordered row degrees and the degree
δ can be defined for a convolutional codeC. A rate b/c
convolutional code with degreeδ will henceforth be referred
to as a(c, b, δ) code. Also, any minimal basic generator matrix
for a convolutional code is non-catastrophic.

Definition 6 ([20]): A convolutional encoderis a physical
realization of a generator matrix by a linear sequential circuit.
Two encoders are said to beequivalent encodersif they
encode the same code. Aminimal encoderis an encoder with
the minimal number of delay elements among all equivalent
encoders.

The weight of a vectorv(z) ∈ Fc
q[[z]] is the sum of the

Hamming weights (overFq) of all its Fc
q-coefficients. Then

we have the following definitions.
Definition 7 ([20]): The free distanceof a convolutional

codeC is given as

dfree(C) = min {wt(v(z))|v(z) ∈ C,v(z) 6= 0}

APPENDIX B
MDS CONVOLUTIONAL CODES

We discuss some results on the existence and construction
of Maximum Distance Separable (MDS) convolutional codes.

The following bound on the free distance, and the existence
of codes meeting the bound, called MDS convolutional codes,
was proved in [18].

Theorem 3 ([18]): For every base fieldF and every rate
k/n convolutional codeC of degreeδ, the free distance is
bounded as

dfree(C) ≤ (n− k)(⌊δ/k⌋+ 1) + δ + 1

Theorem 3 is known as thegeneralized Singleton bound.
Theorem 4 ([18]): For any positive integersk < n, δ and

for any primep there exists a fieldFq of characteristicp, and
a ratek/n convolutional codeC of degreeδ over Fq, whose
free distance meets the generalized Singleton bound.

A method of constructing MDS convolutional codes based
on the connection between quasi-cyclic codes and convolu-
tional codes was given in [19]. The ordered Forney indices
for such codes are of the form

ν1 = ν2 = ... = νl < νl+1 = ... = νk.

whereν1 = ⌊δ/k⌋ andνk = ⌊δ/k⌋+ 1.
It is known [19] that the field sizeq required for a(n, k, δ)

convolutional codeC with dfree(C) meeting the generalized
Singleton bound in the construction in [19] needs to be a prime
power such that

n|(q − 1) andq ≥ δ
n2

k(n− k)
+ 2. (25)

	Introduction
	Problem Formulation - CNECCs for unit-delay, memory-free networks
	Network model
	Network code
	CNECCs for single source, unit-delay, memory-free networks
	Network errors

	CNECCs for unit-delay, memory-free networks - Code Construction and Capability
	Network code for acyclic unit-delay memory-free networks
	Construction
	Decoding
	Error correcting capability
	Bounds on the field size and Tdfree(Cs)
	Bound on field size
	Bound on Tdfree(Cs)

	Illustrative examples
	Code construction for a modified Butterfly network:
	4C2 combination network over ternary field

	Comparison between CNECCs for instantaneous and unit-delay, memory-free networks
	Simulation results
	A probabilistic error model
	Simulations on the modified butterfly network

	Concluding remarks
	References
	Appendix A: Convolutional codes-Basic Results
	Appendix B: MDS convolutional codes

