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Spectral Shape of Check-Hybrid GLDPC Codes
Enrico Paolini, Mark F. Flanagan, Marco Chiani and Marc P. C.Fossorier

Abstract— This paper analyzes the asymptotic exponent of
both the weight spectrum and the stopping set size spectrum for
a class of generalized low-density parity-check (GLDPC) codes.
Specifically, all variable nodes (VNs) are assumed to have the
same degree (regular VN set), while the check node (CN) set is
assumed to be composed of a mixture of different linear block
codes (hybrid CN set). A simple expression for the exponent
(which is also referred to as thegrowth rate or the spectral shape)
is developed. This expression is consistent with previous results,
including the case where the normalized weight or stopping set
size tends to zero. Furthermore, it is shown how certain symmetry
properties of the local weight distribution at the CNs induce a
symmetry in the overall weight spectral shape function.

I. I NTRODUCTION

Tanner codes were introduced in [1] as a generalization of
Gallager’s low-density parity-check (LDPC) codes [2]. In the
bipartite graph representation of a Tanner code, all variable
nodes (VNs) have the same degree and may be interpreted
as repetition codes with the same length (regular VN set).
Moreover, all check nodes (CNs) are generic linear block
codes with the same length, dimension and code book (regular
CN set). Tanner codes with anirregular VN set (i.e., VNs
with different degrees) or with ahybrid CN set (i.e., CNs of
different types) are more generically referred to as generalized
LDPC (GLDPC) codes in the literature (e.g. [3]). Note that an
LDPC code may be viewed as a GLDPC code where all CNs
are single parity-check (SPC) codes. An even more general
class of codes is represented by doubly-generalized LDPC
(D-GLDPC) codes [4], where the VNs are also allowed to
be generic linear block codes.

In this paper, a simple formula for the asymptotic (in
codeword length) exponent of the weight distribution of a
GLDPC code ensemble with a regular VN set and a hybrid CN
set is developed. As usual in the literature, this exponent will
be referred to as thegrowth rate of the weight distributionor
theweight spectral shapeof the ensemble, the two expressions
being used interchangeably throughout the paper. The starting
point for deriving the above-mentioned formula is a polyno-
mial system solution for the spectral shape that was developed
by the authors in [5, Theorem 1]. Here, it was shown that any
value of the spectral shape function of an irregular D-GLDPC
code ensemble can be calculated by solving a(4× 4) system
of polynomial equations, regardless of the number of different
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VN and CN types. Additional recent works relevant to the
subject of this paper are [6]–[10].

As explained in Section II, assuming transmission over
the binary erasure channel (BEC) and iterative decoding, the
developed formula is also valid for the asymptotic exponent
of the stopping set size distribution upon replacing the local
weight enumerating function (WEF) of each CN type with an
appropriate polynomial function.

Symmetry properties of the growth rate of the weight
distribution are also investigated. It is proved that the weight
spectral shape function of a variable-regular GLDPC ensemble
is symmetric w.r.t. normalized weightα = 1/2 if the local
WEF of each CN is a symmetric polynomial. This result
establishes a connection between symmetry properties at a
“microscopic” level (i.e., at the nodes of the Tanner graph)
and symmetry of the “macroscopic” growth rate function. A
necessary condition for symmetry of the weight spectral shape
is also developed.

II. PRELIMINARY DEFINITIONS

We consider a check-hybrid GLDPC code ensembleMn,
wheren is the codeword length (this is equal to the number
of VNs). All VNs are repetition codes of lengthq ≥ 2, with
input-output weight enumerating function

B(x, y) = 1 + xyq . (1)

There arenc different CN typest ∈ Ic = {1, 2, · · · , nc};
for each CN typet ∈ Ic, we denote byht, st and rt the
CN dimension, length and minimum distance, respectively. We
assume thatrt ≥ 2 for all t ∈ Ic, and that no CN has idle bits
(i.e., its generator matrix contains no all-zero column). The
WEF for CN typet ∈ Ic is given by

A(t)(z) =

st
∑

u=0

A(t)
u zu = 1 +

st
∑

u=rt

A(t)
u zu .

Here A
(t)
u ≥ 0 denotes the number of weight-u codewords

for CNs of typet. We denote bȳut the largestu ∈ {rt, rt +
1, . . . , st} such thatA(t)

u > 0.
For t ∈ Ic, ρt is the fraction of edges of the Tanner

graph connected to type-t CNs, and the polynomialρ(x) is
defined by

ρ(x) =
∑

t∈Ic

ρtx
st−1 .

If E denotes the number of edges in the Tanner graph, the
number of CNs of typet ∈ Ic is then given byEρt/st.
Denoting as usual

∫ 1

0 ρ(x) dx by
∫

ρ, we see that the number of
edges in the Tanner graph is given byE = nq and the number
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of CNs is given bym = E
∫

ρ. Therefore, the fraction of CNs
of type t ∈ Ic is given by

γt =
ρt

st
∫

ρ
. (2)

A member of the GLDPC code ensembleMn corresponds to
a permutation of theE edges connecting VNs to CNs.

In the special case where there is onlyoneCN type (Tanner
code ensemble), we write the WEF for this CN type asA(z) =
∑s

u=0 Auz
u = 1 +

∑s
u=r Auz

u. In this case, the largestu ∈
{r, r + 1, . . . , s} such thatAu > 0 is denoted bȳu.

The weight spectral shape of a GLDPC code ensemble
sequence{Mn} is defined by

G(α) , lim
n→∞

1

n
logEMn

[Nαn] (3)

whereEMn
denotes the expectation operator over the ensem-

ble Mn, Nw denotes the number of codewords of weightw
of a randomly chosen GLDPC code in the ensemble and the
logarithm has basee. The limit in (3) assumes the inclusion
of only those positive integersn for which αn ∈ Z and
EMn

[Nαn] is positive. Using standard notation, we also define
the asymptotic relative minimum distance forMnas α∗ =
inf{α > 0 | G(α) ≥ 0}. The ensemble sequence is said to
exhibit good spectral shape behaviorwhenα∗ > 0 and bad
spectral shape behaviorwhenα∗ = 0.

Although this paper is focused on the weight spectrum, the
results developed in Section III can be extended to the stopping
set size spectrum. A stopping set of a GLDPC code may be
defined as any subsetS of the VNs such that, assuming all
VNs in S are erased and all VNs not inS are not erased,
every CN which is connected toS cannot recover any VN in
S.1 A local stopping setfor a CN is a subset of the local code
bits which, if erased, is not recoverable to any extent by the
CN. All results derived in this paper for the distance spectrum
can be extended to the stopping set size spectrum by simply
replacing the WEF for CN typet ∈ Ic with its local stopping
set enumerating function (SSEF).

We point out that the local SSEF of a CN depends on the
decoding algorithm used to locally recover from erasures. In
this paper, we will consider both bounded distance (BD) and
maximum a posteriori (MAP) CN decoding. In the former
case, the local SSEF (BD-SSEF) is given by

Ψ(t)(z) = 1 +

st
∑

u=rt

(

st
u

)

zu . (4)

In the latter case, the local SSEF (MAP-SSEF) is given by

Φ(t)(z) = 1 +

st
∑

u=rt

φ(t)
u zu (5)

whereφ(t)
u ≥ 0 is the number of local stopping sets (under

MAP decoding) of sizeu.2

1The concept of stopping set was first introduced in [11] in thecontext of
LDPC codes. When applied to LDPC codes (i.e., all CNs are SPC codes),
the definition of stopping set used in this paper coincides with that in [11].

2Denoting byGt any generator matrix for a type-t CN, a local erasure
pattern is a local stopping set under MAP decoding when each column ofGt

corresponding to erased bits is linearly independent of thecolumns ofGt

corresponding to the non-erased bits.

The growth rate of the stopping set size distribution of
the ensemble sequence{Mn} for the case of BD and MAP
decoding at the CNs, whose definition is analogous to (3), will
be denoted byGΨ(α) andGΦ(α), respectively. Similarly the
asymptotic relative minimum stopping set size will be denoted
by α∗

Ψ andα∗
Φ, respectively.

Definition 1: Let

M ,

(
∫

ρ

)

∑

t∈Ic

γtūt ≤ 1 (6)

and define the functionf : R+ → [0,M) as

f(z) =

(
∫

ρ

)

∑

t∈Ic

γt
z dA(t)(z)

dz

A(t)(z)
. (7)

Note that we haveM = 1 if and only if ūt = st for all
t ∈ Ic.

Lemma 1:The functionf fulfills the following properties:
1) It is monotonically increasing for allz > 0;
2) f(0) = f

′(0) = 0;
3) limz→+∞ f(z) = M .

Proof: We prove the first property, as the proofs of
the second and the third properties are straightforward. The
derivative off (normalized w.r.t.

∫

ρ) is given by

∑

t∈Ic

γt
A(t)(z)

[

dA(t)(z)
dz + z d2A(t)(z)

dz2

]

− z
[

dA(t)(z)
dz

]2

[A(t)(z)]2
.

The denominator of the fraction in each term in the sum is
strictly positive for allz > 0. The numerator of the fraction
in term t ∈ Ic in the sum may be expanded as

(1 +

st
∑

v=rt

A(t)
v zv)(

st
∑

u=rt

uA(t)
u zu−1 +

st
∑

u=rt

u(u− 1)A(t)
u zu−1)

− z(

st
∑

u=rt

uA(t)
u zu−1)(

st
∑

v=rt

vA(t)
v zv−1)

=

st
∑

u=rt

u2A(t)
u zu−1 +

st
∑

u=rt

st
∑

v=rt

u(u− v)A(t)
u A(t)

v zu+v−1 .

Observe that in this expression, each term in the second sum-
mation withu = v is zero, while each(u, v) term in the second
summation (withu > v) added to the corresponding(v, u)
term is positive forz > 0, sinceu(u − v)A

(t)
u A

(t)
v zu+v−1 +

v(v − u)A
(t)
u A

(t)
v zu+v−1 = (u− v)2A

(t)
u A

(t)
v zu+v−1 > 0 and

therefore the second summation is nonnegative forz > 0.
Since the first summation is strictly positive forz > 0, it
follows that f′(z) > 0 for all z > 0.

Note that, due to Lemma 1, the inverse off, denoted by
f
−1 : [0,M) → R

+, is well-defined.

III. SPECTRAL SHAPE OFCHECK-HYBRID GLDPC CODES

We next state and prove an expression for the spectral shape
of check-hybrid GLDPC codes.

Theorem 1 (Spectral shape of check-hybrid GLDPC codes):
Consider a GLDPC code ensemble with a regular VN set,
composed of repetition codes all of lengthq, and a hybrid
CN set, composed of a mixture ofnc different linear block



code types. Then, the weight spectral shape of the ensemble
is given by

G(α) = (1− q)h(α) − q α log f−1(α)

+ q

(
∫

ρ

)

∑

t∈Ic

γt logA
(t)(f−1(α)) (8)

whereh(α) = −α logα−(1−α) log(1−α) denotes the binary
entropy function.

Proof: In [5], a polynomial system solution for the
spectral shape of irregular D-GLDPC codes was derived. In the
special case of D-GLDPC codes where all VNs are repetition
codes of lengthq, this is given by (special case of equation
(8) in [5])

G(α) = logB(x0, y0)− α log x0

+ q

(
∫

ρ

)

∑

t∈Ic

γt logA
(t)(z0) + q log(1− β

q
) (9)

where the values ofx0, y0, z0, β in (9) are found by solving
the (4× 4) polynomial system

(
∫

ρ

)

∑

t∈Ic

γt
z0

dA(t)(z0)
dz

A(t)(z0)
=

β

q
, (10)

x0y
q
0

1 + x0y
q
0

= α , (11)

x0y
q
0

1 + x0y
q
0

=
β

q
, (12)

and
z0y0

1 + z0y0
=

β

q
. (13)

Note that we are certain of the existence of a unique real
solution to the polynomial system such thatx0 > 0, y0 > 0,
z0 > 0, β > 0, due to Hayman’s formula. We solve this
system of equations sequentially for the variablesβ, z0, y0
andx0 (respectively). First, combining (11) and (12) yields

β = qα . (14)

Substituting (14) into (10) yieldsf(z0) = α which may be
written as

z0 = f
−1(α) . (15)

Using (14) and (15) in (13) yields

y0 =
α

(1− α)f−1(α)
. (16)

Finally, substituting (14) and (16) into (12) yields

x0 =

(

α

1− α

)1−q
(

f
−1(α)

)q
. (17)

Substituting (14), (15), (16) and (17) into (9), and simplifying,
leads to (8).

The expression (8) holds regardless of whether the ensemble
has good or bad spectral shape behavior. Note that, according
to (8), the growth rateG(α) is well-defined only forα ∈
[0,M ]. This is as expected due to the following reasoning. A
codeword of weightαn naturally induces a distribution of bits
on the Tanner graph edges,αnq of which are equal to1. Also

note that the maximum number of ones in this distribution
occurs when a maximum weight local codeword is activated
for each of theγtm CNs of typet ∈ Ic, and is thus given
by m

∑

t∈Ic
γtūt. Hence, we haveαnq ≤ m

∑

t∈Ic
γtūt, i.e.,

α ≤ M .
In Appendix I it is shown how, for small relative weightα,

(8) simplifies to a known expression that was derived in [12]
for Tanner codes, and extended in [13] to irregular GLDPC
codes.

By considering Theorem 1 in the special case of Tanner
codes, we obtain the following corollary.

Corollary 1 (Spectral shape of Tanner codes):Consider a
Tanner code ensemble where all variable component codes
are length-q repetition codes and where all check component
codes are length-s codes with weight enumerating function
A(z) = 1 +

∑s
u=r Auz

u. The weight spectral shape of this
ensemble is given by

G(α) = (1− q)h(α) − q α log(f−1(α)) +
q

s
logA(f−1(α))

(18)
where the functionf is given by (special case of (7))

f(z) =
z A′(z)

sA(z)
, (19)

and f−1 : [0,M) → R
+ is well-defined, whereM = ū

s .
Note that, in the special case where all CNs are SPC codes,
(18) becomes equal to the spectral shape expression for regular
LDPC codes developed in [16, Theorem 2] for the case of
stopping sets. Also note that, in some cases, (18) can be
expressed analytically asf−1(α) admits an analytical form.
An example is given in Appendix II.

IV. SYMMETRY OF THE WEIGHT SPECTRAL SHAPE

Consider a GLDPC code ensemble with a regular VN set
and a hybrid CN set. In this section, we show how a symmetry
in the overall weight spectral shape of the ensemble is induced
by local symmetry properties in the WEFs of the CNs.

Definition 2: For CN typet ∈ Ic, let Ut = {u ∈ N|A(t)
u >

0}. Then, we define

U (t∗) = {v ∈ N|ūt − v ∈ Ut} . (20)
Note that for any CN type, we always have0 ∈ U (t∗) and
ūt ∈ U (t∗).

Definition 3: The WEF of CN typet ∈ Ic is said to be
symmetricif and only if A(t)

ūt−u = A
(t)
u for all u ∈ Ut.

Note that if the WEF of CN typet ∈ Ic is symmetric, then
we haveU (t∗) = U (t).

Lemma 2:The WEF of CN typet ∈ Ic is symmetric if and
only if the all-1 codeword belongs to this code.
The proof of Lemma 2 is omitted due to space constraints.3

3The sufficient condition (if a linear block code has the all-1 codeword then
its WEF is symmetric) is a well-known result in classical coding theory. On
the other hand, we proved the necessary condition by assuming that CN type
t ∈ Ic has a symmetric WEF and a maximum codeword weightD < st, and
by showing that these assumptions lead to a contradiction. As pointed out by
one of the anonymous reviewers, the necessary condition mayalso be proved
by reasoning on the expected weight of a randomly selected codeword in a
linear block code, under the symmetry hypothesis.



Lemma 3:The WEF of CN typet ∈ Ic fulfills

A(t)(z) = zūtA(t)
(

z−1
)

, (21)

for all z ∈ R
+ if and only if it is symmetric.

Proof: We have

A(t)
(

z−1
)

=

∑

u∈Ut
A

(t)
u zūt−u

zūt
=

∑

v∈U(t∗) A
(t)
ūt−vz

v

zūt

where the final equality is obtained byv = ūt − u. The
proof is completed by observing that, if and only ifA(t)(z)

is symmetric, we haveU (t∗) = Ut andA
(t)
ūt−v = A

(t)
v for all

v ∈ Ut.
Lemma 4:The functionf defined by (7) fulfills

f(z) = M − f
(

z−1
)

(22)

∀ z ∈ R
+ if and only if A(t)(z) is symmetric for everyt ∈ Ic.

Proof: First we note that if and only if the WEF of CN
type t ∈ Ic is symmetric, we have, differentiating (21),

dA(t)(z)

dz
= −zūt−2 dA

(t)(z−1)

dz−1
+ ūtz

ūt−1A(t)(z−1) .

Multiplying by z and using (21) yields

z
dA(t)(z)

dz
= −zūt−1 dA

(t)(z−1)

dz−1
+ ūtA

(t)(z) . (23)

Then,

M − f
(

z−1
)

= M −
(
∫

ρ

)

∑

t∈Ic

γt

(

z−1 dA(t)(z−1)
dz−1

A(t)(z−1)

)

(a)
=

(
∫

ρ

)

∑

t∈Ic

γt

(

ūt −
zūt−1 dA(t)(z−1)

dz−1

A(t)(z)

)

(b)
=

(
∫

ρ

)

∑

t∈Ic

γt
ūtA

(t)(z) + z dA(t)(z)
dz − ūtA

(t)(z)

A(t)(z)
= f(z)

where we have used (6) and (21) in (a), and (23) in (b).
Lemma 5:The inverse functionf−1 fulfills

f
−1(M − α) =

1

f−1(α)
(24)

∀ α ∈ (0, 1) if and only if A(t)(z) is symmetric for every
t ∈ Ic.

Proof: By Lemma 4, the functionf fulfills (22) if and
only if A(t)(z) is symmetric for everyt ∈ Ic. By applying the
inverse function to both sides of (22) and by lettingf(z−1) =
α for all z ∈ R

+\{0}, we obtain the statement.
Theorem 2 (Sufficient condition for symmetry):Consider a

GLDPC code ensemble with a regular VN set, composed of
repetition codes all of lengthq, and a hybrid CN set, composed
of a mixture ofnc different linear block codes. IfA(t)(z) is
symmetric for eacht ∈ Ic, then the spectral shape of the
ensemble fulfills

G(M − α) = G(α) (25)

for all α ∈ (0, 1).

Proof: By Lemma 2, the hypothesis thatA(t)(z) is
symmetric for eacht ∈ Ic implies ūt = st for every t ∈ Ic,
and thereforeM = 1. From (8) we have:

G(M − α) = (1− q)h(M − α) − q(M − α) log f−1(M − α)

+ q

(
∫

ρ

)

∑

t∈Ic

γt logA
(t)
(

f
−1(M − α)

)

(a)
= (1 − q)h(M − α)− q(M − α) log

1

f−1(α)

+ q

(
∫

ρ

)

∑

t∈Ic

γt logA
(t)

(

1

f−1(α)

)

(b)
= (1 − q)h(M − α)− q α log(f−1(α))

+ q

(
∫

ρ

)

∑

t∈Ic

γt logA
(t)(f−1(α))

= G(α)

where (a) follows from symmetry ofA(t)(z) and Lemma 5,
(b) from symmetry ofA(t)(z), Lemma 3 and (6), and the final
line from M = 1.

Theorem 3 (Necessary condition for symmetry):Consider
a GLDPC code ensemble with a regular VN set, composed
of repetition codes all of lengthq, and a hybrid CN set,
composed of a mixture ofnc different linear block codes.
If the spectral shape fulfillsG(M − α) = G(α) for all
α ∈ (0, 1), thenM is a fixed point of the function

Γ(x) = 2 f

(

(

x

2− x

)

q−1
q

)

. (26)

Proof: The proof is somewhat lengthy and we only
sketch it due to space constraints. The first step consists of
developing an expression forF (α) = G(M −α)−G(α). The
obtained expression can be written as a function ofz, denoted
by J(z), by definingz = f

−1(α). We must haveJ(z) = 0 for
all z ∈ (0,+∞), and thereforeJ ′(z) = 0 for all z ∈ (0,+∞).
This latter condition must hold in particular forz = f

−1(M2 ),
in which case we obtain the compact condition

q log f−1

(

M

2

)

= (1− q) log

(

2−M

M

)

which is equivalent to

M = 2 f

(

(

M

2−M

)

q−1
q

)

.

Note that ifA(t)(z) is symmetric for eacht ∈ Ic then we
haveM = 1, which is always a fixed point ofΓ(x) defined
in (26) since it is possible to show thatf(1) = 1

2 .

V. EXAMPLES

Example 1 (Tanner code with(7, 4) Hamming CNs):
Consider a rateR = 1/7 Tanner code ensemble where all VNs
have degree2 and where all CNs are(7, 4) Hamming codes (it
was shown in [14], [15] that this ensemble has good spectral
shape behavior). The WEF of a Hamming(7, 4) CN is given
by A(z) = 1+7z3+7z4+z7, while its local MAP-SSEF and
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Fig. 1. Spectral shapes of the Tanner code ensemble in Example 1. Solid:
weight spectral shape (relative minimum distance:α∗ = 0.18650). Dashed:
stopping set size spectral shape under MAP decoding at the CNs (relative
minimum stopping set size:α∗

Φ
= 0.11414). Dotted: stopping set size spectral

shape under BD decoding at the CNs (relative minimum stopping set size:
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Fig. 2. Weight spectral shape of the check-hybrid GLDPC codeensemble
in Example 2. Relative minimum distance:α∗

= 0.028179.

BD-SSEF are given byΦ(z) = 1+7z3+10z4+21z5+7z6+z7

andΨ(z) = 1 + 35z3 + 35z4 + 21z5 + 7z6 + z7 respectively.
Note that we haveM = ū

s = 1 in all three cases. A plot
of G(α), GΦ(α) andGΨ(α) obtained by implementation of
(18) is depicted in Fig. 1. We observe thatA(z) satisfies the
conditions of Theorem 2. This is reflected by the fact that
the weight spectral shapeG(α) is symmetric with respect to
α = 1/2.

Example 2 (Check-hybrid ensemble):Consider a rateR =
1/3 check-hybrid GLDPC code ensemble where all VNs
are repetition codes of lengthq = 3 and whose CN set
is composed of a mixture of two linear block code types
(Ic = {1, 2}). CNs of type1 ∈ Ic are length-7 SPC codes
with WEF A(1)(z) = [(1+ z)7 +(1− z)7]/2 andγ1 = 0.722,
while CNs of type2 ∈ Ic are(7, 4) codes with WEFA(2)(z) =
1+5z2+7z4+3z6 andγ2 = 0.278. The weight spectral shape
of this ensemble, obtained from (8), is depicted in Fig. 2. Note
that for this ensemble,M = 6/7. This value is not a fixed
point of the functionF (x) defined in (26) (the only fixed point
between0 and 1 is x = 0.888421). As expected, the weight
spectral shape does not exhibit any symmetry property.

Example 3 (Ensemble with bad spectral shape behavior):
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Fig. 3. Weight spectral shape of the Tanner code ensemble in Example 3.

Consider a rateR = 1/5 Tanner code ensemble where
all VNs are repetition codes of lengthq = 2 and and
where all CNs are(5, 3) linear block codes with WEF
A(z) = 1 + 3z2 + 3z3 + z5. This ensemble is known to
have bad spectral shape behavior (α∗ = 0) since we have
λ′(0)C = 6/5 > 1, where λ(x) = x and C = 2A2/s
[12], [13]. A plot of the weight spectrum for this ensemble,
obtained from (18) is depicted in Fig. 3. We observe that
the plot of G(α) is symmetric, due to the fact thatA(z) is
symmetric (M = 1). As expected, the derivative ofG(α) at
α = 0 is positive and henceα∗ = 0.

VI. CONCLUSION

A simple expression has been developed for both the weight
and the stopping set size spectral shape of GLDPC code
ensembles with a regular VN set and a hybrid CN set. Some
known results (specifically, an expression for the spectral
shape of regular LDPC codes and an asymptotic expression
of the spectral shape for GLDPC codes as the normalized
weight tends to zero) follow as corollaries of the developed
formula. Moreover, symmetry properties of the spectral shape
function have been discussed. A sufficient condition and a
necessary condition for the weight spectral shape functionto
be symmetric have been identified.

APPENDIX I
ASYMPTOTIC CASE α → 0

For smallα, the expression (8) reduces to a known formula
first developed in [12] for Tanner codes, and extended in [13]
to irregular GLDPC codes. This formula is here obtained as a
simple corollary of Theorem 1.

Corollary 2: In the limit whereα → 0, the growth rate of
the weight distribution of a GLDPC code ensemble with a
regular VN set fulfills

G(α) →
(

q − q

r
− 1
)

α logα+
q α

r
log

(

er

∫

ρ
∑

t∈Xc

γtA
(t)
r

)

.

(27)

where r denotes the smallest minimum distance of all CN
types (i.e.r , mint∈Ic rt), Xc denotes the set of CN types



with this minimum distance (i.e.Xc = {t ∈ Ic : rt = r})
ande denotes Napier’s number.

Proof: Let α = f(z0). From the definition off given
in (7), it is readily shown that ifα → 0, we must have
z0 → 0. Next, note that in (7), each termt ∈ Ic in the
sum on the right-hand side is a rational polynomial inz0
whose denominator tends to unity asα → 0, and whose
numerator is dominated asα → 0 by the term corresponding
to the lowest power ofz0. Therefore, asα → 0, (7) becomes
α →

(∫

ρ
)
∑

t∈Xc
γtrA

(t)
r zr0 , or equivalently,

z0 →
(

α

r
∫

ρ
∑

t∈Xc
γtA

(t)
r

)1/r

. (28)

Using log(1+x) → x asx → 0, we have that for everyt ∈ Ic
logA(t)(z0) → A

(t)
rt z

rt
0 asα → 0, and so

∑

t∈Ic

γt logA
(t)(z0) →

∑

t∈Xc

γtA
(t)
r zr0 =

α

r
∫

ρ
. (29)

Note that in these steps we have again used the fact that a
polynomial expression inz0 is dominated by its lowest degree
term asz0 → 0. Next, observe thath(α) → −α logα as
α → 0 and therefore we obtain (using (28) and (29) in (8))

G(α) →(q − 1)α logα− q α

r
log

(

α

r
∫

ρ
∑

t∈Xc
γtA

(t)
r

)

+

(

q

∫

ρ

)(

α

r
∫

ρ

)

which coincides with (27).

APPENDIX II
CLOSED FORM EXPRESSIONS FOR THEGROWTH RATE

It is worthwhile to note that in some cases, (18) can be
expressed in closed form becausef−1(α) can be expressed
analytically. This is the case, for instance, for the(3, 6) regular
LDPC ensemble, for whichf(z) = α becomesax3+bx2+cx+
d = 0, wherex = z2 and(a, b, c, d) = (α−1, 15α−10, 15α−
5, α). This cubic equation inx may be solved by Cardano’s
method (see, e.g., [17, p. 17]; the discriminant∆ = ρ3 + µ2

is negative for everyα ∈ (0, 1), where

ρ =
3ac− b2

9a2
; µ =

9abc− 27a2d− 2b3

54a3
.

The required solution is then uniquely and analytically identi-
fied asf−1(α) = z =

√
x wherex = 2

√−ρ cos (θ/3)− b
3a >

0 andθ = tan−1
(√

−∆/µ
)

.

Similarly, the weight spectral shape of a(4, 8) regular
LDPC ensemble may be expressed in closed form through
the solution of a quartic equation.
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