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Spectral Shape of Check-Hybrid GLDPC Codes

Enrico Paolini, Mark F. Flanagan, Marco Chiani and Marc PFGssorier

Abstract— This paper analyzes the asymptotic exponent of VN and CN types. Additional recent works relevant to the
both the weight spectrum and the stopping set size spectrunof  subject of this paper are [6]-[10].

a class of generalized low-density parity-check (GLDPC) ates. As explained in Sectiofilll, assuming transmission over

Specifically, all variable nodes (VNs) are assumed to have ¢h . . . .
same degree (regular VN set), while the check node (CN) set isthe binary erasure channel (BEC) and iterative decodirey, th

assumed to be composed of a mixture of different linear block developed formula is also valid for the asymptotic exponent
codes (hybrid CN set). A simple expression for the exponent of the stopping set size distribution upon replacing thealloc
_(Wg'Ch 'IS alzo ;?;Q”ed to as thegrowth rate or thﬁ spectral ShaIC;E) weight enumerating function (WEF) of each CN type with an
is developed. This expression is consistent with previougsults, : : :

including the case where the normalized weight or stoppinget appropriate polynomial function.

size tends to zero. Furthermore, it is shown how certain symetry ~ Symmetry properties of the growth rate of the weight
properties of the local weight distribution at the CNs induce a distribution are also investigated. It is proved that theghte
symmetry in the overall weight spectral shape function. spectral shape function of a variable-regular GLDPC ensemb

is symmetric w.r.t. normalized weight = 1/2 if the local
WEF of each CN is a symmetric polynomial. This result
. INTRODUCTION establishes a connection between symmetry properties at a
i , .. “microscopic” level (i.e., at the nodes of the Tanner graph)
Tanner codes were introduced in [1] as a generalization éﬁfud symmetry of the “macroscopic” growth rate function. A

Gallager's low-density parity-check (LDPC) codes [2]. It o essary condition for symmetry of the weight spectrapeha
bipartite graph representation of a Tanner code, all vliay 5150 developed.

nodes (VNs) have the same degree and may be interpreted
as repetition codes with the same length (regular VN set).
Moreover, all check nodes (CNs) are generic linear block Il. PRELIMINARY DEFINITIONS

codes with the same length, dimension and code book (regula{Ne consider a check-hybrid GLDPC code ensemble

CN set). Tanner codes with amegular VN set (i.e., VNS wheren is the codeword length (this is equal to the number
with different degrees) or with hybrid CN set (i.e., CNs of of VNs). All VNs are repetition codes of length> 2, with

different types) are more generically referred to as géizech inbut-outout weiaht enumerating function
LDPC (GLDPC) codes in the literature (e.g. [3]). Note that an P P 9 9

LDPQ code may be viewed as a GLDPC code where all CNs B(z,y) =1+ zy?. (1)
are single parity-check (SPC) codes. An even more general
class of codes is represented by doubly-generalized LDRGere aren.. different CN typest € I, = {1,2,--- ,n.};
(D-GLDPC) codes [4], where the VNs are also allowed tfor each CN typet € I., we denote byh, s; andr, the
be generic linear block codes. CN dimension, length and minimum distance, respectively. W
In this paper, a simple formula for the asymptotic (irassume that; > 2 for all ¢ € I, and that no CN has idle bits
codeword length) exponent of the weight distribution of &.e., its generator matrix contains no all-zero colummeT
GLDPC code ensemble with a regular VN set and a hybrid CWEF for CN typet € I, is given by
set is developed. As usual in the literature, this exponeiht w . .
be referred to as thgrowth rate of the weight distributioor () _ ~ A u ~ () u
theweight spectral shapef the ensemble, the two expressions AT=) = UX_;JA“ a=l Z A2t
being used interchangeably throughout the paper. Thengart

point for deriving the above-mentioned formula is a polyngdere A’ > 0 denotes the number of weightcodewords

mial system solution for the spectral shape that was deeeloor CNs of typet. We denote byi, the largest € {r;, ¢ +
by the authors in [5, Theorem 1]. Here, it was shown that agy ,s:} such thatASf) < 0.

value of the spectral shape function of an irregular D-GLDPC Fort € I., p, is the fraction of edges of the Tanner

code ensemble can be calculated by solving & 4) system graph connected to typeCNs, and the polynomiah(z) is
of polynomial equations, regardless of the number of différ yafined by

U=r¢
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of CNs is given bym = E [p. Therefore, the fraction of CNs  The growth rate of the stopping set size distribution of

of typet € 1. is given by the ensemble sequeng@1,,} for the case of BD and MAP
Pt decoding at the CNs, whose definition is analogouElto (3), wil
Tt = si [p 2) be denoted byry (o)) and G (), respectively. Similarly the

asymptotic relative minimum stopping set size will be dedlot
by o, andaj, respectively.
Definition 1: Let

A member of the GLDPC code ensemblé,, corresponds to
a permutation of theéZ edges connecting VNs to CNs.

In the special case where there is ooheCN type (Tanner
code ensemble), we write the WEF for this CN typedds) = a _

Yoo Azt =1+>"_ A,z". Inthis case, the largeste M= (/p) Z Yot < 1 ©)
{r,r+1,...,s} such thatd, > 0 is denoted bya.
The weight spectral shape of a GLDPC code ensemi@gd define the functiofi: R* — [0, M) as
sequencg M,, } is defined by dA® (2)

Z = t Z T .
G(0) 2 Tim LlogEy, [Naw] 3) =) (/ ”) 24w () @)

tel.
nee Note that we havell = 1 if and only if @, = s, for all
whereE ,, denotes the expectation operator over the ensem:-

e

ble M, N, denotes the number of (_:odewords of weight Lemma 1:The functionf fulfills the following properties:

of a randomly chosen GLDPC code in the ensemble and the1 It tonically i ina for all > 0:

logarithm has base. The limit in (3) assumes the inclusion 2) f (')S r_ncf>/ng of'gé y Increasing for as > o,

of only those positive integers for which an € Z and 3) 1,( )= (f) _—,M

Ear. [Nan] is positive. Using standard notation, we also define 3 110=—-+o0 (z)=M.

the asymptotic relative minimum distance farl,as o* = Proof: ~We prove the first property, as the proofs of

inf{a > 0 | G(a) > 0}. The ensemble sequer?ce is said the second and the third properties are straightforwar@. Th

exhibit good spectr_al shape behaviarhen o* > 0 and bad erivative off (normalized w.r.t.[) is given by

spectral shapg behavi(_when a* =0. _ A (2) {dA(t)(z) 4 dzA(')(z)} _ . [dA(t)(z)} 2
Although this paper is focused on the weight spectrum, the Z - dz dz® dz

results developed in Sectibnllll can be extended to the sigpp [A®)(2)]2

set size spectrum. A stopping set of a GLDPC code may be _ o . )

defined as any subs& of the VNs such that, assuming a”The denominator of the fraction in each term in the sum is

VNs in S are erased and all VNs not i§ aré not erased. strictly positive for allz > 0. The numerator of the fraction

every CN which is connected % cannot recover any VN in IN termt € I in the sum may be expanded as

tel.

tel.

SHA local stopping sefor a CN is a subset of the local code s s d
bits which, if erased, is not recoverable to any extent by thel + »_ AV 2") (> wAl 2"t + 3 " w(u—1)AP 1)
CN. All results derived in this paper for the distance speutr V=T u=re U=

can be extended to the stopping set size spectrum by simply u— o
replacing the WEF for CN typé € I, with its local stopping - Z(Z UAg)Z 1)(2 UASJt)Z )
set enumerating function (SSEF). s s s

We point out that the local SSEF of a CN depends on the_ Z u2A1(Lt)Zufl + Z Z w(u — U)Agt)Agt)Zquvfl.
decoding algorithm used to locally recover from erasures. | ‘=
this paper, we will consider both bounded distance (BD) a
maximum a posteriori (MAP) CN decoding. In the former
case, the local SSEF (BD-SSEF) is given by

uU=r V="¢

U=Tt V=T1¢

rijserve that in this expression, each term in the second sum-
mation withu = v is zero, while eackw, v) term in the second
summation (withu > v) added to the co(rr)esg)?ndir(gr,u)

& AN term is positive forz > 0, sinceu(u — v)AY A} zutv=1 4
vOE) =143 (u)z ' @ v(v—u) AP AW utv=1 = (y — 0)2AP A zuv-1 5 0 and
therefore the second summation is nonnegativezfas 0.
Since the first summation is strictly positive fer > 0, it

U=r¢

In the latter case, the local SSEF (MAP-SSEF) is given by

ot follows thatf’(z) > 0 for all z > 0. O
t _ t u
P )(2) =1+ Z ¢1(L) z ®) Note that, due to Lemma 1, the inverse fofdenoted by
u=re f=1:]0,M) — R*, is well-defined.
where¢5f) > 0 is the number of local stopping sets (under
MAP decoding) of sizeud [1l. SPECTRAL SHAPE OF CHECK-HYBRID GLDPC CoDES

1The concept of stopping set was first introduced in [11] ind¢betext of We next state and Prove an expression for the spectral shape

LDPC codes. When applied to LDPC codes (i.e., all CNs are seizg), Of check-hybrid GLDPC codes.
the definition of stopping set used in this paper coincidet Wiat in [11]. Theorem 1 (Spectral shape of check-hybrid GLDPC codes):

2Denoting by G any generator matrix for a typeCN, a local erasure Consider a GLDPC code ensemble with a regular VN set,
pattern is a local stopping set under MAP decoding when ealthmn of G¢

corresponding to erased bits is linearly independent ofctiiamns of G+ Composed of repetition codes all of I_enggh and a hybrid
corresponding to the non-erased bits. CN set, composed of a mixture af. different linear block



code types. Then, the weight spectral shape of the ensemimée that the maximum number of ones in this distribution
is given by occurs when a maximum weight local codeword is activated
_ for each of they,m CNs of typet € I., and is thus given
— _ _ 1 t

G(a) = (1= g)h(a) —qalogf~(a) bymztejc 1. Hence, we haveng < mZtezc Vi, 1.€.,
- M.
+q</> log AV (f1(a)) (8) @= o . _

g t;jc% & () @) In Appendix it is shown how, for small relative weight
. (8) simplifies to a known expression that was derived in [12]
whereh(a) = —aloga—(1-a)log(1-a) denotes the binary ¢ ranner codes, and extended in [13] to irregular GLDPC

entropy function. codes

frcioi In [f5_], a ﬁ)OIychTlglpzystzm solutg)n_fo(rj ;het By considering Theorerl 1 in the special case of Tanner
sheclral shape ol Irregurar L- codes was derived.an i, qes, we obtain the following corollary.

special case of D-GLDPC codes where all VNs are repet'tlonCorollary 1 (Spectral shape of Tanner code€onsider a

codes of lengthy, this is given by (special case of equ"’monl'anner code ensemble where all variable component codes

(8) in [5]) are lengthg repetition codes and where all check component
G(a) = log B(g,y0) — alog x codes are length-codes with weight enumerating function
3 A(z) = 14 >0 _ A,z The weight spectral shape of this
+4q (/P) > log AW (z) + qlog(1 — a) (9) ensemble is given by
tel,

_ q _
where the values aofy, yo, 20, 3 in @) are found by solving G(a) = (1 = g)h(a) — gor log(f " () + S log A(f~ ()

the (4 x 4) polynomial system (18)
AD (z0) where the functiorf is given by (special case dfl(7))
20 ?ZO ﬂ /
/p)Z%ti——, (10) A
< tel. A( )(20) q f(Z) - SA(Z) ’ (19)
oY _ (11) andf~':[0,M) - R* is well-defined, wherel/ = Z.
1+ oy Note that, in the special case where all CNs are SPC codes,
zoyd B (18) becomes equal to the spectral shape expression fdaregu
Troold g (12) LDPC codes developed in [16, Theorem 2] for the case of

stopping sets. Also note that, in some casgs| (18) can be
and 3 expressed analytically as*(«) admits an analytical form.

Z20Y0
=—. 13 is qi i
T+ o000 4 (13)  An example is given in AppendixlIl.

Note that we are certain of the existence of a unique real
solution to the polynomial system such that > 0, yo > 0,

z9 > 0, B > 0, due to Hayman’s formula. We solve this Consider a GLDPC code ensemble with a regular VN set
system of equations sequentially for the variabeszy, yo and a hybrid CN set. In this section, we show how a symmetry
andz, (respectively). First, combining (IL.1) arld {12) yields in the overall weight spectral shape of the ensemble is ieduc
by local symmetry properties in the WEFs of the CNs.

IV. SYMMETRY OF THE WEIGHT SPECTRAL SHAPE

8 =qa. (14) N _ (t)
Definition 2: For CN typet € I, let U; = {u € N|A;,’ >
Substituting [(TH) into[{0) yield$(z;) = « which may be 0}. Then, we define
written as (%)
20 =Ffa) . (15) U™ ={veNu —vel}. (20)
_ _ _ Note that for any CN type, we always havec U**) and
Using [14) and[(15) in[(13) yields a, € U,
Yo = o _ (16) Definition 3: The WEF of CN typet € I. is said to be
(1= a)f~'(a) symmetricif and only if A" = A\ for all u € U;.
Finally, substituting[(14) and (16) intG (12) yields Note that if the WEF of CN type < I. is symmetric, then
1—g we haveU () = U®),
2o = ( @ ) (f—l(a))q . (17) Lemma 2:The WEF of CN type € I. is symmetric if and
l -« only if the all-1 codeword belongs to this code.

Substituting[(I¥),[(115) [(16) an@{17) in{d (9), and simghiy, The proof of Lemmal2 is omitted due to space constrints.
leads to[(B).

]
The expressio[[8) holds regardless of whether the ensembfé’he sufficient condition (if a linear block code has thelattedeword then
ts WEF is symmetric) is a well-known result in classical icmdtheory. On

has gOOd or bad spectral sha}pe behaVi_or' Note that, anordHtl. other hand, we proved the necessary condition by asguima CN type
to (8), the growth rate&(a) is well-defined only fora: € ¢ e I. has a symmetric WEF and a maximum codeword weight s, and

[0 M] This is as expected due to the following reasoning. py showing that these assumptions lead to a contradictisrpointed out by
7d d of iah v ind distributi f bi one of the anonymous reviewers, the necessary conditionatsaybe proved
codeword ot weightvn naturally induces a distribution of bits by reasoning on the expected weight of a randomly selectdévoard in a

on the Tanner graph edges,q of which are equal td. Also linear block code, under the symmetry hypothesis.



Lemma 3: The WEF of CN typet € I, fulfills Proof: By Lemma[2, the hypothesis that®(z) is
symmetric for eacht € I. implies u; = s; for everyt € I,

AV (z) = 24 AW (=71, (21)  and thereforel, = 1. From [8) we have:
for all z € R* if and only if it is symmetric. GM —a)=(1-qh(M—-a)—qgM—a)logf (M —a)
Proof: We have
0) ® T (/ p) 2 ulog AU (FHM = )
A® (o1 = L AT D Au tel.
D (1~ (M — @) — g(M — o) log 7
where the final equality is obtained by = u; — u. The f=(a)
proof is completed by observing that, if and onlyAf?)(z) " (/ ) log A® < 1 >
is symmetric, we havé&/(*) = U, and A% = A for all VS t;c% & f~1(a
NS Ut. O (_b) 1 MM 1 f_l
Lemma 4: The functionf defined by [[7) fulfills = (1= @)h(M = a) = qa log(f~(a))
f(z) = M —f (27) 22) +4q (/P) > wlog AV(F ()
tel.
V z € Rt if and only if A®)(z) is symmetric for every € I.. = G(«)

Proof: First we note that if and only if the WEF of CN

t
typet € I, is symmetric, we have, differentiating{21), where (a) follows from symmetry ofl")(z) and Lemmd5,

(b) from symmetry ofA® (z), LemmdB and{6), and the final

dA® (2) aodAWETY L line from M = 1. O
— =Tt L T AV (2. e ;
dz dz—1 Theorem 3 (Necessary condition for symmeti@ansider
- ! ' GLDPC code ensemble with a regular VN set, composed
Multiplying b d [2h) yield a - .
ultiplying by = and usingl(2l1) yields of repetition codes all of lengtly, and a hybrid CN set,
dA® (z) 1 dAD (Y composed of a mixture ofi. different linear block codes.
— w18 \E ) oA e
== o1 twAY(=) . (23) i the spectral shape fulfilsG(M — a) = G(a) for all
Then a € (0,1), then)M is a fixed point of the function

g—1

1dA0 (1) _ ro\ T
et == (fo) o (S ro-2((5) ). e
tel Proof: The proof is somewhat lengthy and we only
a,—1dAP (" sketch it due to space constraints. The first step consists of
@ - Z
() g (oS

a0 ?;;1 developing an expression fét(«) = G(M — «) — G(«). The

tel, obtained expression can be written as a function, afenoted

®) T A0 (2) + dA:)(z) — @ AD(2) by J(z), by definingz = f~*(«). We must haveJ(z) = 0 for
= (/ ) Z Vi A(t)zz) =f(z) all z € (0,4+00), and therefore/’(z) = 0 for all z € (0, +00).
This latter condition must hold in particular far= f—l(%),

where we have use@l(6) afd121) in (a), and (23) in (b)J in which case we obtain the compact condition

tel.

Lemma 5: The inverse functiori—" fulfills (M 2-M
) qlogf™ { o | =1 ~q)log | —+—
M —a) = —— 24 :
f=1(a) which is equivalent to
Y a € (0,1) if and only if A®)(z) is symmetric for every M ON\T
tel. =2f < )
. . . 2—-M
Proof: By Lemmal#, the functior fulfills (22) if and
only if A®(z) is symmetric for every € I... By applying the O
inverse function to both sides df{22) and by lettifig ') = Note that if A()(z) is symmetric for eacht € I.. then we
a for all z € RT\{0}, we obtain the statement. 0 haveM = 1, which is always a fixed point of (z) defined

Theorem 2 (Sufficient condition for symmetr@jonsider a in (28) since it is possible to show th&tl) = 5
GLDPC code ensemble with a regular VN set, composed of
repetition codes all of lengty and a hybrid CN set, composed V.. EXAMPLES
of a mixture ofn, different linear block codes. IA®)(z) is
symmetric for eacht € I., then the spectral shape of theC
ensemble fulfills

Example 1 (Tanner code wittY,4) Hamming CNs):

onsider a rat® = 1/7 Tanner code ensemble where all VNs
have degre@ and where all CNs argr, 4) Hamming codes (it

G(M - a) = G(a) (25) was shown in [14], [15] that this ensemble has good spectral
shape behavior). The WEF of a Hammifig4) CN is given

for all a € (0,1). by A(z) = 1+723+72%+27, while its local MAP-SSEF and
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Fig. 1. Spectral shapes of the Tanner code ensemble in Eefinolid: Fig- 3. Weight spectral shape of the Tanner code ensembleample[3.
weight spectral shape (relative minimum distangé: = 0.18650). Dashed:
stopping set size spectral shape under MAP decoding at the (@Native

minimum stopping set sizery, = 0.11414). Dotted: stopping set size spectral . .
shape under BD decoding at the CNs (relative minimum stappet size: Consider a rateR = 1/5 Tanner code ensemble where

aj, = 0.01025). all VNs are repetition codes of length = 2 and and
where all CNs are(5,3) linear block codes with WEF
A(z) = 1+ 322 + 322 + 2°. This ensemble is known to
have bad spectral shape behaviof (= 0) since we have
T N(0)C = 6/5 > 1, whereA(z) = z and C = 2A3/s
[12], [13]. A plot of the weight spectrum for this ensemble,
obtained from [(IB) is depicted in Fif] 3. We observe that
\ the plot of G(«) is symmetric, due to the fact that(z) is
symmetric 4/ = 1). As expected, the derivative @f(«) at
\ a = 0 is positive and hence* = 0.

0.2]

0.1

Growth rate, G(«)

0
\ VI. CONCLUSION

5 o3 o7 0% o5 Y A simple expression has been developed for both the weight

a and the stopping set size spectral shape of GLDPC code
ensembles with a regular VN set and a hybrid CN set. Some
known results (specifically, an expression for the spectral
shape of regular LDPC codes and an asymptotic expression
of the spectral shape for GLDPC codes as the normalized
weight tends to zero) follow as corollaries of the developed
formula. Moreover, symmetry properties of the spectrapsha
function have been discussed. A sufficient condition and a
necessary condition for the weight spectral shape fundtion
be symmetric have been identified.

Fig. 2.  Weight spectral shape of the check-hybrid GLDPC cexgemble
in Example[2. Relative minimum distance* = 0.028179.

BD-SSEF are given b (z) = 1+723+1024+212°+720+27
and ¥(z) = 1+ 3523 + 3521 + 2125 + 720 + 27 respectively.
Note that we havel/ = & = 1 in all three cases. A plot
of G(a), Go(a) and Gy («) obtained by implementation of
(18) is depicted in FigJ1l. We observe thatz) satisfies the
conditions of Theorem]2. This is reflected by the fact that

@ |

the weight spectral shap@(«) is symmetric with respect to APPENDIXI
a=1/2. ASYMPTOTICCASEa — 0
Example 2 (Check-hybrid ensembl&onsider a ratek = For smallc, the expressior[8) reduces to a known formula

1/3 check-hybrid GLDPC code ensemble where all VNSfrst developed in [12] for Tanner codes, and extended in [13]

are repetition codes of length = 3 and whose CN set to irregular GLDPC codes. This formula is here obtained as a

is composed of a mixture of two linear block code typesimple corollary of Theorerml 1.

(I. = {1,2}). CNs of typel € I. are length7 SPC codes Corollary 2: In the limit wherea — 0, the growth rate of

with WEF A (2) = [(142)"+ (1 —2)7]/2 andy; = 0.722, the weight distribution of a GLDPC code ensemble with a

while CNs of type2 € I.. are(7, 4) codes with WEFA() (2) =  regular VN set fulfills

1+522+721+32°% andv, = 0.278. The weight spectral shape

of this ens_emble, obtained froii (8), !s depictgd in Elg. .Zté\loG(a) N (q _q 1)a10ga Lae log er/p Z AW |

that for this ensemble) = 6/7. This value is not a fixed r r fex,

point of the functionF(x) defined in[[2B) (the only fixed point

between0 and1 is = = 0.888421). As expected, the weight

spectral shape does not exhibit any symmetry property.  where r denotes the smallest minimum distance of all CN
Example 3 (Ensemble with bad spectral shape behavior)types (i.e.r = minses, 7¢), X. denotes the set of CN types

(27)



with this minimum distance (i.eX. = {t € I. : r. = r}) Similarly, the weight spectral shape of @,8) regular

ande denotes Napier's number. LDPC ensemble may be expressed in closed form through
Proof: Let a = f(zp). From the definition off given the solution of a quartic equation.

in (@), it is readily shown that ifa — 0, we must have
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