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Abstract—This paper describes a methodology and a pro-
gramming support that use the SIP protocol as a universal
communication bus in pervasive computing environments. In do-
ing so, our work enables homogeneous communications between
heterogeneous distributed entities.

We present a classification of a wide variety of entities in
terms of features, capabilities and network connectors. Based on
this classification, a methodology and a programming support
are described for connecting entities on the SIP communication
bus. This work has been validated by applications using the
SIP communication bus to coordinate widely varying entities,
including serial-based sensors (RS232, 1-Wire), ZigBee devices,
X10 devices, PDA, native SIP entities, and software components.

Index Terms—Pervasive Computing, SIP, Communication Pro-
tocol, Middleware, Embedded Systems.

I. INTRODUCTION

Device-rich, networked environments are becoming increas-

ingly prevalent in areas ranging from building management to

healthcare. These pervasive computing environments consist of

a variety of entities that are heterogeneous in many respects:

(1) they are either hardware (e.g., camera and telephone) or

software (e.g., agenda and news); (2) they rely on different net-

work layers (e.g., X10, ZigBee, and IP); (3) they interact using

various modes of communication (e.g., events and streams);

and, (4) they exchange various kinds of data (e.g., temperature

measurements and video streams). Such environments are also

highly dynamic with entities appearing and disappearing over

time (e.g., a telephone is switched on/off). Moreover, software

systems managing these entities need to be open-ended to keep

pace with a constant flow of technological advances.

Our research aims to address the heterogeneity and dynam-

icity of pervasive computing environments by generalizing SIP

(Session Initiation Protocol) [1] to a software communication

bus. This industry standard for Internet telephony provides

a basis to address the challenges of pervasive computing

environments. For example, dynamicity can be addressed by

leveraging SIP’s mechanism for user mobility. The heteroge-

neous modes of communications between entities can leverage

SIP’s general-purpose forms of communications, namely mul-

timedia sessions, events and instant messaging. In our previous

works [2], [3], we described how SIP addresses both advanced

telephony and home automation services. We proposed a Java

programming framework to develop such services.

In this paper, we present a methodology and programming

support to use SIP as a universal communication bus for

pervasive computing environments. Our main contributions are

as follows:

• A classification of a wide variety of entities that facilitates

their integration in the SIP communication bus.

• A methodology and programming support that make each

class of entities SIP compliant.

• An experimental study that validates SIP as a commu-

nication bus for pervasive computing environments. This

study comprises numerous entities with vastly varying

features and capabilities.

This paper is organized as follows. Section II gives some

background on the SIP protocol and presents its advantages

in a pervasive computing context. Section III describes the

general structure of SIP adapters, connecting entities to the

SIP universal communication bus. The SIP middleware, which

supports SIP communications, is described in Section IV.

Section V introduces our experimental platform. Section VI

examines our experiment results. Finally, Section VII con-

cludes the paper.

II. A CASE FOR SIP AS

A UNIVERSAL COMMUNICATION BUS

Let us examine the aspects that make SIP an ideal basis to

form a universal communication bus.

Extensibility: SIP is an HTTP-like request/response proto-

col, text-based and transport-independent. Like HTTP, SIP is

extensible in terms of methods, headers, and message payload.

This allows the protocol to be completed with numerous stan-

dardized extensions matching specific needs, namely, instant

messaging [4], [5], and events [6]. Message payload is format-

independent, enabling SIP to embed any kind of data (e.g.,

SDP [7], presence information [8], and SOAP [9]).

Interaction modes: Originally designed to deal with ses-

sions, SIP has the potential to provide general-purpose com-

munication forms, namely, commands (RPC-like based on

instant messaging), events, and sessions of data streams [1].

These forms of communications cover what is required by

an application to coordinate entities in a pervasive computing

environment. More specifically, instant messaging is a one-to-

one interaction mode; it can be used, for example, to query

a temperature measurement from a sensor. Event is a one-

to-many interaction mode; it is the preferred mechanism to

propagate information such as the presence status. Finally,

session is a one-to-one interaction mode with data exchanged

over a period of time; it is typically used to set up a multimedia



stream between two entities, but it can be generalized to a

stream of arbitrary data. For example, a GPS device produces

a stream of Cartesian coordinates.

Environment dynamicity: Dynamicity is an inherent feature

of home automation. SIP provides a mechanism that deals with

a form of dynamicity, namely user mobility. To address this

issue, SIP relies on the use of Uniform Resource Identifiers

(URIs) to refer to agents, abstracting over the terminal network

address. This mechanism can be used to define functional

entities in a pervasive environment, abstracting over concrete

entities whose availability may vary over time. As a result,

the use of SIP URI shields the application code from runtime

configuration changes in the environment.

Existing infrastructures: Because it is a de facto standard

for IP telephony, SIP platforms are already widely deployed

in various forms, including dedicated IP telephony systems

and set-top boxes. Pervasive computing applications can thus

leverage these platforms, expanding their original scope.

Convergence point: The increasingly prevalent nature of

SIP makes it a converging point for many technologies.

Beyond SIP phones (whether hardware or software), other SIP-

compliant entities are starting to become available (e.g., video

camera [10]). In fact, SIP can be embedded in an increas-

ing number of devices and software systems, representing a

convergence point of a number of technologies and areas.

III. BUILDING SIP ADAPTERS

We have motivated the use of SIP as a universal commu-

nication bus between heterogeneous distributed entities. Let

us now examine how entities need to be adapted to connect

them to the SIP communication bus. This adaptation process

is driven by criteria, classifying entities.

A. Entity classification

Our entity classification uses three criteria. This classifi-

cation builds on our study of a large panel of entities and

factorizes our experience in developing entity-specific adapters

to the SIP communication bus. The first criterion is whether

or not an entity is SIP native. As shown in Figure 1, a SIP-

native entity is directly connected to the SIP communication

bus; such entity is referred to as type 1. In contrast, a non-SIP

entity needs an adapter. To address a non-SIP entity, a second

criterion identifies whether it is IP-enabled. If so, a third cri-

terion determines whether the entity is programmable, making

it possible to introduce a SIP stack; this class of entities is of

type 2. Type 3 is a non-SIP, non-programmable entity; as such,

it requires the use of a SIP gateway. Type 4 is a non-SIP entity

without IP capability, requiring an extended gateway. This

classification of entities is summarized in Figure 2. Examples

are listed in Table I. From this classification, solutions are

proposed to create SIP adapters.

B. Functional architecture of a SIP adapter

We now present the layers required to adapt each class of

entities to the SIP communication bus, omitting entities of

type 1 that support SIP natively. To be SIP compliant, an entity

Type Examples Gateway

1 SIP video camera, SIP phone, SIP softphone No

2 PDA, Greenphone, Calendar, Monitoring entities No

3 IP video camera, Printer Yes

4 X10 or 1-Wire devices, Temperature sensors Yes

TABLE I: Entity examples

must provide access to its functionalities via SIP-compliant

mechanisms. To do so, access to entity functionalities are

defined in terms of the three interaction modes available in

SIP: commands (i.e., status query and entity control), events

(i.e., event publishing and subscription) and sessions (i.e.,

invitation to a session of data stream). Yet, these interaction

modes need to pass and receive data that may have different

formats: command-parameter values (e.g., using SOAP), event

values (e.g., using an XML-based format [11]) and session-

capability descriptions (e.g., using plain text SDP).

Universal SIP communication bus

SIP-native
Entity
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Entity

SIP
Adapter

Fig. 1: Adapting entities to SIP
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Fig. 2: Entity Classification
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Fig. 3: Entities and Gateway Architecture

Entities of type 2: Despite SIP’s rich forms of communi-

cations, the SIP communication bus needs careful parameter-

ization to cope with a constant flow of new non-SIP entities,

introducing ever changing functionalities and data formats. To

address this situation, SIP adapters wrap entity functionalities

with an interpreter. For a given SIP method, this layer extracts

from the payload of a SIP message, the constituent parts of

the corresponding interaction mode (i.e., command, event or

session). For example, a SIP request with a MESSAGE method

corresponds to a command interaction. The payload interpreter

then extracts from the request payload a SOAP message,

indicating the command name (e.g., getTemperature) and

the parameter values (e.g, a measurement unit). The payload



interpreter then calls the invocation layer of the corresponding

interaction mode with its constituent parts. This layer is

responsible to invoke the target functionality in the entity (e.g.,

an operation to measure a temperature, given a measurement

unit). Figure 3 depicts the layers involved in adapting a

non-SIP, programmable entity to the SIP communication bus.

Because a type-2 entity is programmable, its SIP adapter can

reside on the entity, making it self-contained.

Entities of types 3 and 4: When a non-SIP entity is not

programmable, the SIP adapter is implemented as a hardware

gateway. Note that a hardware gateway can also be used

for a type-2 entity to reduce energy consumption or increase

performance. A hardware gateway is mandatory for a type-4

entity to enable IP and SIP capabilities.

As illustrated in Figure 3, functionalities of entities of types

3 and 4 are accessed through ad hoc communication buses

consisting of a software communication bus and an associated

hardware communication bus. The hardware communication

bus can be proprietary. It may simply be the processor bus

of the device. Requested data can be directly accessed via

registers mapped in memory. The hardware communication

bus can also implement an industry standard such as X10 [12],

for power line-based communication, and ZigBee [13], for

wireless communication. There are low-level devices that use

serial communication buses such as RS232, I2C, or 1-Wire

bus [14]. In our approach, these devices are hidden behind

a SIP-compliant component that directly accesses their func-

tionalities. In fact, each time a hardware communication bus is

used, the corresponding specific software communication bus

must be created for hiding underlying hardware specificities.

In practice, our four classes of entities and our methodology

have been successful in adapting all the devices and software

components that we have encountered in developing a variety

of pervasive computing applications.

IV. ENABLING SIP COMMUNICATION

We developed a distributed SIP middleware, named Dia-

Gen [15] that allows entities to invoke remote functionalities,

receive and answer requests using the SIP communication bus.

It also enables entities to interpret SIP payloads implementing

the interpreter layer introduced in Section III-B. Leveraging

the SIP infrastructure, the DiaGen middleware supports dis-

tributed entities with discovery and notification services.

A. Entity binding

The discovery service allows to register and look up entities.

SIP provides a basis to deal with the dynamic pervasive

computing environments via its support for user mobility.

Specifically, SIP entities send a SIP REGISTER request to

register their SIP URI with the registration server; this server

associates entity SIP URIs with network addresses. In addition,

our approach consists of using the SIP OPTIONS request to

complete the registration process with a description of the

registering entity.

Once registered, an entity can be looked up by querying the

registration server. To do so, a lookup request is sent in a SIP

MESSAGE request, containing a description of the required

entity or entities. The registration server returns all registered

entities matching the request.

B. Interaction modes

The notification service allows entities to subscribe and

publish events. It improves the scalability of the overall plat-

form by decoupling producers and consumers of events. The

notification service receives SIP PUBLISH requests containing

events from publishers and sends SIP NOTIFY requests to

all entities that subscribed to the related type of events (e.g.,

calendar event) using the SIP SUBSCRIBE request.

In addition to the event interaction mode, the DiaGen

middleware allows entities to interact via the command and

session interaction modes. In the command interaction mode,

an entity sends a SIP MESSAGE request to operate another

entity. In the session interaction mode, an entity sends a

SIP INVITE request to negotiate session parameters and to

establish a session with another entity.

Data exchanged between two entities are serialized in the

SOAP format using the kSOAP [16] library and transported

via both SIP request and response bodies.

V. EXPERIMENTAL PLATFORM

Our universal communication bus has been developed in the

context of a home automation project. The goal of this project

is to design and implement a home automation platform based

on SIP. Experiments have been made in a real environment,

depicted in Figure 4. This environment was populated by

various home automation entities, ranging from telephony

equipments to home appliances.

Fig. 4: Experimental platform

This platform serves as a vehicle to experiment with various

scenarios. For example, we have developed a surveillance

application that involves IP video cameras, X10 alarms, SIP

phones and PDAs. Another example is an application dis-

playing various information of interest on a screen, including

appointments and weather conditions.

VI. EXPERIMENTAL STUDY

In this section, we validate our use of SIP as a universal

communication bus. This validation is done in the context of

our experimental platform, equipped with entities belonging to

all the types discussed earlier. First, we examine the adaptation

work required for each type of entities. Then, we present and

analyze performance measurements.



A. Entity adaptations

Let us examine the development work required to make

each entity type SIP compatible.

Type-1 entity: By design, the DiaGen middleware is fully

compatible with SIP-native entities. Application code devel-

oped with the DiaGen middleware can thus directly interact

with these entities. This situation allows to leverage existing

SIP infrastructures (e.g., OpenSER server) and entities (e.g.,

SIP video cameras, SIP phones and softphones).

Type-2 entity: There exists a wide variety of existing entities

with programming capabilities, ranging from PDAs to software

calendars. Our approach consists of providing the developers

with a Java programming framework to create invocation

layers and to connect entity functionalities to the SIP com-

munication bus. Developers rely on high-level operations to

(1) register and lookup entities and (2) implement and in-

voke entity functionalities. Our Java programming framework

abstracts over the intricacies of the underlying technologies

and prevents developers from writing boilerplate code, e.g.,

SIP method creation, payload marshalling/unmarshalling and

concurrency handling.

Type-3 entity: The type-3 category consists of non-

programmable entities, supporting IP protocols (e.g., HTTP

and RTSP for IP video cameras). Making these entities SIP

compliant amounts to develop adapters mapping their protocol

into SIP. Such adapters form a SIP gateway. Our programming

framework provides support for the developers to build such

gateway. We propose two approaches to implement a gateway.

The first approach is based on Java and requires adequate re-

sources in the platform. The second approach is less resource-

demanding: it relies on a C version of our programming

framework. We chose this second approach and embedded a

C-based gateway into a small Single-Board Computer (SBC)

(e.g., an ARM-based board [17]). The functional architecture

of a SIP gateway is shown in Figure 5.
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Fig. 5: Software architecture of a SIP gateway

To develop our SIP gateway, we have first ported Linux 2.6

with its own root file system to the SBC board. The GNU oSIP

library [18] has then been ported to the SBC board, and a SIP

user agent has been developed on top of this library. When

deployed, the SIP user agent registers each entity it serves.

To illustrate the use of our SIP gateway, consider the IP

video camera. A surveillance entity sends an INVITE request

to the SIP gateway of the IP video camera to establish a

session of video stream with a PDA. The SIP gateway extracts

appropriate information from the SIP message and sends an

RTSP request to the camera. Once the communication is

established, the SIP gateway is no longer involved and the

video is streamed directly from the camera to the SIP client

of the PDA using the RTP protocol.

Type-4 entity: The type-4 entities represent the majority

of devices deployed in a typical home environment. This

type consists of entities that are non-programmable and com-

municate with a non-IP protocol. An adapter needs to be

developed for every entity relying on a new protocol. This

type of adapter is difficult to write because it involves low-level

communication operations. We gather the adapters for non-IP

protocols into a SIP gateway (Figure 5). This gateway resides

in another SBC board with specific interfaces (e.g., ZigBee

and X10). For example, a specific ZigBee SIP adapter gets the

temperature measurement from the ZigBee temperature sensor

via the serial ZigBee base connected to the SBC board.

For X10 entities, we have ported the Heyu open source

project [19] to the SBC board. A specific SIP adapter has

been written. A USB CM11 module, which handles several

X10 devices, is connected to the SIP adapter. It receives X10

commands from the adapter and sends them to X10 entities

connected to the power line network.

For iButton temperature sensor entities, we have modified

an open source library developed by Dallas Semiconduc-

tors [20] and ported it on Linux. A specific iButton SIP adapter

has been written.

B. Results and Discussion

This section assesses the validity of our approach. To do

so, we have conducted experimental studies to measure the

performance of our platform and its scalability. We omit the

analysis of type-1 entities because they are SIP native and

provide the required performance by design. In practice, all

type-2 entities we encountered offer enough computing power

to map functionalities into the operations supported by an

entity. As a result, this category of entities incurs negligible

overhead.

Type-3 and type-4 entities both require a SIP gateway.

However, type-4 entities are the most demanding in terms of

computing power because they translate a high-level protocol,

namely SIP, into a low-level one, such as ZigBee or iButton.

Moreover, the type-4 entities represent the vast majority of

the devices deployed in a typical home environment. Con-

sequently, our experimental study concentrates on the type-4

entities.

Our experimental platform includes a SIP gateway that

adapts two ZigBee temperature sensors, two X10 entities and

an iButton temperature sensor to the SIP communication bus.

For the implementation, we used a 180 MHz ARM9 processor

running Linux 2.6.20 with 32 MB SDRAM and 8 MB flash

memory.

First, we measure the memory footprint of the run-time

support of our implementation, using the Exmap-console

tool [21]. This measurement was performed on the adapters

and the user agent of the SIP gateway. Their sizes are shown

in Table II. On our resource-constrained platform, the memory

footprint of the entire SIP gateway is 518 KB, representing less

than 2% of the total available memory of the SBC board (32

MB). Note that this SIP gateway comprises three SIP adapters.



SIP adapters SIP user SIP

ZigBee iButton X10 agent Gateway

Memory

footprint 113 KB 107 KB 326 KB 350 KB 518 KB

TABLE II: SIP gateway Memory footprint

Run Time Mode User agent Adapters Total

ZigBee IM 15.3 ms 175 ms 190.3 ms
read PUB 6.4 ms 175 ms 181.4 ms

iButton IM 15.3 ms 557 ms 572.3 ms
read PUB 6.4 ms 557 ms 563.4 ms

X10 write IM 15.3 ms 373 ms 388.3 ms

TABLE III: SIP gateway run-time overhead

IM: Instant messaging for command

PUB: Publish for event

These figures demonstrate that adapters for non-IP protocols

incur minimal overhead, making our approach amenable to

resource-constrained platforms.

In our implementation, a command or an event are encoded

in SOAP. Like SIP, SOAP uses textual representation. As a

result, message processing is much more computation inten-

sive than binary encoding such as BER [22]. However, SOAP

deals with complex data structures, facilitates interoperability

and enables extensibility.

Table III reports on the run time of our SIP gateway. The

first column lists read and write operations on ZigBee, iButton

and X10 devices. The second column gives the mode of the

read/write operation, which can either be implemented as

an instant message or an event publication. The remaining

columns provide the execution time of the implementation

mode, the adapter and the total time, respectively.

We observe that the SIP user agent executes an event (less

than 7 ms) twice as fast as a command (less than 16 ms).

This is due to the fact that a command produces a full-fledged

return value, whereas an event returns a status. Examining the

measurements of the adapters, we note that their run times

vary widely. This variation depends on the nature of the non-

IP protocols. Specifically, the iButton sensor uses a 1-Wire bus

that is much slower than the other communication buses. This

results in making the iButton adapter a bottleneck (more than

550 ms), compared the processing of SIP messages performed

by the user agent (less than 16 ms).

In fact, one can notice that the processing time of the

user agent is 10 to 90 times faster than the adapters. This

observation leads us to introduce a multithreaded SIP gateway

to optimize the SBC board resources. We used POSIX threads

to cache values of sensors. It allows to increase scalability of

our SIP gateway. Our implementation deals with more than

60 commands (1308 bytes per command on average) or 150

events (1346 bytes per event on average) per second. Based

on the interactions we had with our industrial partners in

the telecommunication domain, this performance fulfills the

requirements of realistic home environments.

To evaluate our SIP gateway, we also measured the run

time of our implementation, varying the processor frequency

from 180 MHz down to 80 MHz. We observed that decreasing

the processor frequency increases the run time to handle a

command or event, almost linearly. However, the execution

time to read a value in entities is almost constant, since this

operation depends on the nature of the target proprietary bus.

Thus, with threads, the maximum bandwidth provided by our

SIP gateway for command or event is practically linear in the

processor frequency. It allows users to scale the hardware to

meet the requirements of the target environment.

VII. CONCLUSION

We have presented an approach to enabling homogeneous

communications between heterogeneous distributed entities.

This approach relies on the use of SIP as a universal com-

munication bus for pervasive computing environments. We

described a methodology and programming support to adapt

heterogeneous entities to the SIP communication bus. Our

approach has been used to make a wide variety of entities

SIP compliant. These entities have then been integrated into

a number of applications for home automation. Finally, our

experimental study has proved that our approach is realistic

for all classes of entities, and that our SIP gateway can run

efficiently on resource-constrained platforms.
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