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Abstract— 1 Effective capacity, which provides the maximum
constant arrival rate that a given service process can support
while satisfying statistical delay constraints, is analyzed in a
multiuser scenario. In particular, we study the achievableeffec-
tive capacity region of the users in multiaccess fading channels
(MAC) in the presence of quality of service (QoS) constraints.
We assume that channel side information (CSI) is available
at both the transmitters and the receiver, and superposition
coding technique with successive decoding is used. When the
power is fixed at the transmitters, we show that varying the
decoding order with respect to the channel state can significantly
increase the achievablethroughput region. For a two-user case,
we obtain the optimal decoding strategy when the users have the
same QoS constraints. Meanwhile, it is shown that time-division
multiple-access (TDMA) can achieve better performance than
superposition coding with fixed successive decoding order at the
receiver side for certain QoS constraints. For power and rate
adaptation, we determine the optimal power allocation policy
with fixed decoding order at the receiver side. Numerical results
are provided to demonstrate our results.

I. I NTRODUCTION

Multiaccess fading channels have been extensively studied
over the years from an information-theoretic point of view
[1]-[6]. For instance, Tse and Hanly [3] have characterizedthe
capacity region and determined the optimal resource allocation
policies. It has been shown that the boundary surface pointsare
achieved by successive decoding techniques, and each bound-
ary point is associated with a weighted maximization of the
sum rate. Vishawanathet al. [5] derived the explicit optimal
power and rate allocation schemes (similar towaterfilling) by
considering that the users are successively decoded in the same
order for all channel states. For the convex capacity region, the
unique decoding order was shown to be the reverse order of
the priority weight. Caireet al. proved that TDMA is always
suboptimal in low-SNR case [6]. On the other hand, these
information theoretical studies have not addressed the delay
and QoS constraints.

In this paper, we consider statistical QoS constraints and
study the achievable rate region under such constraints in
multiaccess fading channels. For this analysis, we employ
the concept of effective capacity [7], which can be seen as
the maximum constant arrival rate that a given time-varying

1This work was supported by the National Science Foundation under Grants
CNS–0834753, and CCF–0917265.

Fig. 1. The system model.

service process can support while satisfying statistical QoS
guarantees. Effective capacity formulation uses the largedevi-
ations theory and incorporates the statistical QoS constraints
by capturing the rate of decay of the buffer occupancy prob-
ability for large queue lengths. The analysis and application
of effective capacity in various settings has attracted much
interest recently (see e.g., [8]–[11] and references therein).
We here consider the scenario in which both the transmitters
and the receiver have the channel side information (CSI).
First, we characterize the rate regions when the transmitters
work at fixed power. Unlike the results obtained in [1],
varying the decoding order is shown to significantly increase
the achievable rate region under QoS constraints. Also, it is
demonstrated that time sharing strategies among the vertexof
the rate regions can no longer achieve the boundary surface.If
we take the sum-rate throughput, or the sum effective capacity,
as a measure, TDMA can even achieve better performance
than superposition coding with fixed decoding order in certain
cases. When power adaptation is considered, we provide the
optimal power allocation policy when the users are being
decoded in a fixed order at the receiver side.

The paper is organized as follows. Section II describes the
system model. In Section III, effective capacity as a measure
of the performance under statistical QoS constraints is briefly
discussed, and thethroughput regionunder QoS constraints
is defined. Section IV includes our main results and presents
numerical results. Finally, Section V concludes the paper.

http://arxiv.org/abs/0910.4130v2


II. SYSTEM MODEL

As shown in Figure 1, we consider an uplink scenario where
M users with individual power constraints and QoS constraints
communicate with a single receiver. It is assumed that the
transmitters generate data sequences which are divided into
frames of durationT . These data frames are initially stored
in the buffers before they are transmitted over the wireless
channel. The discrete-time signal at the receiver in theith

symbol duration is given by

Y [i] =
M
∑

j=1

hj[i]Xj [i] + n[i], i = 1, 2, . . . (1)

where M is the number of users,Xj [i] and hj [i] denote
the complex-valued channel input and the fading coefficient
of the jth user, respectively. We assume that{hj [i]}’s are
jointly stationary and ergodic discrete-time processes, and we
denote the magnitude-square of the fading coefficients by
zj [i] = |hj[i]|

2. The channel input of userj is subject to an
average power constraintE{|xj [i]|

2} ≤ P̄j for all j, and we
assume that the bandwidth available in the system isB. Y [i]
is the channel output. Above,n[i] is a zero-mean, circularly
symmetric, complex Gaussian random variable with variance
E{|n[i]|2} = N0. The additive Gaussian noise samples{n[i]}
are assumed to form an independent and identically distributed
(i.i.d.) sequence.

A. Fixed Power and Variable Rate

First, we consider the case in which the transmitters operate
at fixed power. The capacity region of this channel is given
by [1]:

RMAC =

(

(R1, . . . , RM ) : R(S) ≤

BEz

(

log2

 

1 +
X

j∈S

SNRjzj

!)

,∀S ⊂ {1, . . . ,M}

)

(2)

where SNRj = P̄j/(N0B) denotes the average transmitted
signal-to-noise ratio of userj, z = (z1, · · · , zM ) is a random
vector comprised of the channel coefficients. As is known,
there areM ! vertices for the polyhedron defined in (2).
The vertex Rπ =

(

Rπ(1), · · · , Rπ(M)

)

corresponds to a
permutationπ, or the successive decoding order at the receiver,
i.e., users are decoded in the order given byπ(1), · · · , π(M).
The vertex is given by :

Rπ(k) = BEz

(

log2

 

1 +
SNRπ(k)zπ(k)

1 +
PM

i=k+1 SNRπ(i)zπ(i)

!)

bits/s, k = 1, · · · ,M. (3)

which also defines the maximum instantaneous service rate for
userπ(k) at the given decoding orderπ. Time sharing among
theseM ! permutations yields any point on the boundary
surface [12]. As can be easily verified, due to thelog term in
the expression for the capacity region (2), varying decoding
order according to the channel state does not provide any
improvement for the achievable capacity region.

B. Variable Power and Variable Rate

Now, we suppose that dynamic power and rate allocation
is performed according to time-variations in the channels.For
a given power allocation policyU = {µ1, · · · , µM}, where
µj ≥ 0 ∀j can be viewed as a function ofz. The achievable
rates are defined as

R(U) =

(

R : R(S) ≤ Ez

(

B log2

 

1 +
X

j∈S

µj(z)zj

!)

,

∀S ⊂ {1, · · · ,M}

)

. (4)

The instantaneous rate at a given decoding order can be
obtained similar to (3) withSNR replaced byµ. Then, the
rate region is given by

RMAC =
⋃

U∈F

R(U) (5)

where F is the set of all feasible power control policies
satisfying the average power constraint

F ≡ {U : Ez {µj(z) ≤ SNRj , µj ≥ 0, ∀j}} (6)

where SNRj = P̄j/(N0B) denotes the average transmitted
signal-to-noise ratio of userj.

C. TDMA

For simplicity, we assume that the time division strategy
should be fixed prior to transmission. Letδj denote the fraction
of time allocated to userj. Note that we have

∑M
j=1 δj = 1.

In each frame, each user occupies the entire bandwidth to
transmit the signal in the corresponding fraction of time. Then,
the instantaneous service rate for userj is given by

Rj(SNRj) = B log2

(

1 +
SNRj

δj
zj

)

bits/s (7)

III. PRELIMINARIES

A. Effective Capacity

In [7], Wu and Negi defined the effective capacity as the
maximum constant arrival rate2 that a given service process
can support in order to guarantee a statistical QoS requirement
specified by the QoS exponentθ. If we define Q as the
stationary queue length, thenθ is the decay rate of the tail
distribution of the queue lengthQ:

lim
q→∞

logP (Q ≥ q)

q
= −θ. (8)

Therefore, for largeqmax, we have the following approxima-
tion for the buffer violation probability:P (Q ≥ qmax) ≈
e−θqmax . Hence, while largerθ corresponds to more strict
QoS constraints, smallerθ implies looser QoS guarantees.
Similarly, if D denotes the steady-state delay experienced in
the buffer, thenP (D ≥ dmax) ≈ e−θδdmax for large dmax,
where δ is determined by the arrival and service processes
[9].

2For time-varying arrival rates, effective capacity specifies the effective
bandwidth of the arrival process that can be supported by thechannel.
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The effective capacity is given by

C(θ) = −
Λ(−θ)

θ
= − lim

t→∞

1

θt
loge E{e

−θS[t]} bits/s, (9)

where the expectation is with respect toS[t] =
∑t

i=1 s[i],
which is the time-accumulated service process.{s[i], i =
1, 2, . . .} denote the discrete-time stationary and ergodic
stochastic service process.

In this paper, in order to simplify the analysis while consid-
ering general fading distributions, we assume that the fading
coefficients stay constant over the frame durationT and vary
independently for each frame and each user. In this scenario,
s[i] = TR[i], whereR[i] is the instantaneous service rate in
the ith frame duration[iT ; (i+1)T ]. Then, (9) can be written
as

C(θ) = −
1

θT
loge Ez{e

−θTR[i]} bits/s, (10)

where R[i] denotes the instantaneous rate sequence with
respect toz. (10) is obtained using the fact that instantaneous
rates{R[i]} vary independently. The effective capacity nor-
malized by bandwidthB is

C(θ) =
C(θ)

B
bits/s/Hz. (11)

B. Throughput Region

Suppose thatΘ = (θ1, · · · , θM ) is a vector com-
posed of the QoS constraints ofM users. LetC(Θ) =
(C1(θ1), · · · ,CM (θM )) denote the vector of the normalized
effective capacities. We first have the following characteriza-
tion.

Proposition 1: The instantaneousthroughput regioncan be
defined as

CMAC(Θ,SNR)

=

(

C(Θ) ≥ 0 : Cj(θj) ≤ −
1

θjTB
loge Ez

n

e
−θTRj [i]

o

,

subject to:∀E{R[i]} ∈ RMAC

)

. (12)

where R[i] = {R1[i], R2[i], · · · , RM [i]} represents vector
composed of the instantaneous rate ofM users.

Remark: The throughput regiondefined in Proposition 1
represents the set of all vectors of constant arrival rates such
that there exists a possible instantaneous rate adaptationR[i]
among theM users, which can guarantee the QoS constraints
Θ = (θ1, · · · , θM ).

Corollary: Thethroughput regionfor TDMA can be deemed
as the achievable vectors of arrival rates with each component
bounded by the effective capacity obtained for the instanta-
neous service rate given in (7). The effective capacity for user
j on the boundary surface becomes

C
TD
j (θj) = −

1

θjTB
loge E

{

e
−δjθjTB log2

„

1+
SNRj

δj
zj

«}

(13)

We assume thatE{R[i]} can take any possible values defined
in theRMAC . We have the following premilinary result.

Theorem 1:The throughput regionCMAC(Θ, SNR) is con-
vex.
Proof: Let C1(Θ) andC2(Θ) belong toCMAC(Θ, SNR). There-
fore, there exists someR[i] andR′[i] for C1(Θ) andC2(Θ),
respectively. By a time sharing strategy, for anyα ∈ (0, 1),
we know thatE{αR[i] + (1− α)R′[i]} ∈ RMAC .

αC1 + (1− α)C2

= −
1

ΘTB
loge

(

E

{

e−ΘTR[i]
})α (

E

{

e−ΘTR
′[i]
})1−α

= −
1

ΘTB
loge

(

E

{

(

e−ΘTαR[i]
)

1
α

})α

·

(

E

{

(

e−ΘT (1−α)R′[i]
)

1
1−α

})1−α

≤ −
1

ΘTB
loge E

{

e−ΘT(αR[i]+(1−α)R′[i])
}

(14)

where the vector operation is with respect to each component,
and Holder’s inequality is used. Hence,αC1 +(1−α)C2 still
lies in thethroughput region. �

We are interested in the boundary of the region
CMAC(Θ, SNR). Now that CMAC(Θ, SNR) is convex, we can
characterize the boundary surface by considering the following
optimization problem [3]:

maxλ · C(Θ) subject to:C(Θ) ∈ CMAC(Θ, SNR). (15)

for all priority vectors λ = (λ1, · · · , λM ) in R
M
+ with

∑M
j=1 λj = 1.

IV. M ULTIPLE-ACCESSCHANNELS WITH QOS
CONSTRAINTS

A. MAC without Power Control

If we assume that the receiver decodes the users at a fixed
order, it is obvious that only the vertices can be achievable.
Suppose that time sharing technique is employed. Moreover,
assume that the time fraction for each orderπm is τm, such
that τm ≥ 0 and

∑M !
m=1 τm = 1. Then, the effective capacity

for each user is

Cj(θj) = −
1

θjTB
loge Ez

{

e
−θjT

PM!
m=1 τmR

π
−1
m (j)

}

(16)

whereRπ
−1
m (j)[j] represents the instantaneous service rate of

userj at a given decoding orderπm, which is given by

Rπ
−1
m (j) = B log2

(

1 +
SNRjzj

1 +
∑

π
−1
m (i)>π

−1
m (j) SNRizi

)

(17)

whereπ−1
m is the inverse trace function ofπm.

If the receiver has the freedom to change the decoding order
according to the estimated channel state, we suppose there
exists a rate allocation policyR[i] for any λ ∈ R

M
+ . In this

paper, we consider a class of successive decoding techniques
F(z) parameterized as a function of the channel statesz. More
specifically, the vector spaceRM

+ for z is divided into disjoint
Zm,m ∈ {1, 2, . . . ,M !} regions with respect to eachπm

3.
For instance, whenz ∈ Z1, the base station will decode the

3Each region corresponds to a uniqueπ.
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information in the orderM,M − 1, . . . , 1. Then, the effective
capacity for each user is

Cj(θj) = −
1

θjTB
loge Ez

{

e−θjTRj
}

= −
1

θjTB
loge

(

M !
∑

m=1

∫

z∈Zm

e
−θjTR

π
−1
m (j)dz

)

(18)

Considering the expression for effective capacity and the
optimization problem in (15), the optimal rate adaptation with
respect to the channel state seems intractable. In this paper, we
consider a simplified scenario in which all users have the same
QoS constraint described byθ. This case arises, for instance,
if users do not have priorities over others in terms of buffer
limitations or delay constraints.

1) Two-user MAC:Similar to the discussion in [13], finding
an optimal scheduling scheme can be reduced to finding a
function z2 = g(z1) in the state space such that users are
decoded in the order 1,2 ifz2 < g(z1) and users are decoded
in the order 2,1 ifz2 > g(z1). The problem in (15) becomes

maxλ1C1(θ, g(z1)) + (1− λ1)C2(θ, g(z1)) (19)

whereC1(θ, g(z1)) andC2(θ, g(z1)) are expressed in (20) and
(21) at the top of the next page. Implicitly,g(z1) should always
be larger than 0 in (20) and (21) in order for the integral to
hold, which may not be guaranteed due to the complexity of
the problem. In that case, we need to find a functionz1 =
g(z2) instead, as will be indicated later.

Proposition 2: The optimal scheduling scheme for a spe-
cific common QoS constraintθ in the two-user case is given
by

g(z1) =
(1 + SNR1z1)K

1
β − 1

SNR2
, K ∈ [1,∞) (22)

g(z2) =
(1 + SNR2z2)K

− 1
β − 1

SNR1
, K ∈ [0, 1) (23)

whereβ = θTB
loge 2 , K ∈ [0,∞) is some constant.

Proof: Suppose that the optimal scheduling is given byz2 =
g(z1). We denote

J (g1(z1)) = λ1C1(θ, g1(z1)) + (1− λ1)C2(θ, g1(z1)) (24)

whereg1(z1) = g(z1)+sη(z1). g(z1) is the optimal scheduling
function, s is any constant, andη(z1) represents arbitrary
variation. A necessary condition that needs to be satisfied is
[14]

d

ds
(J (g1(z1)))

∣

∣

∣

∣

s=0

= 0. (25)

Define the following (for i=1,2):

φ1 =

Z

∞

0

Z

∞

g(z1)

e
−θTB log2(1+SNR1z1)pz2(z2)pz1(z1)dz2dz1

+

Z

∞

0

Z g(z1)

0

e
−θTB log2

„

1+
SNR1z1

1+SNR2z2

«

pz2(z2)pz1(z1)dz2dz1

(26)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
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0.3
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U
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r 
2 

(b
ps

/H
z)

Throughput region

Fig. 2. The throughput region of two-user MAC case. SNR1 = SNR2 =

0 dB. θ1 = θ2 = 0.01. The solid, dot-dashed, dashed and dotted lines
represent the regions achieved by optimal scheduling, suboptimal scheduling,
fixed decoding with time sharing, and the TDMA respectively.

φ2 =

Z

∞

0

Z g(z1)

0

e
−θTB log2(1+SNR2z2)pz2(z2)pz1(z1)dz2dz1

+

Z

∞

0

Z

∞

g(z1)

e
−θTB log2

„

1+
SNR2z2

1+SNR1z1

«

pz2(z2)pz1(z1)dz2dz1

(27)

By noting that dg1(z1)
ds

= η(z1), and from (25)-(27), we can
derive
Z

∞

0

 

−
λ1

θTBφ1

 

„

1 +
SNR1z1

1 + SNR2g(z1)

«

−β

− (1 + SNR1z1)
−β

!

−
1− λ1

θTBφ2

 

(1 + SNR2g(z1))
−β −

„

1 +
SNR2g(z1)

1 + SNR1z1

«

−β
!!

· pz2(g(z1))pz1(z1)η(z1)dz1 = 0 (28)

Since the above equation holds for anyη(z1), it follows that

−
λ1

θTBφ1

 

„

1 +
SNR1z1

1 + SNR2g(z1)

«

−β

− (1 + SNR1z1)
−β

!

−
1− λ1

θTBφ2

 

(1 + SNR2g(z1))
−β −

„

1 +
SNR2g(z1)

1 + SNR1z1

«

−β
!

= 0

(29)

which after rearranging and definingK as follows yields
“

1 + SNR1z1
1+SNR2g(z1)

”

−β

− (1 + SNR1z1)
−β

“

1 + SNR2g(z1)

1+SNR1z1

”

−β

− (1 + SNR2g(z1))
−β

=
(1− λ1)φ1

λ1φ2
= K.

(30)

Obviously,K ≥ 0. Notice that after simple computation, (30)
becomes

(

1 + SNR1z1
1 + SNR2g(z1)

)−β

= K (31)

which is (22). Note here that ifK < 1, g(z1) < 0 for z1 <
K

−
1
β −1

SNR1
. Then the expressions in (20) and (21) cannot hold.

In this case, we denote the optimal scheduling asz1 = g(z2)
instead. Following a similar approach as shown from (20)-(31)
will give us (23). �
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C1(θ, g(z1)) = −
1

θTB
loge

(

∫ ∞

0

∫ ∞

g(z1)

e−θTB log2(1+SNR1z1)pz2(z2)pz1(z1)dz2dz1

+

∫ ∞

0

∫ g(z1)

0

e
−θTB log2

„

1+
SNR1z1

1+SNR2z2

«

pz2(z2)pz1(z1)dz2dz1

)

(20)

C2(θ, g(z1)) = −
1

θTB
loge

(

∫ ∞

0

∫ g(z1)

0

e−θTB log2(1+SNR2z2)pz2(z2)pz1(z1)dz2dz1

+

∫ ∞

0

∫ ∞

g(z1)

e
−θTB log2

„

1+
SNR2z2

1+SNR1z1

«

pz2(z2)pz1(z1)dz2dz1

)

(21)

2) Suboptimal Scheduling:When all users have the same
QoS constraint specified byθ, we propose a suboptimal
decoding order given by

λπ(1)

zπ(1)
≤

λπ(2)

zπ(2)
· · · ≤

λπ(M)

zπ(M)
, (32)

due to the observation that whicheverλj approaches 1, it
should be decoded last. Considering a two-user example, we
can express the points on the boundary surface as

C1(θ) = −
1

θTB
loge

 

Z

∞

0

Z

∞

λ2z1
λ1

e
−θTB log2(1+SNR1z1)dz2dz1

+

Z

∞

0

Z

λ2z1
λ1

0

e
−θTB log2

„

1+
SNR1z1

1+SNR2z2

«

dz2dz1

!

(33)

C2(θ) = −
1

θTB
loge

 

Z

∞

0

Z

λ2z1
λ1

0

e
−θTB log2(1+SNR2z2)dz2dz1

+

Z

∞

0

Z

∞

λ2z1
λ1

e
−θTB log2

„

1+
SNR2z2

1+SNR1z1

«

dz2dz1

!

.

(34)

We have performed numerical analysis over Rayleigh fading
channels withE{z} = 1. In Fig. 2 where the throughput
region of a two-user MAC is plotted, we observe that varying
the decoding order can significantly increase the achievable
rate region. Moreover, we see that the suboptimal strategy can
achieve almost the same rate region as the optimal strategy.
This can be attributed to the fact that with the optimal strategy,
the receiver can choose the decoding order according to
the channel state such that the weighted sum of effective
capacities, i.e., summation oflog-moment generate functions,
is maximized. Meanwhile, TDMA can achieve some points
outside of thethroughput regionwith fixed decoding order at
the receiver side. If sum-rate throughput, i.e. the summation
of the effective capacities, is considered, we note in Fig. 3
that asθ increases, the curves of different strategies converge,
and asθ approaches to 0, TDMA again becomes suboptimal.
This may be in large due to the fact that the transmitted
energy is concentrated in the corresponding fraction of time
for each user, which will introduce considerable weighted sum

of throughput as QoS constraints become more stringent, i.e.,
the supported throughput becomes smaller. As QoS constraints
approach 0, this phenomenon can be nicely captured by
previous work on the Shannon ergodic capacity.

B. MAC with Power Control

In this part, we consider the power control policies with
fixed decoding order at the receiver side. Due to the convexity
of CMAC, there exist Lagrange multipliersκ ∈ R

M
+ such

that C∗(Θ) on the boundary surface is a solution to the
optimization problem

max
µ

λ · C(Θ) + κ · E{µ}. (35)

For a given permutationπ, Cj(θj) is given by

Cj(θj) = −
1

θjTB
loge E

{

e
−θjTB log2

„

1+
µjzj

1+
P

π−1(i)>π−1(j)
µizi

«

}

.

(36)

Now, the optimization problem (35) is equivalent to

max
µ

M
∑

j=1

−λj

1

θjTB
loge E

{

e
−θjTB log2

„

1+
µjzj

1+
P

π−1(i)>π−1(j)
µizi

«

}

+
M
∑

j=1

κjE{µj}. (37)

Note that with a fixed decoding order, the userπ(M) sees no
interference from the other users, and hence the derivativeof
(37) with respect toµπ(M) will only be related to the effective
capacity formulation of userπ(M). Therefore, we can solve
an equivalent problem by maximizingCπ(M) instead. After we
deriveµπ(M), the derivative of (37) with respect toµπ(M−1)

will only be related to the effective capacity formulation of
userπ(M−1). By repeated application of this procedure, with
given λ, (37) can be further decomposed into the following
M sequential optimization problems

max
µ

−λj

1

θjTB
loge E

{

e
−θjTB log2

„

1+
µjzj

1+
P

π−1(i)>π−1(j)
µizi

«

}

+ κjE{µj} j ∈ {1, · · · ,M}. (38)
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in the inverse order ofπ. Similar to [8], solving the aboveM
parallel optimizations is the same as solving

min
µ

E

{

e
−θjTB log2

„

1+
µjzj

1+
P

π−1(i)>π−1(j)
µizi

«

}

+ κjE{µj} j ∈ {1, · · · ,M}. (39)

Differentiating the Lagrangians with respect toµj respectively
and setting the derivatives to zero yields

µj =

 

“

1 +
P

π−1(i)>π−1(j) µizi

”

βj
βj+1

α

1
βj+1

j z

βj
βj+1

j

−
1 +

P

π−1(i)>π−1(j) µizi

zj

!+

(40)

whereβj =
θjTB

loge 2 is the normalized QoS exponent,(x)+ =

max{x, 0} and (α1, · · · , αM ) satisfy the average power con-
straints. Exploiting the result in (40), we can find that instead
of adapting power according to its channel state as in [8], the
user adapts power according to its channel state normalizedby
the interference and the noise observed. Depending on whether
each user is transmitting or not, the vector spaceR

M
+ for z can

be divided into2M disjoint regionsZm,m ∈ {1, · · · , 2M}.
To give an explicit idea of the power control policy, we

consider a two-user example where the decoding order is given
by 2, 1. For this case, we have

µ1 =

8

<

:

1

α

1
β1+1
1 z

β1
β1+1
1

− 1
z1

z1 > α1,

0 otherwise.
(41)

and

µ2 =

8

>

>

>

>

>

<

>

>

>

>

>

:

1

α

1
β2+1
2 z

β2
β2+1
2

− 1
z2

z1 ≤ α1&z2 > α2,

“

z1
α1

”

β2
(β1+1)(β2+1)

α

1
β2+1
2 z

β2
β2+1
2

−

“

z1
α1

”

1
β1+1

z2
z1 > α1&

z2
α2

>
“

z1
α1

”

1
β1+1

0 otherwise.
(42)

whereα1 and α2 are chosen to satisfy the average power
constraints of the two users.

V. CONCLUSION

In this paper, we have studied the achievable rate regions in
multi-access fading channels when users operate under QoS
constraints. With the assumption that both the transmitters
and the receiver have CSI, we have considered different
scenarios under which we have investigated the achievable rate
regions. Without power control, varying the decoding order
is shown to significantly increase the achievable rate region.
We have also shown that TDMA can perform better than
superposition coding with fixed decoding order for certain QoS
constraints. For a two-user case with same QoS constraints,
the optimal strategy for varying decoding order is derived,
and a simpler suboptimal decoding rule is proposed which
can almost perfectly match the optimalthroughput region.
Numerical results are provided as well. Furthermore, we have
derived the optimal power control policies for any given fixed
decoding order.
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