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Turbo Codes Based on Time-Variant Memory-1

Convolutional Codes overFq

Gianluigi Liva, Enrico Paolini, Sandro Scalise and Marco Chiani

Abstract—Two classes of turbo codes over high-order finite
fields are introduced. The codes are derived from a particular
protograph sub-ensemble of the(dv = 2, dc = 3) low-density
parity-check code ensemble. A first construction is derived
as a parallel concatenation of two non-binary, time-variant
accumulators. The second construction is based on the serial
concatenation of a non-binary, time-variant differentiator and of
a non-binary, time-variant accumulator, and provides a highly-
structured flexible encoding scheme for (dv = 2, dc = 4)
ensemble codes. A cycle graph representation is provided. The
proposed codes can be decoded efficiently either as low-density
parity-check codes (via belief propagation decoding over the
codes bipartite graph) or as turbo codes (via the forward-
backward algorithm applied to the component codes trellis). The
forward-backward algorithm for symbol maximum a posterior i
decoding of the component codes is illustrated and simplified by
means of the fast Fourier transform. The proposed codes provide
remarkable gains (∼ 1 dB) over binary low-density parity-check
and turbo codes in the moderate-short block regimes.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes [1] constructed on
high-order finite fields [2]–[4] show remarkable coding gains
with respect to (w.r.t.) binary LDPC/turbo codes [5]–[8]. The
gain is especially visible in the moderate-to-short block length
(k ≤ 1000 bits) regime [3], [4], where binary iteratively-
decodable codes tend to exhibit either high error floors or non-
negligible coding gain losses [9] w.r.t. available benchmarks
(e.g., 1 dB with respect to the random coding bound (RCB)
[10]).1 Ultra-sparse non-binary LDPC codes based on fields
of orderq ≥ 64 for short block lengths allow approaching the
average performance of random codes by∼ 0.2 dB down to
medium-low codeword error rates (CERs).

In this paper, we provide a novel turbo code construction,
which leads tonon-binaryturbo codes based on convolutional
codes on a finite fieldFq of orderq = 2m > 2. The proposed
construction bridges rate-1/3 non-binary turbo codes and reg-
ular (dv = 2, dc = 3) non-binary LDPC codes, wheredc and
dv are the check node (CN) and variable node (VN) degrees,
respectively. More specifically, the turbo code construction
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1Although the RCB provides an upper bound to the block error probability
achievable by a(n, k) code, for moderate-long block it provides a tight
estimation of the performance of the best codes. In the short-length regime,
properly-designed codes can surpass the RCB even remarkably. However, it
will be kept as a reference through the paper together with the sphere packing
bound (SPB) of [11].

follows from a specific expansion of a(dv = 2, dc = 3)
protograph.2 The so-obtained turbo codes have performance
close to that of their non-binary LDPC counterparts, with
the advantage of an efficient encoding structure. Even more
important, the proposed construction allows building families
of rate-compatible turbo codes with flexible block size, by
adopting combinatorial (on-the-fly) interleaver constructions.

Convolutional turbo(-like) codes over non-binary finite
fields/rings have been investigated previously, e.g. in [14]–
[20]. With respect to the past works, the main novelties
of our construction are listed next. Most of the previous
contributions devote attention to fields of low order, whereas
we focus on high order fields, e.g. of orderq = 2m = 256.
Moreover, our construction is based on codes with memory
1 (in symbols), whereas in [17], [19] codes with larger
memories are considered. The convolutional codes adopted
by the proposed construction are time-variant, while in [15],
[17]–[19] the feed-forward / feedback polynomials are fixed.
To our knowledge, the only non-binary iterative schemes
adopting time-variant convolutional codes are the irregular
repeat accumulate (IRA) codes of [20]. However, in [20] a
turbo code structure is not considered explicitly. We further
propose an alternative serial turbo code interpretation ofthe
(dv = 2, dc = 3) regular protograph ensemble which allows
to efficiently encode rate-1/2 (dv = 2, dc = 4) regular LDPC
codes as a serial concatenation of a non-binary time-variant
differentiator, and interleaver, and a non-binary time variant
accumulator. The proposed construction features a nice graph
interpretation which provides useful insights for the interleaver
design. High rates can be obtained by suitably puncturing
the code symbols, whereas low rates can be easily obtained
by using the multiplicative repetition approach of [21]. A
discussion on how decoding can be performed either in a
turbo-like fashion (i.e., by iterating a BCJR decoder on the
q-states trellises of the component codes) or via the classical
belief propagation (BP) algorithm for LDPC codes is provided.
In both cases, the decoder complexity growth w.r.t. the field
orderq can be limited toO(q log2 q) by adopting fast Fourier
transforms.

The contribution is structured as follows. Section II de-
scribes the code structure. In Section III the iterative decoding
algorithm is discussed. Numerical results and conclusions
follow in Sections IV and V respectively.

2Similarly, in [12], [13] a bridge between LDPC and turbo codeconstruc-
tions was provided in the binary context. However, in [12], [13] protograph
ensembles have not been considered.
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II. CODE STRUCTURE

Regular (dv = 2, dc) non-binary LDPC codes are char-
acterized by excellent iterative decoding thresholds [3].In
this paper, we shall focus on the(dv = 2, dc = 3) rate-
1/3 case. The iterative decoding threshold over the binary-
input additive white Gaussian noise (AWGN) channel for
the (dv = 2, dc = 3) unstructured ensembles with random
choice of the non-zero coefficients in the parity-check matrix is
(Eb/N0)

∗ ≃ −0.25 dB,3 only 0.25 dB away from the Shannon
limit. The turbo codes described in this paper are constructed
on a specific protograph sub-ensemble of the(dv = 2, dc = 3)
regular ensemble, depicted in Fig. 1(a). A protograph [22],
[23] is a Tanner graph [24] with a relatively small number
of nodes. A protographG = (V , C, E) consists of a set ofN
variable nodesV , a set ofM check nodesC, and a set of
edgesE . Each edgeei,j ∈ E connects a VNVj ∈ V to a CN
Ci ∈ C. A larger derived graph can be obtained by a copy-
and-permute procedure: the protograph is copiedK times, and
the edges of the individual replicas are permuted among the
K replicas. A protograph can be described by abase matrixB
of sizeM ×N . The elementbi,j of B represents the number
of edges connecting the VNVj to the CNCi. The base matrix
associated with the protograph in Fig. 1(a) is given by

B =

[
1 2 0
1 0 2

]

.

We proceed by expanding the protograph into the derived
graph as follows. We first replace the upper-left ‘1’ in B with
a K ×K identity matrix,I. The lower-left ‘1’ is replaced by
a K ×K permutation matrixΠ. Each of the ‘2’ entries ofB
is replaced by aK ×K cyclic matrix

P =










1 0 . . . 0 1
1 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 1 1










.

The(2K)×(3K) derived graph adjacency matrix has the form

Γ =

[
I P 0

Π 0 P

]

.

We then construct a parity-check matrix onFq by replacing
each ‘1’ in Γ with a suitable element ofF∗

q = Fq\{0}. The
2K×3K full-rank non-binary parity-check matrix is given by

H =

[
Ĩ P̃(1) 0

Π̃ 0 P̃(2)

]

(1)

where

• Ĩ is a K × K matrix with non-zero entries only on
the main diagonal (pseudo-identity matrix). More specif-
ically, ĩj,l = g

(1)
j for j = l, otherwisẽij,l = 0.

• Π̃ is a K × K matrix with non-0 entries only for
π̃π(j),j , ∀j ∈ (1,K). In particular,π̃j,π(j) = g

(2)
j , ∀j ∈

(1,K). Thus,Π̃ can be described as the product between

3Throughout the paper,Eb will denote the energy per information bit and
N0 the one-sided noise power spectral density.
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a) Parallel concatenation

b) Serial concatenation
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Fig. 1. Rate-1/3 protograph as parallel (a) and serial (b) concatenation.

a permutation matrixΠ and a pseudo-identity matrix
with diagonal coefficientsg(2)0 , g

(2)
1 , . . . , g

(2)
K−1, with π(j)

being the permutation function.
• Both P̃(1), P̃(2) are double diagonal matrices with form

P̃(z) =













1 0 0 . . . 0 f
(z)
0

f
(z)
1 1 0 . . . 0 0

0 f
(z)
2 1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 0

0 0 0 . . . f
(z)
K−1 1













, z = 1, 2.

A. Parallel Concatenation

The parity-check matrix (1) may be interpreted as the parity-
check matrix of the parallel concatenated convolutional code
(PCCC). The information wordu of K = k/m symbols
in Fq, q = 2m, is input to a rate-1, memory-1 time-variant
recursive systematic convolutional (RSC) tail-biting encoder
(non-binary accumulator). The first set of parity symbolsp(1)

is obtained as

p
(1)
i = g

(1)
i ui + f

(1)
i p

(1)
i−1 ∀i ∈ [0,K − 1] (2)

and with p
(1)
−1 = p

(1)
K−1 properly initialized.4 Here,

p
(1)
i , g

(1)
i , f

(1)
i ∈ Fq, and all operations are inFq. The second

set of parity symbols are obtained by first permuting the
symbols ofu according to the interleaving rulei → π(i).
The permuted information wordu′ (with u′

i = uπ(i)) is then
fed in a second rate-1, memory-1 time-variant RSC tail-biting
encoder. The second set of parity symbolsp(2) is obtained as

p
(2)
i = g

(2)
i u′

i + f
(2)
i p

(2)
i−1 ∀i ∈ [0,K − 1] (3)

and withp
(2)
−1 = p

(2)
K−1. The systematic codeword is given by

c = [u|p(1)|p(2)] and has length3K symbols. The code length
is n = 3Km bits and the code dimension isk = Km. The
code rate for the proposed construction isr = k/n = 1/3.

4The initialization ofp(1)
−1 (and consequently ofp(2)

−1) can be obtained as
indicated in [25, Lemma 4].



B. Serial Concatenation

By stretching the protograph of Fig. 1(a) onto the one
of Fig. 1(b), it is possible to devise an alternative encoder
which is based on the serial concatenation of a memory-1 non-
recursive encoder (non-binary differentiator), and interleaver,
and a rate-1 RSC encoder (non-binary accumulator). The in-
formation vectoru is first multiplied by the transpose of̃P(2),
resulting in the intermediate vectorv, with vi = ui+f

(2)
i ui−1

and v0 = u0 + f
(2)
0 uK−1. The vectorv is then point-

wise multiplied by the coefficient vectorg(2) and permuted
according toΠ, obtaining a second intermediate vectorv′,
which is then input to a rate-1, memory-1 time-variant RSC
tail-biting encoder leading to a parity vectorp.

pi = g
(1)
i v′i + f

(1)
i pi−1 ∀i ∈ [0,K − 1] (4)

and withp−1 = pK−1 The final codeword is hence given by
c = [u|p], and the code has length2K symbols. The proposed
construction brings gives a turbo code with code rater =
k/n = 1/2. We will refer to this construction as differentiate
accumulate (DA) code. A lower rater = 1/3 can be obtained
by providing at the output of the encoder the intermediate
vectorv as well, i.e. by settingc = [u|p|v]. Note that, while
for the rate1/3 code the parity-check matrix is still given by
(1) (with proper columns permutation), for the rate1/2 code
(1) represents an extended parity-check matrix, where the first
K columns are associated with punctured symbols. The parity-
check matrix for the rate1/2 DA code can be obtained by
noting thatvT = P̃(2)uT and

v′ = vΠ̃ = u

[(

P̃(2)
)T

Π̃

]

.

The parity-check matrix is hence given by the parity-check
matrix of a non-binary IRA code [20], [26]

H =
[

Π̃T P̃(2)
∣
∣
∣P̃

(1)
]

. (5)

This parity-check matrix form is a particular case of the con-
struction of [27], with left and right sub-matrices characterized
by a single cycle involving all their associated variable nodes.

C. Cycle Graph Representation and Interleaver Design

The codes specified by the parity-check matrices of (1) and
(5) can be conveniently described as cycle (circuit) codes [25],
[27], [28], as the corresponding Tanner graphs have a regular
VN degreedv = 2. A graph representation for cycle codes
can be obtained by associating a vertex with each parity-check
equation and an edge with each codeword symbol. Considering
the parity-check matrix (1), the graph is hence given by3K
edges connecting2K vertexes.

An example is provided in Fig. 2. The graph of a rate1/3,
K = 5 code (Fig. 2(a)) is obtained by connecting two length-
5 cycles according to the interleaver generated by the relative
prime ruleπ(j) = (a+ p · j) mod K with a = 1 andp = 2.
The graph of Fig. 2(a) turns to be the Petersen graph [28], [29],
and hence is a(3, 5)-cage[29], [30], i.e. a graph with minimal

C3

C4

a)

C2

C0

C1

C0

C2

C4

b)

C3

C1

Fig. 2. Example of graphs for the cycle codes: (a) associated with the parity-
check matrix of (1) for a rate1/3, K = 5 PCCC, and (b) associated with
the parity-check matrix of (5) a the rate1/2, K = 5 DA code.

number of vertexes with degree3 having girth5.5 The graph
associate with the parity-check matrix of (5) can be directly
obtained by pruning the graph of Fig. 2(a) as follows: Each
edge connecting a vertex of the lower pentagon to a vertex of
the upper pentagon is eliminated, and the corresponding upper
and lower vertexes are merged together. The obtained graph
is shown in Fig. 2(b).6

In general, the connections between the upper and the lower
cycles in the rate1/3 graph define the interleaver, which may
be selected according to rules for increasing the interleaver
spread (turbo code perspective), or may be generated by
filling the sub-matrixΠ̃ of H according to girth optimization
techniques (LDPC code perspective). The first approach has
the inherent advantage of allowing code constructions for
various block sizes on-the-fly by adopting efficient high-spread
interleaver construction algorithms [31], [32].7

III. MAP D ECODING OF THECOMPONENT CODES

As for the code construction, both the LDPC and the
turbo code perspectives can be used to perform iterative
decoding. For the former case we refer to the vast literature
on fast Fourier transform (FFT)-based BP decoders for non-
binary LDPC codes (see for instance [33]), giving decoding
algorithms with complexity that scales asO(q log2 q). For the
latter, the conventional turbo decoding algorithm based onthe
BCJR algorithm [34] applied on the trellis of the component
codes can be simplified by FFTs as well, resulting in a
complexity growthO(q log2 q) as for the LDPC BP decoder
case [15]. We shall focus next on the symbol maximum a-
posteriori (MAP) decoding for the component convolutional
codes. We discuss the case of a time-variant memory-1 RSC
code, the non-recursive convolutional code case derivation
being similar. Each of the two RSC encoders of the proposed

5Note that the girth of the Tanner graph associated with a cycle code is
twice the girth of the cycle code graph, i.e. for the code based on the Petersen
graph the Tanner graph girth isg = 2 · 5 = 10.

6It is worth to note that by construction the graph of the cycleDA code is
always given by two nested Hamiltonian cycles associated with the right and
the left sub-matrices of the parity-check matrix (5).

7 Additionally, the coefficients ofg(1), f (1),g(2), f (2) may be optimized
according to the technique introduced in [3].



PCCC scheme is in fact a time-variant memory-1 encoder
(i.e., the current output symbol depends only on the current
input symbol and on the past output symbol). The time variant
nature of the component codes is due to the multiplications
by the coefficientsgi, fi (we omitted the superscript indicating
the branch index). The RSC encoder is fully specified by the
relationsSi = giui + fiSi−1 andpi = Si, where the state of
the encoder is defined by the value stored at the input of the
delay unit. The number of states in the code trellis corresponds
to the field orderq.

We first consider the case where the component RSC codes
are terminated. The a posteriori probability mass function
(p.m.f.) vector for the symbolui given the channel outputy is
denoted byLu

i = [Lu
i (0), L

u
i (1), L

u
i (α), . . . , L

u
i

(
αq−2

)
] with

Lu
i [ω] = Pr{ui = ω|y}, ω ∈ Fq. The channel observationy

is given byy = (y0,y1, . . . ,yK) where each element can be
further split asyi = (yui , y

p
i ), y

u
i (ypi ) being the channel output

corresponding toui (pi).8 We further introduce the notation
y[i:j] = (yi,yi+1, . . . ,yj) (0 ≤ i < j ≤ K).

The computation of the a posteriori probability for the
symbolui can be accomplished by evaluating

Lu
i (ω) = Pr{ui = ω|y} =

∑

s, s′

Tu
i (s, s′) = ω

ϕi−1(s)γi(s, s
′)βi(s

′).

The operatorT u
i (s, s

′) returns the label associated withui for
the trellis edge connecting the states at timei− 1 to the state
s′ at time i, ϕi−1(s) denotes the forward metric for the state
s at time i− 1, βi(s

′) is the backward metric for the states′

at time i, andγi(s, s′) is the transition metric between states
s, s′ at time i. We normalize the metrics such that

ϕi(s) = Pr{Si = s|y[0:i]}, ϕ0(0) = 1,

βi(s) = Pr{Si = s|y[i+1:K]}, βK(0) = 1,

γi(s, s
′) = Pr{Si−1 = s, Si = s′|yi}

= Pr{ui = ω, pi = ν|yui , y
p
i }, (6)

with ω = T u
i (s, s

′), ν = s′. Assuming independent outputs
yui , y

p
i , (6) can be factored into

γi(s, s
′) = Pr{ui = ω|yui }

︸ ︷︷ ︸

γu
i (s,s′)

Pr{pi = ν|ypi }
︸ ︷︷ ︸

γ
p
i (s

′)

, (7)

where γp
i (s

′) depends ons′ only sincepi = Si. The for-
ward/backward metrics can be computed recursively as

ϕi(s) ∝
∑

s′

ϕi−1(s
′)γi(s

′, s) =
∑

s′

ϕi−1(s
′)γu

i (s
′, s)γp

i (s)

= γp
i (s)

∑

s′

ϕi−1(s
′)γu

i (s
′, s) (8)

βi(s) ∝
∑

s′

βi+1(s
′)γi+1(s, s

′)

=
∑

s′

βi+1(s
′)γu

i+1(s, s
′)γp

i+1(s
′)

=
∑

s′

[
βi+1(s

′)γp
i+1(s

′)
]
γu
i+1(s, s

′). (9)

8The vectory = (y0,y1, . . . ,yK) is composed byK + 1 elements to
account for the additional input/output symbol required bythe termination.

Note that (8) involves a convolution sinces′, s are related by
s = giui + fis

′. Similarly, for (9) s, s′ are related bys′ =
gi+1ui+1 + fi+1s. We introduce the p.m.f. vectors

ϕi =
[
ϕi(0), ϕi(1), ϕi(α), . . . , ϕi

(
αq−2

)]
,

βi =
[
βi(0), βi(1), βi(α), . . . , βi

(
αq−2

)]
,

γp
i =

[
γp
i (0), γ

p
i (1), γ

p
i (α), . . . , γ

p
i

(
αq−2

)]
,

γu
i =

[
γu
i (0), γ

u
i (1), γ

u
i (α), . . . , γ

u
i

(
αq−2

)]
,

where in the last expression (with a slight abuse of the
notation) we re-definedγu

i (ω) = Pr{ui = ω|yui }. In vector
form, we can re-arrange (8), (9) into

ϕi = γp
i · [πfi (ϕi−1)⊛ πgi (γ

u
i )]

βi = π−1
fi+1

{[
βi+1 · γ

p
i+1

]
⊛ πgi+1

(
γu
i+1

)}
. (10)

In (10),πa(Q) denotes the permutation, induced by the multi-
plication by a scalara of a random variable with p.m.f. vector
Q, on Q, while π−1

a (Q) denotes the inverse permutation (or
equivalently the permutation induced by the multiplication by
a−1). Furthermore,′·′ denotes the (point-wise) multiplication
of two vectors, and′⊛′ denotes the convolution of the two
vectors. The a posteriori p.m.f. vector ofui given the channel
outputy is finally given (up to a normalization factor) by

Lu
i = π−1

gi
{πfi (ϕi−1)⊛ [βi · γ

p
i ]}

︸ ︷︷ ︸

µu
i

·γu
i (11)

where µu
i represents the extrinsic information,µu

i (ω) =
Pr{ui = ω|y\yui }. The message update can be easily followed
on the normal factor graph of a section of the trellis provided in
Fig. 3.9 The complexity is here dominated by the convolution
operations, and thus scales asO(q2).10 The algorithm can be
simplified by applying the (fast) Fourier transform (FT) [33],
[36], [37] for finite Abelian groups on the vectors involved in
the convolutions. Assuming extension fields with characteristic
2, the FT reduces to the Walsh-Hadamard transform [33], i.e.
given a functionx(ω), ω ∈ F2m , its Fourier (Walsh-Hadamard)
transformX(ν), ν ∈ F2m , is obtained as

X(ν) =
∑

ω∈F2m

x(ω)(−1)<ω,ν>

< ω, ν > being the inner product overF2 between the length-
m binary vector representationsω, ν of ω, ν. By employing
FFTs, the decoding complexity is reduced toO(q log2 q).

IV. N UMERICAL RESULTS

Simulation results on the AWGN channel for codes onF256

are presented next. In all the simulations, we adopted the BP
decoding over the Tanner graph of the codes with a maximum
number of iterations set toImax = 200. Binary antipodal
modulation has been considered.

Fig. 4 shows the performance for a rate-compatible code
family with input block sizek = 128 bits. The mother code is

9When decoding on tail-biting trellises, the recursion for the forward metric
calculation shall be circularly extended [35].

10Recall thatq is the field order, and hence the length of the vectors involved
in the convolutions of (10).
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i [s, s′]

Fig. 3. Normal factor graph for a trellis section.

a (384, 128) code, whose parity-check matrix coefficients have
been selected according to the method of [3]. A lower code
rate 1/6 has been obtained by repeating each code symbol
twice, and by multiplying the replicas by random elements
in F

∗

256 as for the multiplicative repeat (MR) approach of
[21]. Higher code rates have been obtained in two different
ways, i.e. (i) according to the parallel concatenation scheme,
by periodically-puncturing parity symbols at the output ofthe
two accumulators and (ii) by puncturing the VNs of typeV0

(thus, a rate1/2 DA code is obtained, and further higher rates
can be achieved by puncturing symbols periodically at the
output of the accumulator in the DA encoder). In both cases,
symbol-wise puncturing pattern (SPP) has been applied. The
interleaver has been designed according to a circulant version
of the progressive edge growth (PEG) algorithm [38]. The rate
1/3 mother code does not show floors down toCER = 10−5,
performing within0.2 dB from the RCB [10]. Similar results
are obtained by the lowest-rate code. For the two schemes
with rate 1/2, the performance is still within0.3 from the
RCB down toCER = 10−4, with a slight advantage for the
DA construction. The advantage is more visible for the rate
2/3 case. Here, the PCCC performance suffers for a lack
of steepness, which is not due to a low minimum distance
(low-weight error patterns have not been detected), but to a
slow decoding convergence associable with the large fraction
of punctured symbols. For the DA case, the rate1/2 code
parity-check matrix of (5) has been used for the Tanner graph,
and hence the higher rates have been obtained with a reduced
fraction of punctured symbols. The same plot provides the
performance of the(384, 128) double-binary turbo code of
the DVB-RCS standard [7]. TheF256 PCCC outperforms the
double-binary one by more that0.7 dB atCER = 10−4.

Fig. 5 depicts the minimumEb/N0 required to achieve
CER = 10−4 for several rate1/3 parallel concatenated
convolutional codes and rate1/2 DA codes, with block sizes
spanning fromk = 40 bits tok = 1024 bits. The performances
of rate 1/2 binary irregular protograph-based LDPC and
accumulate repeat accumulate (ARA) codes from [5], [9] are
provided too. The chart is completed by the SPB [11] for
the continuous-input AWGN channel. The DA codes have
been again obtained by puncturing theV0-type nodes of the
PCCC graph. The interleavers have been generated on the fly

according to [32]. Additionally, the rate1/3 and1/2 k = 40
bits codes associated with the cycle graphs of Fig. 2 have
been simulated. The rate1/3 PCCCs perform within0.5 dB
from the SPB all over the block sizes (with the exception of
k = 40). For the largest (k = 1024) block length, the gap is
reduced to0.3 dB. For the rate1/2, the gap w.r.t. the SPB is
slightly larger (0.2 dB more). The gain of the proposed non-
binary turbo codes over the binary LDPC codes is remarkable
(∼ 1 dB or more)for the shortest block sizes. For the largest
(k = 1024) block length, the gain is reduced to∼ 0.3 dB.
The performance of two short codes from [39] are provided
as well. The first is a(128, 64, 22) extended BCH code
under maximum likelihood (ML) decoding, which achieves
CER = 10−4 at Eb/N0 = 3.03 dB, only∼ 0.3 dB away from
the SPB with a coding gain of∼ 0.4 dB over the(128, 64)
DA code. We shall consider in the comparison that the DA
code does not perform a complete ML decoding, and hence
provides an error detection mechanism that may be required by
critical application, e.g. telecommand in the up-link of space
communication systems [9]. The second code is a(600, 270)
terminated binary convolutional code with constraint length
30. This code performs close to the(512, 256) DA code, which
however has a slightly higher code rate (0.5 vs. 0.45) and a
lower block size (256 vs 270 information bits).
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Fig. 4. Performance for a rate-compatible family of turbo codes onF256,
k = 128 bits.

V. CONCLUSIONS

Two novel classes of turbo codes constructed over high-
order finite fields have been presented. The codes are derived
from a protograph sub-ensemble of the(dv = 2, dc = 3)
regular LDPC ensemble. One of the proposed construction is
based on the serial concatenation of a non-binary, time-variant
differentiator and a of non-binary, time-variant accumulator,
and provides a highly-structured flexible encoding scheme for
(dv = 2, dc = 4) LDPC ensembles. Symbol MAP decoding
of the component codes has been illustrated, together with its
FFT-based simplification. The proposed codes allow efficient
decoding either as LDPC or as turbo codes. Remarkable
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Fig. 5. RequiredEb/N0 for achievingCER = 10−4 for various codes with
rates1/2, 1/3, compared with the corresponding SPBs.

gains (∼ 1 dB) w.r.t. binary LDPC/turbo codes have been
demonstrated in the moderate-short block regimes.
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