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Turbo Codes Based on Time-Variant Memary-
Convolutional Codes ovef,

Gianluigi Liva, Enrico Paolini, Sandro Scalise and Marcaadih

Abstract—Two classes of turbo codes over high-order finite follows from a specific expansion of &, = 2,d. = 3)
fields are introduced. The codes are derived from a particula protograp]ﬂ The so-obtained turbo codes have performance
protograph sub-ensemble of the(d, = 2,d. = 3) low-density |56 to that of their non-binary LDPC counterparts, with

parity-check code ensemble. A first construction is derived .. .
as a parallel concatenation of two non-binary, time-variam the advantage of an efficient encoding structure. Even more

accumulators. The second construction is based on the seria important, the proposed construction allows building féesi
concatenation of a non-binary, time-variant differentiator and of ~ of rate-compatible turbo codes with flexible block size, by

a non-binary, time-variant accumulator, and provides a hidly-  adopting combinatorial (on-the-fly) interleaver constias.
structured flexible encoding scheme for(d, = 2,d. = 4) . . . -
ensemble codes. A cycle graph representation is provided.h& Convolutional turbo(-like) codes over non-binary finite

proposed codes can be decoded efficiently either as low-détgs fields/rings have been investigated previously, e.g.[if{14
parity-chfeck .codes (via belief propagation depoding overhie [20]. With respect to the past works, the main novelties
codes bipartite graph) or as turbo codes (via the forward- of our construction are listed next. Most of the previous

backward algorithm applied to the component codes trellis) The I . .
forward-backward algorithm for symbol maximum a posterior | contributions devote attention to fields of low order, wiasre

decoding of the component codes is illustrated and simplifieby ~We focus on high order fields, e.g. of ordgr= 2™ = 256.
means of the fast Fourier transform. The proposed codes prade ~Moreover, our construction is based on codes with memory

remarkable gains (~ 1 dB) over binary low-density parity-check 1 (in symbols), whereas in[[17][[19] codes with larger
and turbo codes in the moderate-short block regimes. memories are considered. The convolutional codes adopted
by the proposed construction are time-variant, whilelin],[15
[17]-[19] the feed-forward / feedback polynomials are fixed
) ) To our knowledge, the only non-binary iterative schemes
Low-density parity-check (LDPC) codesl [1] constructed 0jgopting time-variant convolutional codes are the irragul
high-order finite fields[ﬂ?]-Eﬂ4] show remarkable coding gainrepeat accumulate (IRA) codes 6f [20]. However, [in][20] a
with respect to (w.r.t.) binary LDPC/turbo codes [SI-{8P& trbo code structure is not considered explicitly. We farth
gain is especially visible in the moderate-to-short blamgth hropose an alternative serial turbo code interpretatiothef
(k < 1000 bits) regime [8], [4], where binary iteratively- (j, — 2 4, = 3) regular protograph ensemble which allows
decodable codes tend to exhibit either high error floors oF ngg efficiently encode raté/2 (d, = 2,d. = 4) regular LDPC
negligible coding gain losses![9] w.r.t. available benchksa codes as a serial concatenation of a non-binary time-varian
(e.9., 1 dB with respect to the random coding bound (RCByjtferentiator, and interleaver, and a non-binary timeiatr
[10))H Ultra-sparse non-binary LDPC codes based on fielggcumulator. The proposed construction features a niqehgra
of orderg > 64 for short block lengths allow approaching thgnterpretation which provides useful insights for the itdaver
average performance of random codes-by.2 dB down 10 gesjgn. High rates can be obtained by suitably puncturing
medium-low codeword error rates (CERS). the code symbols, whereas low rates can be easily obtained
In this paper, we provide a novel turbo code COhStrUCtiOBy using the multiplicative repetition approach 6f [21]. A
which leads taon-binaryturbo codes based on convolutionaljiscussion on how decoding can be performed either in a
codes on a finite field", of orderq = 2™ > 2. The proposed tyrho-like fashion (i.e., by iterating a BCJR decoder on the
construction bridges rate/3 non-binary turbo codes and reg-;_states trellises of the component codes) or via the clalssic
ular (d, = 2,d. = 3) non-binary LDPC codes, whet and pelief propagation (BP) algorithm for LDPC codes is prodide
d, are the check node (CN) and variable node (VN) degregs, poth cases, the decoder complexity growth w.r.t. the field
respectively. More specifically, the turbo code constarcti orderg can be limited toO(¢log, ¢) by adopting fast Fourier
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1Although the RCB provides an upper bound to the block errobability
achievable by a(n, k) code, for moderate-long block it provides a tight
estimation of the performance of the best codes. In the $éwgth regime,
properly-designed codes can surpass the RCB even remarkédwever, it 2Similarly, in [12], [13] a bridge between LDPC and turbo cammstruc-
will be kept as a reference through the paper together witrsgihere packing tions was provided in the binary context. However, [in] [1A13][ protograph
bound (SPB) of[[1i]. ensembles have not been considered.

|. INTRODUCTION
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Il. CODE STRUCTURE

Regular (d, = 2,d.) non-binary LDPC codes are char-
acterized by excellent iterative decoding thresholds [8].
this paper, we shall focus on thgl, = 2,d. = 3) rate-
1/3 case. The iterative decoding threshold over the binary-
input additive white Gaussian noise (AWGN) channel for a) Parallel concatenation
the (d, = 2,d. = 3) unstructured ensembles with random
choice of the non-zero coefficients in the parity-check ipagr ~ differentiator on ¥,

(Ep/No)* ~ —0.25 dBf only 0.25 dB away from the Shannon

limit. The turbo codes described in this paper are constdict v el Vi

on a specific protograph sub-ensemble ofitie= 2,d. =3) O L - O
regular ensemble, depicted in Flg. 1(a). A protograph [22],
[23] is a Tanner graph [24] with a relatively small number
of nodes. A protograply = (V,C, ) consists of a set oV
variable nodes/, a set of M check node<’, and a set of
edgest. Each edge; ; € £ connects a VNV; € V to a CN
C; € C. A larger derivedgraph can be obtained by a copy-
and-permute procedure: the protograph is copietimes, and

the edges of the individual replicas are permuted among the
K replicas. A protograph can be described byage matrixB

of size M x N. The elemenb; ; of B represents the number
of edges connecting the V; to the CNC;. The base matrix

accumulators on F,

[
‘Q

b) Serial concatenation

Fig. 1. Ratet/3 protograph as parallel (a) and serial (b) concatenation.

a permutation matrixII and a pseudo- |dentity matrix
with diagonal coef“ficientg((J ,g§2), e ,gg 1 With ()
being the permutation function.

« Both P P® are double diagonal matrices with form

associated with the protograph in Fig. 1(a) is given by 1 0 0... 0 féZ> 1
B_[120] 1(2) 1 0... 0 0
“l102 . 0 f21... 0 o
po— | U R
We proceed by expanding the protograph into the derived : o :
graph as follows. We first replace the upper-léftin B with 0O 0 0.. 1 0
a K x K identity matrix,I. The lower-left 1’ is replaced by 0o 0 0. (Z> 1

a K x K permutation matridI. Each of the 2’ entries of B

is replaced by & x K cyclic matrix .
A. Parallel Concatenation

10...01 The parity-check matriX{1) may be interpreted as the parity
00 check matrix of the parallel concatenated convolutionaeco
P=1:ot o (PCCC). The information wordh of K = k/m symbols
00...10 in F,, ¢ = 2™, is input to a ratel, memory4 time-variant
00...11 recursive systematic convolutional (RSC) tail-biting eder

(non-binary accumulatdr The first set of parity symbols(*)
The (2K) x (3K') derived graph adjacency matrix has the forny jpiained as

r= [rII 0 g] : ) = gmuz' +fpY, viel k-1 @
1 N
We then construct a parity-check matrix Bp by replacing @nd  with P = ng . properly initialized] Here,

each 1" in T' with a suitable element df; = F,\{0}. The p(l),gll) f(1 € ]F and all operations are ifi,. The second
2K x 3K full-rank non-binary parity- check matrix is given byset of parity symbols are obtained by f|rst permuting the
symbols ofu according to the interleaving rule — (7).

H= [ I P ~(()2)] (1) The permuted information word’ (with u; = u,;)) is then
o P fed in a second raté; memoryd time-variant RSC tail-biting
where encoder. The second set of parity symbpi® is obtained as
« Iis a K x K matrix with non-zero entries only on ( ) _ Z(2) Lt 2) (2) Vie[0,K —1] A3)
the maln dlagonalr(seudo identity matrjx More specif-
|caIIy i = g ) for j =1, otherwisei;; = 0. and withp p( . The systematic codeword is given by

. H is a K x K matrix with non® entries onIy for ¢ =[ulp 1>|p(2 ] and has lengtB K symbols. The code length
Tr(i)g> ¥9 € (1, K). In particular, 7; ;y = gj( ,Vj € isn = 3Km bits and the code dimension is= Km. The

(1, K). Thus,II can be described as the product betwedipde rate for the proposed construction-is- k/n = 1/3.

3Throughout the papei; will denote the energy per information bit and “The initialization Ofp (and consequently qﬁ(21) can be obtained as
Ny the one-sided noise power spectral density. indicated in[[25, Lemma 4]



B. Serial Concatenation Co

By stretching the protograph of Fi@l] 1(a) onto the on G
of Fig. [d(b), it is possible to devise an alternative encod
which is based on the serial concatenation of a memargn-
recursive encodempn-binary differentiatoy, and interleaver,
and a ratek RSC encoder (non-binary accumulator). The ir ¢ Ca
formation vectom is first multiplied by the transpose &2,
resulting in the intermediate vecter with v; = ui+fi(2)ui,1 Cs
and vg = wug + fég)uK,l. The vectorv is then point- @ e
wise multiplied by the coefficient vectqg(®) and permuted e e
according toIl, obtaining a second intermediate vectdr
which is then input to a raté; memoryd time-variant RSC 2) b)
tail-biting encoder leading to a parity vectpr

Cy

Fig. 2. Example of graphs for the cycle codes: (a) associated wethp#nity-
(D . : _ check matrix of[[1) for a ratd /3, K = 5 PCCC, and (b) associated with
pi=g; Uit fi pic1 vie[0,K —1] ) the parity-check matrix of{5) a the ratg/2, K = 5 DA code.

and withp_; = px 1 The final codeword is hence given by

c = [ufp], and the code has lengltk’ symbols. The proposed | \her of vertexes with degreehaving girth58 The graph

e ol 55061 Wih e paty <heck mat g (5) canbe et

n = . . .
. obtained by pruning the graph of Figl 2(a) as follows: Each

accumulate (DA) code. A lower rate= 1/3 can be obtained ! y pruning grap (@) W

edge connecting a vertex of the lower pentagon to a vertex of
ffie upper pentagon is eliminated, and the correspondingrupp

vectorv as well, i.e. by setting = [u|p|v]. Note that, while .4 |qwer vertexes are merged together. The obtained graph

for the ratel/3 code the parity-check matrix is still given by. h in Fi
(D) (with proper columns permutation), for the rdt& code 1S Shown In |gDZ(bﬁ

ded paritv-check . here e f In general, the connections between the upper and the lower
(@) represents an extgn ed parity-check matrix, where Icycles in the ratd /3 graph define the interleaver, which may

Be selected according to rules for increasing the integleav
spread f{urbo code perspectiye or may be generated by
filling the sub-matrixII of H according to girth optimization

. . T . techniques KDPC code perspectiyeThe first approach has

v i=vII =u [(P(Q)) H] . the inherent advantage of allowing code constructions for
various block sizes on-the-fly by adopting efficient highesul

The parity-check matrix is hence given by the parity-chedkterleaver construction algorithmis [31], [32].
matrix of a non-binary IRA codé [20][[26]

check matrix for the ratd /2 DA code can be obtained by
noting thatv” = P®u” and

IIl. MAP D ECODING OF THECOMPONENTCODES

H = {ﬂTP(Q)’P(l)}- ) As for the code construction, both the LDPC and the

) ) ) ) ) turbo code perspectives can be used to perform iterative
This parity-check matrix form is a particular case of the Conyecading. For the former case we refer to the vast literature

struction of [27], with left and right sub-matrices chamatted o fast Fourier transform (FFT)-based BP decoders for non-
by a single cycle involving all their associated variableles. binary LDPC codes (see for instan¢e][33]), giving decoding
algorithms with complexity that scales é¥qlog, q). For the
latter, the conventional turbo decoding algorithm basethen
BCJR algorithm[[34] applied on the trellis of the component
The codes specified by the parity-check matrice$Tof (1) anddes can be simplified by FFTs as well, resulting in a
(@) can be conveniently described as cycle (circuit) cod8% [ complexity growthO(qlog, q) as for the LDPC BP decoder
[27], [28], as the corresponding Tanner graphs have a regutase [[15]. We shall focus next on the symbol maximum a-
VN degreed, = 2. A graph representation for cycle codegosteriori (MAP) decoding for the component convolutional
can be obtained by associating a vertex with each paritgicheodes. We discuss the case of a time-variant memdRBC
equation and an edge with each codeword symbol. Considergwgle, the non-recursive convolutional code case derivatio
the parity-check matrix({1), the graph is hence given3®y being similar. Each of the two RSC encoders of the proposed

edges connectingK vertexes. .
: . . - Note that the girth of the Tanner graph associated with aecgolde is
An example IS prowded In FIdJ:l 2. The graph of a rat/éi, twice the girth of the cycle code graph, i.e. for the code Basethe Petersen

K =5 code (Fig[2(a)) is obtained by connecting two lengthyaph the Tanner graph girth is= 2 - 5 = 10.
5 cycles according to the interleaver generated by the velati °ltis worth to note that by construction the graph of the cyoke code is
prime rulew(j) _ (a +p- j) mod K with a = 1 andp -9 always given by two nested Hamiltonian cycles associatel tle right and

. e left sub-matrices of the parity-check matiix (5).
The graph of Fig.2(a) turns to be the Petersen griaph [28], [28]7 Additionally, the coefficients o), £(1), g(® £(2) may be optimized

and hence is &3, 5)-cage[29], [30], i.e. a graph with minimal according to the technique introduced i [3].

C. Cycle Graph Representation and Interleaver Design



PCCC scheme is in fact a time-variant memargncoder Note that [B) involves a convolution sineé s are related by
(i.e., the current output symbol depends only on the current= g;u; + f;s’. Similarly, for (9) s, s’ are related bys’ =
input symbol and on the past output symbol). The time variagt; w1 + fi+1s. We introduce the p.m.f. vectors
nature of the component codes is due to the multiplications 9

. ) oo = [i(0), ¢ () (@), i (@172)]
by the coefficientg;, f; (we omitted the superscript indicating e ’

the branch index). The RSC encoder is fully specified by the = [8:(0), B (1), Bi(), ..., Bi (a772)]
relationssS; = g;u; + f;.5;—1 andp; = S;, where the state of [7;” 0),~ Vla), ..., (aq—2)} ,
the encoder is defined by the value stored at the input of the hu (0),~ AB(@), A (O[q—Q)}

delay unit. The number of states in the code trellis corredpo
to the field orden.

We first consider the case where the component RSC coggfere in the last expression (with a slight abuse of the
are terminated. The a posteriori probability mass functigibtation) we re-defined®(w) = Pr{u; = w|y®}. In vector
(p.m.f.) vector for the symbal; given the channel outpgtis form, we can re-arrang&l(8[1(9) into
denoted byL¥ = [L¥(0), L¥(1), L¥(), ..., L¥ (@92)] with ) .

L¥w] = Pr{u; = w|y}, w € F,. The channel observation vi =7 - [mr (pim1) ® g, (7))

is given byy = (yo,y1,...,yx) Where each element can be Bi = ﬁ]?iil {[Bivr -] ®mg, (W)} (10)
further splitasy; = (v, y?), y* (y) being the channel output
corresponding tas; (p;)l3 We further introduce the notation

Yiig) = (Yl7y1+17"'7YJ) (0<i<j<K).

The computation of the a posteriori probability for t
symbolwu; can be accomplished by evaluating

In (I0), 7, (Q) denotes the permutation, induced by the multi-
plication by a scalau of a random variable with p.m.f. vector
he Q, on Q, while 7,1 (Q) denotes the inverse permutation (or
equwalently the permutation induced by the multiplicatloy
a~'). Furthermore!-" denotes the (point-wise) multiplication

Liw)=Pr{u;=wly} = > @i 1(s)vls,s)Bi(s). of two vectors, and®’ denotes the convolution of the two
vectors. The a posteriori p.m.f. vector @f given the channel
it = outputy is finally given (up to a normalization factor) by

The operatofl (s, s’) returns the label associated with for _
the trepllis edge (conn)ecting the statat timei — 1 to the state Ly =, {ms, (vi-1) ® [Bi - 771} (11)
s at timei, p;_1(s) denotes the forward metric for the state u

s attimei — 1, 8;(s") is the backward metric for the staté
at timei, and~;(s, s’) is the transition metric between state
s, s’ at time:. We normalize the metrics such that

where p¥ represents the extrinsic information(w) =
sPr{uZ = w|y\y}}. The message update can be easily followed
on the normal factor graph of a section of the trellis prodiae

0i(s) = Pr{S; = slyjo.q}, ©o(0) =1, Fig.[38 The complexity is here dorﬂnated by the convolution
2
(s) = Pr{S; = slyp; 0) =1, operations, and thus scales@§;?) 1] The algorithm can be
b (f) B r{S S_|y[ ;1 Ij}, Bxc(0) simplified by applying the (fast) Fourier transform (FT)[33
%ils,s') = Pr{Si1 = 5,58 = 'lyi} [36], [37] for finite Abelian groups on the vectors involved i
=Pr{u; = w,p; = v|y}", y }, (6) the convolutions. Assuming extension fields with charastier

with w = T(s,s'), v = s'. Assuming independent outputs?: the FT reduces to the Walsh-Hadamard transform [33], i.e.
y¥,4?, (@) can be factored into given a functionz(w), w € Egm, |ts_Four|er (Walsh-Hadamard)
transformX (v), v € Fom, is obtained as
7i(s,8") = Pr{u; = wly'} Pr{p; = v|y] ()
( ) { | } { | } X(l/) _ Z x(w)(_1)<g,z>
vit(s,8") Vi P(s) w€EFom

where ~f(s") depends ons’ only sincep; = S;. The for- <, » > being the inner product ovét, between the length-
ward/backward metrics can be computed recurswely as i binary vector representations v of w,v. By employing

Z% L()vils, s) Z% o (s, $)77 (s) FFTs, the decoding complexity is reduced@®q log, q).

IV. NUMERICAL RESULTS
=7(5) )il

(s ’S) ® Simulation results on the AWGN channel for codesRgg
are presented next. In all the simulations, we adopted the BP
Zﬁwl yis1(s, s) decoding over the Tanner graph of the codes with a maximum
number of iterations set td,,,., = 200. Binary antipodal
_ Zﬁ " () moc_zlulation has been considered. _
(87 (58 N7 (5 Fig. [4 shows the performance for a rate-compatible code
family with input block sizek = 128 bits. The mother code is
= Z Biv1(s %+1 )} %y_’_l(s, 5/)- )

SWhen decoding on tail-biting trellises, the recursion fue forward metric
calculation shall be circularly extended [35].
8The vectory = (yo,y1,...,yK) is composed byK + 1 elements to 10Recall thaty is the field order, and hence the length of the vectors ingblve
account for the additional input/output symbol requiredthe termination.  in the convolutions of{{1I0).



pi according to[[3R]. Additionally, the raté/3 and1/2 k = 40
bits codes associated with the cycle graphs of Elg. 2 have
. W - been simulated. The rate/3 PCCCs perform withird.5 dB
D . - DS, from the SPB all over the block sizes (with the exception of
Sic1 e 1 + I ~ Si k= 40). For the largestK = 1024) block length, the gap is
i1l eils’] reduced t0).3 dB. For the ratel /2, the gap w.r.t. the SPB is
slightly larger (0.2 dB more). The gain of the proposed non-
X g; binary turbo codes over the binary LDPC codes is remarkable
(~ 1 dB or more)for the shortest block sizes. For the largest
T (k = 1024) block length, the gain is reduced to 0.3 dB.
L The performance of two short codes from|[39] are provided
b as well. The first is a(128,64,22) extended BCH code
under maximum likelihood (ML) decoding, which achieves
Fig. 3. Normal factor graph for a trellis section. CER = 10" at £, /Ny = 3.03 dB, only ~ 0.3 dB away from
the SPB with a coding gain of 0.4 dB over the(128,64)
DA code. We shall consider in the comparison that the DA
a(384,128) code, whose parity-check matrix coefficients haveode does not perform a complete ML decoding, and hence
been selected according to the method[df [3]. A lower cogeovides an error detection mechanism that may be required b
rate 1/6 has been obtained by repeating each code symlooitical application, e.g. telecommand in the up-link ofsp
twice, and by multiplying the replicas by random elementommunication systemsi[9]. The second code {$@, 270)
in F3., as for the multiplicative repeat (MR) approach oferminated binary convolutional code with constraint léng
[21]. Higher code rates have been obtained in two differef. This code performs close to tligl2, 256) DA code, which
ways, i.e. (i) according to the parallel concatenation sede however has a slightly higher code rate5(vs. 0.45) and a
by periodically-puncturing parity symbols at the outputioé lower block size £56 vs 270 information bits).
two accumulators and (i) by puncturing the VNs of type
(thus, a rate /2 DA code is obtained, and further higher rate '
can be achieved by puncturing symbols periodically at tl
output of the accumulator in the DA encoder). In both case 1
symbol-wise puncturing pattern (SPP) has been applied. 1
interleaver has been designed according to a circulaniovers
of the progressive edge growth (PEG) algorithm [38]. The re
1/3 mother code does not show floors downGBR = 10~?,
performing within0.2 dB from the RCB[[10]. Similar results §10"
are obtained by the lowest-rate code. For the two schen
with rate 1/2, the performance is still withird.3 from the |
RCB down toCER = 104, with a slight advantage for the
DA construction. The advantage is more visible for the ra
2/3 case. Here, the PCCC performance suffers for a la
of steepness, which is not due to a low minimum distan
(low-weight error patterns have not been detected), but tc 1° : L n
slow decoding convergence associable with the large @nact. Eu/No [dB]
of punctured symbols. For the DA case, the raj@ code
parity-check matrix of{(b) has been used for the Tanner gragtip. 4. Performance for a rate-compatible family of turbale® onfFas6,
and hence the higher rates have been obtained with a redueed!28 bits.
fraction of punctured symbols. The same plot provides the
performance of thg384,128) double-binary turbo code of
the DVB-RCS standard [7]. ThE.ss PCCC outperforms the V. CONCLUSIONS
double-binary one by more that7 dB at CER = 10—, Two novel classes of turbo codes constructed over high-
Fig. (8 depicts the minimun¥,/N, required to achieve order finite fields have been presented. The codes are derived
CER = 10~* for several ratel/3 parallel concatenatedfrom a protograph sub-ensemble of thé, = 2,d. = 3)
convolutional codes and ratie’2 DA codes, with block sizes regular LDPC ensemble. One of the proposed construction is
spanning fronk = 40 bits tok = 1024 bits. The performances based on the serial concatenation of a non-binary, timiesvar
of rate 1/2 binary irregular protograph-based LDPC andifferentiator and a of non-binary, time-variant accunaoia
accumulate repeat accumulate (ARA) codes frbim [5], [9] aend provides a highly-structured flexible encoding scheone f
provided too. The chart is completed by the SPBI [11] fdi, = 2,d. = 4) LDPC ensembles. Symbol MAP decoding
the continuous-input AWGN channel. The DA codes hawef the component codes has been illustrated, together tgith i
been again obtained by puncturing thig-type nodes of the FFT-based simplification. The proposed codes allow efficien
PCCC graph. The interleavers have been generated on thedtigoding either as LDPC or as turbo codes. Remarkable

——RCB (334,128)

-#(384,128) Double-Binary Turbo Code
-0- (384,128) Fy56 Turbo Code

——RCB (256,128)

-0- (256,128) F56 Turbo Code (SPP)
—RCB (192,128)

-0- (192,128) F56 Turbo Code (SPP)
—RCB (768,128)

-0~ (768,128) Fy56 Turbo Code (MR)

- - - Fy5¢ Differentiate-Accumulate




Eb/NO [dB]

o

. . - -SPB, R=1/2
--SPB, R=1/3
#* R=1/2 Binary Protograph LDPC Codes
o DA, R=1/2
o PCC, R=1/3

(600,270)-CC

/ (2,1,30)

e

k [bits]

Fig. 5. RequiredZ; /Ny for achievingCER = 10~ for various codes with
rates1/2,1/3, compared with the corresponding SPBs.
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gains ¢ 1 dB) w.rt. binary LDPC/turbo codes have been
demonstrated in the moderate-short block regimes.
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