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‡EDF Chair on System Sciences and the Energy Challenge, Centrale Paris-Supélec, France

{jakob.hoydis, romain.couillet, merouane.debbah}@supelec.fr

Abstract—We consider a general wireless channel model for
different types of code-division multiple access (CDMA) and
space-division multiple-access (SDMA) systems with isometric
random signature/precoding matrices over frequency-selective
and flat fading channels. We derive deterministic approximations
of the Stieltjes transform, the mutual information and the
signal-to-interference-plus-noise ratio (SINR) at the output of
the minimum-mean-square-error (MMSE) receiver and provide
a simple fixed-point algorithm for their computation, which
is proved to converge. The deterministic approximations are
asymptotically tight, almost surely, but shown by simulations
to be very accurate for even small system dimensions. Our
analysis requires neither arguments from free probability theory
nor the asymptotic freeness or the convergence of the spectral
distribution of the involved matrices. The results presented in
this work are, therefore, also a novel contribution to the field of
random matrix theory and might be useful to further applications
involving isometric random matrices.

I. INTRODUCTION

Consider the following time-discrete wireless channel

y =

K∑

k=1

HkWkP
1
2

k xk + n (1)

where

(i) y ∈ C
N

is the channel output vector.

(ii) Hk ∈ C
N×N

, k = 1, . . . ,K, are non-random complex

channel matrices.

(iii) Wk ∈ C
N×nk , k = 1, . . . ,K, are complex signa-

ture/precoding matrices which contain each nk ≤ N
orthonormal columns of independent N × N Haar-

distributed random unitary matrices.

(iv) Pk ∈ R
nk×nk

+ , k = 1, . . . ,K, are non-random nonnega-

tive diagonal matrices.

(v) xk ∈ C
nk , k = 1, . . . ,K, are random transmit vectors,

having independent and identically distributed (i.i.d.)

elements with zero mean and unit variance.

(vi) n ∈ C
N

is a noise vector having i.i.d. circular-symmetric

complex Gaussian entries with zero mean and variance

ρ.

Possible applications of this channel model arise in the study

of direct-sequence (DS) or multi-carrier (MC) code-division

multiple-access (CDMA) systems with isometric signatures

over frequency-selective fading channels or space-division

multiple-access (SDMA) systems with isometric precoding

matrices over flat-fading channels. More precisely, for DS-

CDMA systems, the Hk are either Toeplitz or circular matrices

(if a cyclic prefix is used) constructed from the channel im-

pulse response; for MC-CDMA, the matrices Hk are diagonal

and represent the channel frequency response on each sub-

carrier; for flat fading SDMA systems, the matrices Hk can

be of arbitrary form and their elements represent the complex

channel gains between the transmit and receive antennas. In

all cases, the diagonal entries of the matrices Pk determine

the transmit power of each signature (CDMA) or transmit

stream (SDMA). Specific scenarios to which the channel

model applies are:

• single/multi-cell uplink DS/MC-CDMA with multiple

transmit signatures per user

• single/multi-cell downlink DS/MC-CDMA with sin-

gle/multiple transmit signatures per user

• single/multi-cell uplink SDMA with unitary precoding

codebooks and multiple streams per user

• single/multi-cell downlink SDMA with unitary precoding

codebooks and single/multiple streams per user.

The large system analysis of random i.i.d. and random

orthogonal precoded systems with optimal and sub-optimal

linear receivers has been the subject of numerous publications.

The asymptotic performance of minimum-mean-square-error

(MMSE) receivers for the channel model (1) for the case

K = 1,P = In1
and H diagonal with i.i.d. elements has

been studied in [1] relying on results from free probability

theory. This result was extended to frequency-selective fading

channels and sub-optimal receivers in [2]. The case of i.i.d.

and isometric MC-CDMA over Rayleigh fading channels

with multiple signatures per user terminal, i.e., K ≥ 1
and Hk diagonal with i.i.d. complex Gaussian entries, was

considered in [3], where approximate solutions of the signal-

to-noise-plus-interference-ratio (SINR) at the output of the

MMSE receiver were provided. Asymptotic expressions for

the spectral efficiency of the same model were then derived

in [4]. DS-CDMA over flat-fading channels, i.e., K ≥ 1,

nk = N and Hk = IN for all k‘, was studied in [5], where

the authors derive deterministic equivalents of the Shannon-

and η-transform based on the asymptotic freeness [6] of

the matrices WkPkW
H

k . Moreover, a sum-rate maximizing

power-allocation algorithm was proposed. Finally, a different



approach via incremental matrix expansion [7] led to the exact

characterization of the asymptotic SINR of the MMSE receiver

for the general channel model (1). However, the previously

mentioned works share the underlying assumption that the

spectral distributions of the matrices Hk and Pk converge

to some limiting distributions and/or the matrices HkH
H

k

are jointly diagonalizable.1 Moreover, the computation of the

asymptotic SINR requires the computation of rather compli-

cated implicit equations. These can be solved in most cases

by standard fixed-point algorithms but a proof of convergence

to the correct solution has not been provided yet. Moreover, a

closed-form expression for the asymptotic spectral efficiency

is missing, although an approximate solution which requires

a numerical integration was presented in [4].

Recently, unitary precoders gained also significant interest

for spatial multiplexing systems [8] and are now proposed

as limited feedback beamforming solutions in future wire-

less standards [9]. Thus, the performance evaluation of such

systems is compulsory and a field of active research [10].

However, little related analytical work based on large random

matrix theory has been published so far and the results

presented in this paper might stimulate further research in this

direction.

Before we summarize the main results of this work, we need

the following definitions. Let B be the N×N complex matrix

B =

K∑

k=1

HkWkPkW
H

kH
H

k

and, for z ∈ C \R+, denote by m(z) the Stieltjes transform

[6] of the empirical spectral distribution (e.s.d.) F of B, given

as

m(z) =
1

N
tr (B− zIN )

−1
=

∫
1

λ− z
dF (λ) .

Moreover, I(ρ) denotes the normalized mutual information2

of the channel (1) assuming complex Gaussian input vectors

xk, given by [11]

I(ρ) =
1

N
log det

(

IN +
1

ρ

∑K

k=1
HkWkPkW

H

kH
H

k

)

(2)

expressed in nats/s. We further denote by γkj the SINR at the

output of the linear MMSE receiver for the jth component of

transmit vector xk, which reads [12]

γkj = pkjw
H

kjH
H

k

(
B[kj] + ρIN

)−1
Hkwkj (3)

where B[kj] = B−pkjHkwkjw
H

kjH
H

k , pkj is the jth diagonal

entry of Pk and wkj is the jth column of Wk.

The contribution of this paper is twofold. As a contribution

to the field of random matrix theory, we provide a deterministic

equivalent m(z) to m(z), such that, when N and all nk grow

1That is, there exists a unitary matrix V such that VHkH
H

k
V

H is diagonal
for all k.

2This expression corresponds to the mutual information per chip for CDMA
systems and to the mutual information per receive-antenna in SDMA systems.

large m(z)−m(z)
a.s.−−→ 0.3 Denote F the distribution function

with Stieltjes transform m(z). The previous result establishes

also that, asymptotically, F −F ⇒ 0, almost surely. Although

deterministic equivalents of Stieltjes transforms are by now

more or less standard and have been developed for rather

involved random matrix models [13], [14], results for the case

of Haar distributed matrices are still an exception. In particular,

most results on Haar matrices are based on the assumption

of asymptotic freeness (see [6, Chapter 3]) of the concerned

matrices, a requirement which is rarely met for the matrices

of our model. The approach taken in this work is, thus, novel

as it does not rely on free probability theory and we do not

require any of the matrices in (1) to be asymptotically free.

As a contribution to the field of wireless communications,

we derive deterministic approximations I(ρ) and γkj of I(ρ)
and γjk, respectively, which are asymptotically accurate, al-

most surely. In contrast to existing works, (i) our deterministic

equivalents are easy to compute as we provide a simple

fixed-point algorithm which is proved to converge, (ii) the

deterministic approximation I(ρ) of I(ρ) is given in closed

form and does not require any numerical integration, (iii) we

do not require that the spectral distributions of the matrices

Hk and Pk converge or that the matrices HkH
H

k are jointly

diagonalizable.

II. MAIN RESULTS

In this section, we present the main results of the paper.

We first need to introduce some technical conditions and

definitions:

The notation N → ∞ will denote in the sequel that N and

nk, 1 ≤ k ≤ K, grow large with ratios ck = nk

N , such that

0 ≤ ck ≤ 1, for all N,nk. Denote by ‖Hk‖ the spectral norm

of the matrix Hk. We assume that for all N,nk, there exist

non negative real numbers hmax and pmax, such that

sup
k

‖Hk‖ ≤ hmax, sup
k

‖Pk‖ ≤ pmax . (4)

Denote by C+ = {z ∈ C : Im(z) > 0}, and by S the class

of functions f analytic over C \ R+, such that for z ∈ C+,

f(z) ∈ C+ and zf(z) ∈ C+, and limy→∞ −iyf(iy) = 1,

where i =
√
−1. Such functions are known to be Stieltjes

transforms [6] of probability measures over R+. We are now

in position to state our main results:

Theorem 1 (Fundamental equations): Assume that the con-

ditions in (4) hold and define the matrices Rk = HkH
H

k , 1 ≤
k ≤ K. Then, for z ∈ C \ R+, the following system of K
implicit equations in ēk(z), 1 ≤ k ≤ K,

ēk(z) =
1

N
trPk (ek(z)Pk + [1− ek(z)ēk(z)]Ink

)
−1

ek(z) =
1

N
trRk

(
∑K

j=1
ēj(z)Rj − zIN

)−1

3We use
a.s.
−−→ and ⇒ to denote almost sure convergence and convergence

in distribution, respectively.



has a unique solution (ē1(z), . . . , ēK(z)) ∈ SK .

Moreover, for z < 0, the ek(z) and ēk(z) can be easily

computed by the fixed-point Algorithm 1.

Algorithm 1 Solve fundamental equations in ek(z), ēk(z)

1: Let ǫ > 0, t = 0 and e
(0)
k = 1, k = 1, . . . ,K

2: repeat

3: Let n = 0 and ē
(0)
k = 0, k = 1, . . . ,K

4: repeat

5: n = n+ 1

6: ē
(n)
k = 1

N trPk

(

e
(t)
k Pk + [1− e

(t)
k ē

(n−1)
k ]Ink

)−1

7: until maxk |ē(n)k − ē
(n−1)
k | ≤ ǫ

8: t = t+ 1

9: e
(t)
k = 1

N trRk

(
∑K

j=1 ē
(n)
j Rj − zIN

)−1

10: until maxk |e(t)k − e
(t−1)
k | ≤ ǫ

Proof: The proof is postponed to the appendix.

Theorem 2 (Deterministic equivalents): Assume that the

conditions in (4) hold, define the matrices Rk = HkH
H

k , 1 ≤
k ≤ K, and let ck = nk

N , 1 ≤ k ≤ K.

(i) Let

m(z) =
1

N
tr

(
∑K

k=1
ēk(z)Rk − zIN

)−1

where the ēk(z) are given by Theorem 1. Then, for z < 0,

the following holds true

m(z)−m(z)
a.s.−−−−→

N→∞
0 .

Moreover,

F − F ⇒ 0

almost surely.

(ii) Let ρ > 0 and denote ek = ek(−ρ) and ēk = ēk(−ρ).
Consider the quantity:

I(ρ) =
1

N
log det

(

IN +
1

ρ

∑K

k=1
ēkRk

)

+
1

N

∑K

k=1
log det ([1− ekēk]Ink

+ ekPk)

+
∑K

k=1
(1− ck) log(1− ekēk)

where the ek and ēk are given by Theorem 1. Then, the

following holds true

I(ρ)− I(ρ)
a.s.−−−−→

N→∞
0 .

(iii) Let ρ > 0, and define ek = ek(−ρ) and ēk = ēk(−ρ),
given by Theorem 1. Further denote

γkj = pkj
ek

1− ēkek
.

Then,

γkj − γkj
a.s.−−−−→

N→∞
0 .

Proof: The proof is postponed to the appendix.

Fig. 1: Three cell example: BS2 decodes the n streams from

the UT in its own cell while treating the other signals as

interference.

III. NUMERICAL RESULTS

We will now demonstrate the accuracy of the deterministic

approximations by providing some simulation results. Con-

sider the three-cell uplink channel from K = 3 user terminals

(UTs) to three base stations (BSs) as shown in Fig. 1. We

focus on the center cell BS2 and assume that the BSs only

decode the signals received from the UT in their own cell.

The received signal at BS2 reads

y = H2W2x2 + αH1W1x1 + αH3W3x3 + n
︸ ︷︷ ︸

△
= z

where 0 ≤ α ≤ 1 is an inter-cell interference factor and the

vector z ∈ C
N

combines the inter-cell interference and the

thermal noise. The covariance matrix Z ∈ R
N×N
+ of z is

given as

Z = E

[
zzH

]
= α2

∑3

i=1, i 6=2
HiWiPiW

H

i H
H

i + ρIN .

We assume a DS-CDMA system with cyclic prefix so that the

channel matrices Hk ∈ C
N×N

have a circular structure as
given by4

Hk =

































hk,1 0 · · · 0 hk,L · · · hk,2

...
. . .

. . .
. . .

. . .
...

hk,L

. . .
. . .

. . . hk,L

0
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 hk,L · · · hk,1

































where L ≤ N is the delay spread and the channel taps

hk,j ∼ CN (0, 1) are i.i.d. over k, j. For simplicity, we further

assume that each UT uses nk = n different transmit signatures

to which it assigns equal power, i.e., Pk = P
n In. Assuming

Gaussian signaling, the achievable sum-rate of the center cell

I(ρ) is given by

I(ρ) =
1

N
log det

(

IN +
P

n
Z− 1

2H2W2W
H

2H2Z
− 1

2

)

=
1

N
log det

(
Z

ρ
+

P

ρn
H2W2W

H

2H2

)

− 1

N
log det

Z

ρ
.

4We have chosen this particular structure for comparison purposes with [7].
Note that the matrices HkH

H

k
are jointly diagonalizable by a Fourier matrix.

In principle, our result holds for any other choice of Hk .
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Fig. 2: Mutual Information I(ρ) versus SNR for N = 32 and

different numbers of transmit signatures n.

Since both terms in the difference above are of the form

(2), we can apply Theorem 2 (ii) to each term separately to

compute a deterministic equivalent approximation of I(ρ). An

approximation of the SINR at the output of the MMSE receiver

for the jth entry of x2 (as given by (3)) can be computed

directly by Theorem 2 (iii). In the sequel, we assume P = 1,

α = 0.5, N = 32, L = 8 and define SNR = 1/ρ. We consider

a single random realization of the matrices Hk and Wk.

Fig. 2 depicts I(ρ) and the deterministic equivalent I(ρ)
versus SNR for different values of n = {1, 4, 8, 16, 32}. We

observe a very good fit between both results over the full range

of SNR and n. This validates the deterministic approximation

for systems of even small dimensions.

In Fig. 3, we compare the SINR γ21 against its deter-

ministic approximation γ21 as a function of SNR for n =
{1, 4, 8, 16, 32}. Similar to the previous observation, the de-

terministic equivalent provides an accurate approximation for

all values of SNR and n. In order to further verify our results,

we have compared them against the expressions derived in

[7, Theorem 1]. Both approximations, although not formally

identical, turned out to yield almost identical results. However,

we need to remark that there is no explicit algorithm provided

in [7] to find a solution to the set of implicit equations.

In several cases, the classical fixed-point algorithm did not

converge to the correct result. Moreover, the result is not

proved for non co-diagonalizable matrices HkH
H

k .

IV. CONCLUSION

We have studied a class of wireless communication channels

with random unitary signature/precoding matrices which can

be used to model different types of CDMA and SDMA

systems over frequency-selective and flat fading channels. We

have provided deterministic approximations of the Stieltjes

transform, the mutual information and the SINR at the output

of the MMSE receiver, which are asymptotically accurate,

almost surely. To compute these approximations, we have
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Fig. 3: SINR γ21 at the output of the MMSE receiver for for

N = 32 and different numbers of transmit signatures n.

derived a simple fixed-point algorithm and proved its con-

vergence to the correct solution. Our simulations verify the

accuracy of the approximations for systems of even small

dimensions. Since our analysis is not based on results from

free probability theory and we do not require any of the

involved matrices to be asymptotically free, our work is also

a novel contribution to the field of random matrix theory.

We also believe that the derived expressions will find useful

applications to the study of future SDMA systems which are

foreseen to apply unitary precoding codebooks.

APPENDIX

Sketch of proof of Theorem 1 and 2 : Due to space

limitations, we only give a sketch of proof for the case

lim supk nk/N < 1. The case lim supk nk/N = 1 is provided

together with the full proof in [15].

We wish to prove that there exists a matrix F =
∑K

k=1 f̄kRk, such that for all nonnegative A with ‖A‖ < ∞
and z < 0,

1

N
trA (B− zIN )

−1 − 1

N
trA (F− zIN )

−1 a.s.−−−−→
N→∞

0 . (5)

At the heart of the derivation is the following trace lemma for

Haar distributed matrices:

Lemma 1 ([1]): Let W be n < N columns of a N × N
Haar matrix and suppose w is a column of W. Let CN be a

N ×N random matrix, being a function of all columns of W

except w, and assume supN ‖CN‖ < ∞. Then,

wHCNw − 1

N − n
tr
(
IN −WWH +wwH

)
CN

a.s.−−−−→
N→∞

0 .

Contrary to classical deterministic equivalent approaches

for random matrices with i.i.d. entries, finding a

deterministic equivalent for 1
N trA (B− zIN )

−1
is

not straightforward. This is because terms of the form
1

N−nk
tr
(
I−WkW

H

k

)
A1/2 (B− zI)

−1
A1/2 will naturally



appear in the derivation (as a consequence of Lemma 1) and

need to be controlled. We proceed therefore as follows:

(i) Defining the random variables (1 ≤ k ≤ K)

δk =
1

N − nk
tr
(
IN −WkW

H

k

)
HH

k (B− zIN )
−1

Hk

fk =
1

N
trRk (B− zIN )

−1

and the matrix G =
∑K

k=1 ḡkRk, we prove that

fk − 1

N
trRk

(
∑K

l=1
ḡlRl − zIN

)−1
a.s.−−−−→

N→∞
0 (6)

where ḡk = 1

1− 1
N

∑nk
l=1

plkδk
1+plkδk

1
N

∑nk

l=1
plk

1+plkδk
.

(ii) Since the expression of ḡk is not convenient to handle,

we show as a next step that

ḡk − 1

N
trPk (fkPk + [1− fkḡk]Ink

)
−1 a.s.−−−−→

N→∞
0 . (7)

(iii) The relations (6) and (7) may be already sufficient

to infer the deterministic equivalent, but can be made

more attractive for further considerations. We therefore

introduce the matrix F =
∑K

k=1 f̄kRk and prove that

fk − 1

N
trRk

(
∑K

l=1
f̄lRl − zIN

)−1
a.s.−−−−→

N→∞
0

f̄k − 1

N
trPk

(
fkPk + [1− fkf̄k]Ink

)−1
= 0

where f̄k = limt→∞ x(t) and x(t) is given by the fixed-

point algorithm

x(t) =
1

N
trPk

(

fkPk + [1− fkx
(t−1)]Ink

)−1

with x(0) ∈ [0, ck/fk). This means that f̄k is uniquely de-

termined by fk. One can also verify that x(t) ∈ [0, ck/fk)
for all t, and, thus, also f̄k ∈ [0, ck/fk).

(iv) We then prove the existence and uniqueness of a solution

to the following set of fixed-point equations:

ek =
1

N
trRk

(
∑K

l=1
ēlRl − zIN

)−1

ēk =
1

N
trPk (ēkPk + [1− ekēk]Ink

)
−1

for all finite N , z < 0 and ēk ∈ [0, ck/ek). While

the existence of a solution follows from standard argu-

ments (e.g. [14, Appendix A, Sec. C]), the uniqueness

unfolds from a property of so-called standard functions

[16]. More precisely, we show that the vector-valued

function h = (h1, . . . , hK) with hk : (x1, . . . , xK) 7→
1
N trRk

(
∑K

l=1 x̄lRl − zIN

)−1

and x̄k being the unique

solution to

x̄k =
1

N
trPk (x̄kPk + [1− xkx̄k]Ink

)
−1

lying in [0, ck/xk), is a standard function. It follows

then from [16, Lemma 1, Theorem 1] that the fixed-

point equation in (e1, . . . , eK) has a unique solution with

positive entries and that this solution can be determined

by iteration of the standard fixed-point Algorithm 1. This

proves Theorem 1.

(v) The last step is to show that the unique solution

(e1, . . . , eN ) as provided by Theorem 1 satisfies

ek − fk
a.s.−−−−→

N→∞
0 .

This is done by standard arguments inspired by the proof

of [13, Lemma 6.6]. Using the last result and the fact that

ek−fk
a.s.−−→ 0 implies ēk− f̄k

a.s.−−→ 0, it is straightforward

to show (5). Choosing A = IN in (5) is sufficient to

prove Theorem 2 (i). The proofs of Theorem 2 (ii) and

(iii) do not require any novel arguments and are given in

[15].
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