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Abstract—Transmission scheduling to improve the capacity in
wireless mesh networks (WMNs) is challenging. One promising
candidate solution is backpressure scheduling, which was proved
to provide throughput optimality and queue stability in theory.
Additionally, several recent practical systems that implement
approximations of backpressure scheduling show performance
benefits in WMNs based on IEEE 802.11, which is the most widely
adopted MAC protocol. However, a detailed analysis of the queue
stability is still missing for practical systems. In this paper, we
experimentally show that applying backpressure scheduling over
IEEE 802.11-based WMNs presents significant queue instability
due to the delayed interaction between MAC and network
layers. To understand how and when queue instability occurs,
we present weighted backpressure scheduling (WBS), which uses
two additional weight factors β and γ for the queue lengths of
a node and its next-hop node when computing the backpres-
sure value. By using WBS, we experimentally investigate the
interactions between the components of backpressure scheduling
implementations, i.e., packet scheduling and link scheduling, and
show that, usually, β > γ leads to queue stabilization.

I. INTRODUCTION

IEEE 802.11-based wireless mesh networks (WMNs) are
becoming popular since they can be flexibly deployed to
expand Internet access coverage. Despite their benefits, WMNs
require solving several networking challenges to operate in full
capacity [1]. To improve bandwidth utilization, there have been
numerous scheduling proposals. One of the most well-known
algorithms is backpressure scheduling [2], which computes a
backpressure value as the queue differential of a node and
its next-hop node for every flow, and uses these values to
determine the central scheduling sequence. In theory, it has
been proved that backpressure scheduling can stabilize the
network queues and hence, provide optimum throughput [2].
However, these results are obtained under the assumption
of a synchronized time-slotted MAC protocol, and a central
controller that computes and distributes a schedule based on
the global per-flow queue and link information. Unfortunately,
these assumptions are far from the operation of typical IEEE
802.11-based WMNs.

Realizing backpressure scheduling in practical systems re-
quires approximating the centralized solution into a distributed
solution that handles packet and link scheduling separately
at different layers while achieving coherent operation [3]–[5].
Due to this challenge, there has been limited work on back-
pressure scheduling in practice. One example, Horizon [4],
approximates backpressure scheduling by directly implement-

ing its packet scheduling part. But for link scheduling, it
assumes that the underlying IEEE 802.11 MAC informs a
node whenever it gets an opportunity to transmit. Applied
to multi-path routing, Horizon achieves better fairness and
throughput performance compared to pure multi-path routing.
Another example is DiffQ [3], which uses IEEE 802.11e [6]
for link scheduling. DiffQ shows better fairness among several
transport-layer protocols (e.g., TCP). These examples show
the potential of approximating backpressure scheduling in
practice. However, to the best of our knowledge, experimental
analysis has not been made on whether the practically approx-
imated packet and link scheduling can stabilize the queues
as the theoretically-proven backpressure scheduling does. In
this paper, we show that the delayed interaction between link
(i.e., IEEE 802.11 MAC layer) and packet (i.e., network layer)
scheduling results in queue instability1. This queue instability
leads to large delay jitter, and in the worst case can lead to
network capacity degradation.

To investigate the effect of different queues (i.e., the node’s
and the next-hop node’s queues) on the instability, we present
weighted backpressure scheduling (WBS) that extends the
parameter space of original backpressure scheduling. WBS
introduces two weight factors, β and γ, for the queue dif-
ferential computation, where β is the weight of the node’s
own queue length and γ is the weight of the next-hop node’s
queue length. By using WBS, it becomes trivial to represent
the original backpressure scheduling (i.e., β = γ) as well as
other schedulings, for instance, [5], [7]. Based on extensive
experiments in the BOWL indoor WMN testbed2 [8], we show
that the queue instability typically occurs when β < γ. Also,
in the case of β = γ, we identify the link conditions under
which the queue instability occurs (e.g., when the link quality
of next-hop node is worse than the link quality of previous-
hop node). Thus, to avoid the queue instability, our results
suggest using β > γ, i.e., giving a higher weight to a node’s
own queue size.

The rest of this paper is organized as follows. In Section II,
we explain the basics of theoretical backpressure scheduling.
In Section III, we highlight the related work and present the

1Adding more resources (i.e., increasing the buffer space) can be considered
as a possible solution to the problem but as long as the burst size cannot be
bounded it would be hard to guess how much resource is necessary to add to
each node.

2http://www.bowl.tu-berlin.de/menue/home/.



motivation for this paper, especially the challenges emerging
from interactions among backpressure scheduling components
in a practical system. In Section IV, we present WBS and
describe our system model. In Section V, we present our
experimental study on the queue stability when using WBS.
Finally, we conclude in Section VI.

II. BACKPRESSURE SCHEDULING

This section briefly describes how backpressure scheduling
works in theory [2]. In backpressure scheduling, each node i
maintains a separate queue bf

i for each flow f . Assuming a
slotted MAC protocol, at each slot, a set of links are scheduled
to transmit concurrently by a central controller. To this end,
for each link e = (i, j), the central controller chooses the flow
that maximizes the queue differential bf

i − bf
j of nodes i and

j. We denote the backpressure value, Df
e , for a given flow f

and link e as:
Df

e = bf
i − bf

j . (1)

We denote Fe as a set of flows that pass link e. Then, the
maximum link weight among flows Fe on link e is:

We = max
f∈Fe

Df
e . (2)

The capacity µe of each wireless link e is the maximum
transmit rate at the current channel state. Each transmission
set of links defines a network capacity vector c = (µe) and the
collection of these vectors defines the network capacity region
S. Backpressure scheduling selects the link capacity vector c∗

that satisfies [9]:

c∗ = arg max
c∈S

∑
e

µeWe. (3)

For each link e = (i, j), a transmission rate of µe is
offered to flow f . The backpressure scheduling algorithm was
proved to be throughput optimal as flows send with rates
from the capacity region without allowing any queue to be
unstable [2]. Although the queue stability of backpressure
scheduling is proved in theory, the detailed queue stability
analysis of backpressure scheduling in practical IEEE 802.11
WMNs is still required due to the differences between the
backpressure scheduling in theory and in practice (e.g., in
theory synchronized time-slotted MAC layer is assumed while
practical networks use IEEE 802.11).

III. PRACTICAL CHALLENGES OF
BACKPRESSURE SCHEDULING

To realize backpressure scheduling in a practical system,
two sub-problems must be solved: packet scheduling, which
is finding a flow among the set of flows that corresponds
to Eq. (2) and link scheduling, which is finding a set of
links that corresponds to Eq. (3). The two sub-problems fall
into the different layers of networking stack (i.e., network
and MAC layers, respectively) and hence, need to be solved
independently, which is one of the main issues of realizing
backpressure scheduling in practice.

One recent example, Horizon [4], implements multi-path
routing using backpressure-based heuristics in IEEE 802.11
WMNs to achieve better fairness and load balancing. However,
Horizon uses pure IEEE 802.11 and does not perform link
scheduling based on the backpressure values. DiffQ [3], on
the other hand, handles packet scheduling similarly. But it
performs approximated link scheduling using IEEE 802.11e
EDCA (Enhanced Distributed Channel Access) and assigns
high priority to the links with high We values. From this com-
bination of the packet and the approximated link scheduling,
DiffQ shows better fairness results than variants of wireless
TCP and UDP-based protocols.

These existing implementations make several relaxations to
realize backpressure scheduling in practical systems. They rely
on IEEE 802.11 and let IEEE 802.11 spontaneously schedule
links, rather than using a centralized link scheduling on a
synchronized time-slotted MAC layer. This relaxation hinders
solution optimality but enables backpressure scheduling to be
realized in practice. The approximations using IEEE 802.11e
obtains additional benefits from utilizing the priority queues
supported by IEEE 802.11e. In IEEE 802.11e, these priority
queues prioritize access to the channel depending on traf-
fic classes (e.g., video and audio). Hence, taking advantage
of these priority queues allows better control on the link
scheduling. However, this is still a rough approximation as
IEEE 802.11e provides 4 priority queues and, therefore, We

values need to be quantized to decide which queue to place
the packets coming from the network layer. Furthermore,
priority queues in IEEE 802.11e are typically implemented in
hardware, as the actions involving them require microsecond
granularity. Even the most well-known driver in the research
community, MadWiFi [10], does not provide refined control
over these priority queues. In these circumstances, the only
way to implement backpressure scheduling is to build per-
flow queues on top of IEEE 802.11e. We refer to this imple-
mentation inevitability as 2-stage queuing and categorize the
resulting issues as follows:

• Delayed Link Schedule Activation: When the backpres-
sure algorithm schedules links, it expects that the sched-
uled links are activated immediately. However, the actual
link activation is done at the physical layer after the
backoff of IEEE 802.11 and queuing delay of the priority
queue. Moreover, monitoring the queue length of neigh-
bor nodes incurs additional delay in computing the back-
pressure values. Note that, to monitor flow queue length,
the neighbor nodes piggyback the flow queue length to
the IP header (e.g., FO - Fragmentation Offset - field
is used in our implementation). Then, by promiscuously
listening packets, the node learns the flow queue length
from the neighbor nodes.

• Coarse Link Scheduling: As the number of priority
queues is limited, the link weights We have to be quan-
tized, which consequently leads to coarse link scheduling.
This coarse link scheduling further causes the following
drift problem. Note that the per-flow queue evolution



at nodes depends on packet arrival and service rates,
and becomes stationary if the packet arrival and the
service rates are equal on average. However, in wireless
networks, the packet arrival and the service rates depend
on current network conditions such as link quality and the
number of neighboring nodes in the contention region. To
stabilize the queue evolution, the backpressure algorithm
schedules different priority queues to balance the queue
lengths. However, due to the coarse link scheduling, the
arrival and service rates might differ, which we refer to as
drift. We refer to up-drift if the queue length is increasing,
and down-drift if the queue length is decreasing.

In current research, the impact of these issues rising in
practical systems are not very well known, which serves as our
main motivation. Prior implementations focus on comparing
throughput and fairness and do not focus on the detailed
queuing dynamics. The queuing dynamics, however, is an im-
portant property for the throughput maximality that backpres-
sure scheduling originally pursues. To thoroughly analyze the
resulting queuing dynamics, we expand the parameter space
of backpressure scheduling and perform various experiments
in a testbed, which are presented in the rest of the paper.

IV. WEIGHTED BACKPRESSURE SCHEDULING

WBS extends the parameter space of the original back-
pressure scheduling algorithm so that we can analyze the
interactions of backpressure scheduling components at various
angles. Recall that Df

e=(i,j) is the queue differential between
node i and its next hop node j, for flow f (see Eq. (1)).
WBS extends this by using a weighted version of these
two parameters and calculates a weighted queue differential,
WDf

e , as:
WDf

e = (β · bf
i − γ · bf

j ). (4)

In Eq. (4), β ∈ [0,∞) and γ ∈ [0,∞) are importance factors,
where β is the importance of node i’s queue length and γ is
the importance of the queue length of next-hop, node j. The
advantages of WBS are twofold:
• Understanding the effects of 2-stage queuing on back-

pressure scheduling: By choosing β 6= γ, we can see the
impact of giving higher importance to different queues,
which is not possible with the original backpressure
scheduling. This differentiation of the importance factors
allows us to understand the impact of 2-stage queuing on
backpressure scheduling. Furthermore, we can figure out
the relationship between β and γ that results in better
queue stability.

• The ability to present various different scheduling poli-
cies: By choosing the values of β and γ appropriately
(such as β = 0 and γ = 1, or β = 1 and γ = 0),
WBS can represent the recently proposed new scheduling
policies [5] and [7], respectively. Also, γ = 0 and
β = 0 represents no scheduling that represents pure IEEE
802.11. In Section V, we discuss how these different
policies compare to each other.

V. EXPERIMENTAL ANALYSIS OF BACKPRESSURE
SCHEDULING WITH WBS

The goal of our evaluation is to investigate the queue
stability of backpressure scheduling in practice. Our results
indeed show that queue instability occurs and mainly results
from the drift effects and delayed link schedule activation: due
to coarsely quantized backpressure values, we observe drifts.
In turn, packets get queued at different priority queues at the
MAC layer (typically two adjacent queue priorities are used).
Also, link scheduling activation is not immediate due to, for
instance, backoffs. This combination of drifts and delayed link
scheduling results in queue fluctuations and leads to high jitter.

A. Experimentation Setup

We perform experiments on a subset of the BOWL indoor
testbed using a line topology [8] - we report results mainly
from experiments using a 2-hop path: Node 1-Node 2-Node 3.
We observe similar behavior with longer hops, but we present
only 2-hop results to illustrate the details of our setting and
the results more clearly.

Each node is based on an Avila GW2348-4 board from
Gateworks equipped with two Atheros-chipset WiFi cards
(Wistron CM9 with the AR5213 chipset). The modulation rate
is 6 Mbps with transmit power set to 18 dBm. The maximum
MAC-layer retransmission count is set to 8 and RTS/CTS is
off. Especially, by setting the modulation rate to the most
stable rate of 6 Mbps, we try to equalize the link capacity
µe for all links. Even though the modulation rate is 6 Mbps,
we observe an up-drift in the path from Node 1 to Node 3 and
a down-drift in the path from Node 3 to Node 1.

We implement packet scheduling using Click 1.6.0 [11] and
link scheduling using MadWiFi 0.9.4 [10], respectively. We
set the maximum per-flow queue length to 250, which is large
enough to see the detailed backpressure scheduling behavior.
We also experimented with different maximum per-flow queue
lengths and saw that they do not affect the overall behavior.
We limit the queue lengths at the MAC layer to 10 packets,
which is the minimum empirical value that avoids system per-
formance degradation due to too small priority queue sizes. We
modified MadWiFi to use 8 priority queues [3]. To quantize
WD to these 8 priority queues, we use a linear mapping. To
accurately monitor the queue length of the MadWiFi priority
queues and Click per-flow queues, we port PaPMo (Packet-
accurate Protocol Monitor) [12] to MadWiFi and Click. In the
remainder of the section, we explore the queuing dynamics
and its effect on jitter and throughput.

B. Pure Backpressure Scheduling Case (β = 1 and γ = 1)

In our experiments, we generate 5 Mbps UDP traffic from
Node 1 to Node 3, which is enough to saturate the path. By
observing the intermediate node queue length (Node 2), we
see that it fluctuates between 90 to 120 regularly (see Fig. 1).
This is an unexpected result as our scenario is a very simple
multi-hop scenario with very stable link conditions (with mild
up-drift). To understand the underlying reasons, we plot the
priority trajectory (PT) of a node. The priority trajectory at a
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Fig. 1. Queue length evolution with backpressure scheduling in the 2-hop
path. Node 2’s queue fluctuates from 90 to 120.
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Fig. 2. Priority trajectories of Node 1 and Node 2 up to 4 seconds for
original backpressure (β = 1 and γ = 1).

node shows, how the backpressure values of Eq. (4), which
are quantized at the MAC layer (“priority” values on the y-
axis and the quantization is shown with straight dotted lines
in Fig. 2), evolve over time. By looking at the PT of Node 1
and Node 2 in Fig. 2, we find two reasons for fluctuation:
an increase in priority due to up-drift and a decrease due to
delayed link schedule activation (discussed in Section III). For
instance, before t = 2.2 s, the fluctuation comes from the
up-drift. Specifically, around t = 2 s, Node 1 and Node 2
share the similar priority, and then suddenly the priority of
Node 2 increases (i.e., the queue length of Node 2 increases).
However, the information about the increase in Node 2’s queue
length is delivered to Node 1 with some delay. Hence, the
priority of Node 1 decreases with the delay around 0.1 s.
Essentially, due to this delay, Node 1 and Node 2 reside
in different quantized priorities (different regions divided by
straight dotted lines). Due to these two effects, the queue
length of Node 2 keeps fluctuating. This leads to a high packet
inter-arrival variance.

C. The Effect of β and γ
Observing the fluctuations with backpressure scheduling,

we next explore whether setting β and γ different than 1 has
an effect on performance. As an example, we show the case
where β = 1.0 and γ = 0.2. We observe that with these
parameter settings, the fluctuations in Node 2’s queue length
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Fig. 3. Queue length evolution of Node 1 in 2-hop case over 60 seconds
(β = 1 and γ = 0.2).
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Fig. 4. Quantized priority space with two trajectories of Node 1 and 2 up
to 10 seconds (β = 1 and γ = 0.2).
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Fig. 5. Comparison of queue length standard deviation at middle node in
2-hop case. We vary β and γ from 0 to 2.0 with the step size of 0.2.

can be avoided (see Fig. 3). The corresponding PT is plotted
in Fig. 4. In this case, Node 2 controls its priority based on
its own queue length (the destination queue length is constant
based on the assumption of backpressure scheduling [2]) and
there is no delayed information. Hence, using a higher β value,
Node 2 starts reacting to changes fast and aggressively in its
queue size.

Next, we present the overall results of varying β and γ from
0 to 2 with a step size of 0.2. For each value of β and γ, we
present an average of 5 experiments, where each experiment
lasts 60 seconds. To capture the overall queue fluctuation, we
plot the standard deviation of each β and γ pairs by using a
grid intensity plot (see Fig. 5) where dark and white colors
indicate high and low deviations, respectively. Generally, we
observe that β > γ shows better deviation results as a high γ
value means slow but aggressive reaction at the senders, which
consequently leads to fluctuations in sending rate. Also, with
high γ values, the error in neighbor queue length information
due to monitoring delay is amplified. Similar trend of “β >
γ shows less fluctuation” also holds as we increase the hop
count.

However, even with β > γ, due to the quantization of
backpressure values, in some cases a node might switch to
using another priority queue faster than its next hop node. Due
to delays in monitoring queue lengths and link scheduling, this
triggers fluctuations in the queue length, which explains the
dark points in some cases for β > γ in Fig. 5. Therefore,
depending on the current network conditions, it is desirable to
adapt β and γ parameters to avoid queue fluctuations.

Finally, when there is no backpressure scheduling (β = 0
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Fig. 6. Density of packet inter-arrival time at the destination queue. Comparison is made among (from the top) pure backpressure scheduling, no scheduling,
and WBS (β = 1 and γ = 0.2) traffic over 2, 3 and 4-hop path.

TABLE I
2-HOP THROUGHPUT RESULTS OF WBS (β = 1.0, γ = 0.2) AND UDP

(β = 0, γ = 0).

avg. throughput (Mbps) avg. packet loss per sec
Up-drift UDP 2.24 46.47
Down-drift UDP 2.50 5.99
Up-drift WBS 2.52 0.02
Down-drift WBS 2.52 0.00

and γ = 0), there is relatively low fluctuation but the average
queue length is not controllable. For instance, in the up-
drift case, the queue over-runs and in the down-drift case
the queue under-runs, which consequently leads to network
under-utilization. By letting β = 0 and γ > 0 or β > 0 and
γ = 0, we can observe the results of scheduling policies that
only consider the queue of the node itself [7] or the queue of
next-hop node [5]. In our results, scheduling policies that only
consider the queue of the node itself (β > 0 and γ = 0) show
better queue stability in both up and down drift cases.

D. Performance Effects of Queue Instability

In this section, we present how the queue instability affects
performance in terms of jitter and throughput. Fig. 6 shows
that one of the outcomes of the queue instability is the high
packet arrival time variance (i.e., jitter). While the results
for backpressure scheduling are unacceptable [13], by using
β = 1 and γ = 0.2, it is possible to decrease the inter-
arrival distribution range by a factor of 2 compared to pure
backpressure scheduling. If we compare this result to UDP
case without scheduling, we observe that the inter-arrival
distribution is more regular due to less fluctuations in the
queues. Finally, the throughput results of UDP (β = 0 and
γ = 0) and WBS with β = 1 and γ = 0.2 over 2-hop path is
shown in Table I. When there is up-drift, UDP is not able to
control the queue of Node 2, and packet drops occur due to
queue over-run. These packet drops lead to bandwidth waste
and low throughput. On the other hand, in the down-drift case,
UDP just suffers from queue under-run and no packet drops
occur. Thus, for all cases, the resulting throughput is similar.

VI. CONCLUSION

We show that backpressure scheduling can lead to the
queue instability when implemented in IEEE 802.11 WMNs.

This behavior mainly stems from the different interactions
between packet and link scheduling components of back-
pressure scheduling implementations. To analyze the effects
further we expand the parameter space of the backpressure
scheduling with two new weights, β and γ. From the analysis,
we conclude that β > γ generally leads to network queue
stabilization in a line topology. For future work, we will
explore the effect of β and γ with other topologies and design
an algorithm to adaptively tune β and γ for optimal operation.
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