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Abstract

In this paper, we study the state-dependent two-user interference channel, where the state information is non-

causally known at both transmitters but unknown to either ofthe receivers. We propose two coding schemes for the

discrete memoryless case: simultaneous encoding for the sub-messages in the first one and superposition encoding

in the second one, both with rate splitting and Gel’fand-Pinsker coding. The corresponding achievable rate regions

are established.

I. I NTRODUCTION

The interference channel (IC) models the situation where several independent transmitters communicate with their

corresponding receivers over a common channel. Due to the shared medium, each receiver suffers from interferences

caused by the transmissions of other transceiver pairs. Theresearch of IC was initiated by Shannon [1] and the

channel was first thoroughly studied by Ahlswede [2]. Later,Carleial [3] established an improved achievable rate

region by applying the superposition coding scheme. In [4],Han and Kobayashi obtained the best achievable rate

region known to date for the general IC by utilizing simultaneous decoding at the receivers. Recently, this rate

region has been re-characterized with superposition encoding for the sub-messages [5], [6]. However, the capacity

region of the general IC is still an open problem except for several special cases [4], [7], [8].

Many variations of the interference channel have also been studied, including the IC with feedback [9] and

the IC with conferencing encoders/decoders [10]. In this paper, we study another variation of the IC: the state-

dependent two-user IC with state information non-causallyknown at both transmitters. This situation may arise in

a multi-cell downlink communication problem, where two interested cells are interfering with each other and the

mobiles suffer from some common interference (which can be from other cells and viewed as state) non-causally

known at both base-stations. Notably, communication over state-dependent channels has drawn lots of attentions

due to its wide applications such as information embedding [11] and computer memories with defects [12]. The
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corresponding framework was also initiated by Shannon in [13], which established the capacity of a state-dependent

discrete memoryless (DM) point-to-point channel with causal state information at the transmitter. In [14], Gel’fand

and Pinsker obtained the capacity for such a point-to-pointcase with the state information non-causally known at

the transmitter. Subsequently, Costa [15] extended Gel’fand-Pinsker coding to the state-dependent additive white

Gaussian noise (AWGN) channel, where the state is an additive zero-mean Gaussian interference. This result is

known as the dirty-paper coding technique, which achieves the capacity as if there is no such an interference. For

the multi-user case, extensions of the afore-mentioned schemes were provided in [16]–[18] for the multiple access

channel, the broadcast channel, and the degraded Gaussian relay channel, respectively.

In this paper, we study the DM state-dependent IC with state information non-causally known at the transmitters

and develop two coding schemes, both of which jointly apply rate splitting and Gel’fand-Pinsker coding. In the

first coding scheme, we deploy simultaneous encoding for thesub-messages and in the second one, we deploy

superposition encoding for the sub-messages. The associated achievable rate regions are derived based on the

respective coding schemes.

The rest of the paper is organized as follows. The channel model and the definition of achievable rate region are

presented in Section II. In Section III, we provide two achievable rate regions based on the two different coding

schemes, respectively. Finally, we conclude the paper in Section IV.

II. CHANNEL MODEL

Consider the interference channel as shown in Fig. 1, where two transmitters communicate with the corresponding

receivers through a common channel dependent on stateS. The transmitters do not cooperate with each other;

however, they both know the state informationS non-causally, which is unknown to either of the receivers. Each

receiver needs to decode the information from the respective transmitter.

A. Notations

We use the following notations throughout this paper. The random variable is defined asX with valuex in a

finite setX . Let pX(x) be the probability mass function ofX on X . The corresponding sequences are denoted by

xn with lengthn.

B. Discrete Memoryless Case

The state-dependent two-user interference channel is defined by (X1,X2,Y1,Y2,S, p(y1, y2|x1, x2, s)), where

X1,X2 are two input alphabet sets,Y1,Y2 are the corresponding output alphabet sets,S is the state alphabet set,

and p(y1, y2|x1, x2, s) is the conditional probability of(y1, y2) ∈ Y1×Y2 given (x1, x2, s) ∈ X1×X2×S. The

channel is assumed to be memoryless, i.e.,

p(yn1 , y
n
2 |x

n
1 , x

n
2 , s

n) =

n
∏

i=1

p(y1i, y2i|x1i, x2i, si),

wherei is the element index for each sequence.
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Fig. 1. The interference channel with state information non-causally known at both transmitters

A (2nR1 , 2nR2 , n) code for the above channel consists of two independent message sets{1, 2, · · · , 2nR1} and

{1, 2, · · · , 2nR2}, two encoders that assign a codeword to each messagem1 ∈ {1, 2, · · · , 2nR1} and m2 ∈

{1, 2, · · · , 2nR2} based on the non-causally known state informationsn, and two decoders that determine the

estimated messageŝm1 andm̂2 or declare an error from the received sequences.

The average probability of error is defined as:

P (n)
e =

1

2n(R1+R2)

∑

m1,m2

Pr{m̂1 6= m1 or m̂2 6= m2|(m1,m2) is sent}, (1)

where(m1,m2) is assumed to be uniformly distributed in{1, 2, · · · , 2nR1} × {1, 2, · · · , 2nR2}.

Definition 1. A rate pair(R1, R2) of non-negative real values is achievable if there exists a sequence of(2nR1 , 2nR2 , n)

codes withP (n)
e → 0 asn → ∞. The set of all achievable rate pairs is defined as the capacity region.

III. A CHIEVABLE RATE REGIONS FOR THEDM I NTERFERENCECHANNEL WITH STATE INFORMATION

In this section, we propose two new coding schemes for the DM interference channel with state information non-

causally known at both transmitters and present the associated achievable rate regions. For both coding schemes, we

jointly deploy rate splitting and Gel’fand-Pinsker coding. In the first coding scheme, we use simultaneous encoding

on the sub-messages, while in the second one we apply superposition encoding.

A. Simultaneous Encoding

Now we introduce the following rate region achieved by the first coding scheme, which combines rate splitting

and Gel’fand-Pinsker coding.

Theorem 1. For a fixed probability distributionp(q)p(u1|q, s)p(v1|q, s)p(u2|q, s)p(v2|q, s), let R1 be the set of
all non-negative rate tuple(R10, R11, R20, R22) satisfying

R11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1;Y1|U1, U2, Q)− I(V1;S|Q), (2)

R10 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1;Y1|V1, U2, Q)− I(U1;S|Q), (3)

R10 +R11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1;Y1|U2, Q)− I(U1;S|Q)− I(V1;S|Q), (4)

R11 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1, U2;Y1|U1, Q)− I(V1;S|Q)− I(U2;S|Q), (5)

R10 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, U2;Y1|V1, Q)− I(U1;S|Q)− I(U2;S|Q), (6)

R10 +R11 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1, U2;Y1|Q)− I(U1;S|Q)− I(V1;S|Q)− I(U2;S|Q),(7)

R22 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(V2;Y2|U2, U1, Q)− I(V2;S|Q), (8)
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R20 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2;Y2|V2, U1, Q)− I(U2;S|Q), (9)

R20 +R22 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2, V2;Y2|U1, Q)− I(U2;S|Q)− I(V2;S|Q), (10)

R22 +R10 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(V2, U1;Y2|U2, Q)− I(V2;S|Q)− I(U1;S|Q), (11)

R20 +R10 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2, U1;Y2|V2, Q)− I(U2;S|Q)− I(U1;S|Q), (12)

R20 +R22 +R10 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2, V2, U1;Y2|Q)− I(U2;S|Q)− I(V2;S|Q)− I(U1;S|Q).(13)

Then for any(R10, R11, R20, R22) ∈ R1, the rate pair(R10+R11, R20+R22) is achievable for the DM interference
channel with state information non-causally known at both transmitters.

Proof: In the achievable coding scheme for Theorem 1, the message atthe jth transmitter is splitted into

two parts: the public messagemj0 and the private messagemjj . Subsequently, thejth decoder tries to decode

the corresponding messages from the intending transmitterand the public message of the interfering transmitter.

Furthermore, Gel’fand-Pinsker coding is utilized to help both transmitters send the messages with the non-causal

knowledge of the state information. Here we presume that themessage pairs are chosen uniformly on the message

sets for both transmitters.

Codebook generation: Fix the probability distributionp(q)p(u1|q, s)p(v1|q, s)p(u2|q, s)p(v2|q, s). Also define the

following function for thejth user that mapsUj×Vj×S to Xj :

xji = Fj(uji, vji, si),

wherei is the element index of each sequence.

Generate the time-sharing sequenceqn ∼
∏n

i=1 pQ(qi). For thejth user,un
j (mj0, lj0) is randomly and condition-

ally independently generated according to
∏n

i=1 pUj |Q(uji|qi), formj0 ∈ {1, 2, · · · , 2nRj0} andlj0 ∈ {1, 2, · · · , 2nR
′
j0}.

Similarly, vnj (mjj , ljj) is randomly and conditionally independently generated according to
∏n

i=1 pVj |Q(vji|qi), for

mjj ∈ {1, 2, · · · , 2nRjj} and ljj ∈ {1, 2, · · · , 2nR
′
jj}.

Encoding: To send the messagemj = (mj0,mjj), the jth encoder first tries to find the pair(lj0, ljj) such that

the following joint typicality holds:(qn, un
j (mj0, lj0), s

n) ∈ T
(n)
ǫ and (qn, vnj (mjj , ljj), s

n) ∈ T
(n)
ǫ . If successful,

(qn, un
j (mj0, lj0), v

n
j (mjj , ljj), s

n) is also jointly typical with high probability, and thejth encoder sendsxj where

the ith element isxji = Fj(uji(mj0, lj0), vji(mjj , ljj), si). If not, the jth encoder transmitsxj where theith

element isxji = Fj(uji(mj0, 1), vji(mjj , 1), si).

Decoding: Decoder1 finds the unique message pair(m̂10, m̂11) such that(qn, un
1 (m̂10, l̂10), u

n
2 (m̂20, l̂20),

vn1 (m̂11, l̂11), y
n
1 ) ∈ T

(n)
ǫ for somel̂10 ∈ {1, 2, · · · , 2nR

′
10}, m̂20 ∈ {1, 2, · · · , 2nR20}, l̂20 ∈ {1, 2, · · · , 2nR

′
20}, and

l̂11 ∈ {1, 2, · · · , 2nR
′
11}. If no such unique pair exists, the decoder declares an error. Decoder2 determines the

unique message pair(m̂20, m̂22) in a similar way.

Analysis of probability of error: Here the probability of error is the same for each message pair since the

transmitted message pair is chosen with a uniform distribution on the message set. Without loss of generality,

we assume(1, 1) for user1 and (1, 1) for user2 are sent over the channel. First we consider the encoding error

probability at transmitter1. Define the following error events:

ξ1 =
{

(qn, un
1 (1, l10) , s

n) /∈ T (n)
ǫ for all l10 ∈ {1, 2, · · · , 2nR

′
10}

}

,
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ξ2 =
{

(qn, vn1 (1, l11) , s
n) /∈ T (n)

ǫ for all l11 ∈ {1, 2, · · · , 2nR
′
11}

}

.

The probability of the error eventξ1 can be bounded as follows:

P (ξ1) =

2nR′
10

∏

l10=1

(

1− P
({

(qn, un
1 (1, l10) , s

n) ∈ T (n)
ǫ

}))

≤
(

1− 2−n(I(U1;S|Q)+δ1(ǫ))
)2nR′

10

≤ e−2n(R
′
10−I(U1;S|Q)+δ1(ǫ))

,

whereδ1(ǫ) → 0 as ǫ → 0. Therefore, the probability ofξ1 goes to0 asn → ∞ if

R′
10 ≥ I(U1;S|Q). (14)

Similarly, the probability ofξ2 can also be upper bounded by an arbitrarily small number asn → ∞ if

R′
11 ≥ I(V1;S|Q). (15)

The encoding error probability at transmitter1 can be calculated as:

Penc1 = P (ξ1 ∪ ξ2) ≤ P (ξ1) + P (ξ2),

which goes to0 asn → ∞ if (14) and (15) are satisfied.
Now we consider the error analysis at the decoder1. Denote the right Gel’fand-Pinsker coding indices chosen

by the encoders as(L10, L11) and (L20, L22). Define the following error events:

ξ31 =
{

(qn, un

1 (1, L10) , u
n

2 (1, L20) , v
n

1 (m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m11 6= 1, and somel11
}

,

ξ32 =
{

(qn, un

1 (1, L10) , u
n

2 (1, l20) , v
n

1 (m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m11 6= 1, and somel11, l20 6= L20

}

,

ξ33 =
{

(qn, un

1 (1, l10) , u
n

2 (1, L20) , v
n

1 (m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m11 6= 1, and somel11, l10 6= L10

}

,

ξ34 =
{

(qn, un

1 (1, l10) , u
n

2 (1, l20) , v
n

1 (m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m11 6= 1, and somel11, l10 6= L10, l20 6= L20

}

,

ξ41 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, L20) , v
n

1 (1, L11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, and somel10
}

,

ξ42 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, l20) , v
n

1 (1, L11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, and somel10, l20 6= L20

}

,

ξ43 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, L20) , v
n

1 (1, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, and somel10, l11 6= L11

}

,

ξ44 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, l20) , v
n

1 (1, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, and somel10, l20 6= L20, l11 6= L11

}

,

ξ51 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, L20) , v
n

1 (m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, m11 6= 1, and somel10, l11
}

,

ξ52 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, l20) , v
n

1 (m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, m11 6= 1, and somel10, l11, l20 6= L20

}

,

ξ61 =
{

(qn, un

1 (1, L10) , u
n

2 (m20, l20) , v
n

1 (m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m20 6= 1, m11 6= 1, and somel20, l11
}

,

ξ62 =
{

(qn, un

1 (1, l10) , u
n

2 (m20, l20) , v
n

1 (m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m20 6= 1, m11 6= 1, and somel20, l11, l10 6= L10

}

,

ξ71 =
{

(qn, un

1 (m10, l10) , u
n

2 (m20, l20) , v
n

1 (1, L11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, m20 6= 1, and somel10, l20
}

,

ξ72 =
{

(qn, un

1 (m10, l10) , u
n

2 (m20, l20) , v
n

1 (1, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, m20 6= 1, and somel10, l20, l11 6= L11

}

,

ξ8 =
{

(qn, un

1 (m10, l10) , u
n

2 (m20, l20) , v
n

1 (m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, m20 6= 1, m11 6= 1,

and somel10, l20, l11
}

.
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The probability ofξ31 can be bounded as follows:

P (ξ31) =

2nR11
∑

m11=2

2R
′
11

∑

l11=1

P
(

{(qn, un
1 (1, L10) , u

n
2 (1, L20) , v

n
1 (m11, l11) , y

n
1 ) ∈ T (n)

ǫ }
)

≤ 2n(R11+R′
11)

∑

(qn,un
1 ,u

n
2 ,v

n
1 ,yn

1 )∈T
(n)
ǫ

p(qn)p(un
1 |q

n)p(un
2 |q

n)p(vn1 |q
n)p(yn1 |u

n
1 , u

n
2 , q

n)

≤ 2n(R11+R′
11)2−n(H(Q)+H(U1|Q)+H(U2|Q)+H(V1|Q)+H(Y1|U1,U2,Q)−H(Q,U1,U2,V1,Y1)−δ2(ǫ))

≤ 2n(R11+R′
11)2−n(I(U1;U2|Q)+I(U1,U2;V1|Q)+I(V1;Y1|U1,U2,Q)−δ2(ǫ)),

whereδ2(ǫ) → 0 as ǫ → 0. Obviously, the probability thatξ31 happens goes to0 if

R11 +R′
11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1;Y1|U1, U2, Q). (16)

Similarly, the error probability corresponding to the lefterror events goes to0, respectively, if

R11 +R′
11 +R′

20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1, U2;Y1|U1, Q), (17)

R11 +R′
10 +R′

11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1;Y1|U2, Q), (18)

R11 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1, U2;Y1|Q), (19)

R10 +R′
10 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1;Y1|V1, U2, Q), (20)

R10 +R′
10 +R′

20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, U2;Y1|V1, Q), (21)

R10 +R′
10 +R′

11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1;Y1|U2, Q), (22)

R10 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1, U2;Y1|Q), (23)

R10 +R11 +R′
10 +R′

11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1;Y1|U2, Q), (24)

R10 +R11 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1, U2;Y1|Q), (25)

R11 +R20 +R′
11 +R′

20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1, U2;Y1|U1, Q), (26)

R11 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1, U2;Y1|Q), (27)

R10 +R20 +R′
10 +R′

20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, U2;Y1|V1, Q), (28)

R10 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1, U2;Y1|Q), (29)

R10 + R11 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1, U2;Y1|Q). (30)

Note that there are some redundant inequalities in (16)-(30): (17) is implied by (26); (18) is implied by (24); (21)

is implied by (28); (22) is implied by (24); (19), (23), (25),(27), and (29) are implied by (30). By combining with

the error analysis at the encoder, we can recast the rate constraints (16)-(30) as:

R11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1;Y1|U1, U2, Q)− I(V1;S|Q),

R10 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1;Y1|V1, U2, Q)− I(U1;S|Q),
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R10 +R11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1;Y1|U2, Q)− I(U1;S|Q)− I(V1;S|Q),

R11 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1, U2;Y1|U1, Q)− I(V1;S|Q)− I(U2;S|Q),

R10 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, U2;Y1|V1, Q)− I(U1;S|Q)− I(U2;S|Q),

R10 +R11 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1, U2;Y1|Q)− I(U1;S|Q)− I(V1;S|Q)− I(U2;S|Q).

The error analysis for transmitter2 and decoder2 is similar to user1 and is omitted here. Correspondingly, (8)

to (13) show the rate constraints for user2. In addition, the right hand sides of the inequalities (2) to(13) are

guaranteed to be non-negative when choosing the probability distribution. As long as (2) to (13) are satisfied, the

probability of error can be bounded by the sum of the error probability at the encoders and the decoders, which

goes to0 asn → ∞.

An explicit description of the achievable rate region can beobtained by applying Fourier-Motzkin algorithm on

our implicit description (2)-(13). We omit it here due to itshigh complexity and the space limitation.

B. Superposition Encoding

We now present another coding scheme, which applies superposition encoding for the sub-messages. The achiev-

able rate region is given in the following theorem.

Theorem 2. For a fixed probability distributionp(q)p(u1|s, q)p(v1|u1, s, q)p(u2|s, q)p(v2|u2, s, q), let R2 be the
set of all non-negative rate tuple(R10, R11, R20, R22) satisfying

R11 ≤ I(U1, V1;U2|Q) + I(V1;Y1|U1, U2, Q)− I(V1;S|U1, Q), (31)

R10 +R11 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q)− I(U1, V1;S|Q), (32)

R11 +R20 ≤ I(U1, V1;U2|Q) + I(V1, U2;Y1|U1, Q)− I(V1;S|U1, Q)− I(U2;S|Q), (33)

R10 +R11 +R20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q)− I(U1, V1;S|Q)− I(U2;S|Q), (34)

R22 ≤ I(U2, V2;U1|Q) + I(V2;Y2|U2, U1, Q)− I(V2;S|U2, Q), (35)

R20 +R22 ≤ I(U2, V2;U1|Q) + I(U2, V2;Y2|U1, Q)− I(U2, V2;S|Q), (36)

R22 +R10 ≤ I(U2, V2;U1|Q) + I(V2, U1;Y2|U2, Q)− I(V2;S|U2, Q)− I(U1;S|Q), (37)

R20 +R22 +R10 ≤ I(U2, V2;U1|Q) + I(U2, V2, U1;Y2|Q)− I(U2, V2;S|Q)− I(U1;S|Q). (38)

Then for any(R10, R11, R20, R22) ∈ R2, the rate pair(R10+R11, R20+R22) is achievable for the DM interference
channel defined in Section II.

Proof: Compared with the first coding scheme, the rate splitting structure is also applied in the achievable

scheme of Theorem 2. The main difference here is that insteadof simultaneous encoding, now the private message

mjj is superimposed on the public messagemj0 for the jth transmitter. Gel’fand-Pinsker coding is also utilized to

help the transmitters send both public and private messages.

Codebook generation: Fix the probability distributionp(q)p(u1|s, q)p(v1|u1, s, q)p(u2|s, q)p(v2|u2, s, q). First

generate the time-sharing sequenceqn ∼
∏n

i=1 pQ(qi). For thejth user,un
j (mj0, lj0) is randomly and conditionally

independently generated according to
∏n

i=1 pUj |Q(uji|qi), for mj0 ∈ {1, 2, · · · , 2nRj0} andlj0 ∈ {1, 2, · · · , 2nR
′
j0}.

For eachun
j (mj0, lj0), vnj (mj0, lj0,mjj , ljj) is randomly and conditionally independently generated according to

∏n

i=1 pVj |Uj ,Q(vji|uji, qi), for mjj ∈ {1, 2, · · · , 2nRjj} and ljj ∈ {1, 2, · · · , 2nR
′
jj}.



8

Encoding: To send the messagemj = (mj0,mjj), thejth encoder first tries to findlj0 such that(qn, un
j (mj0, lj0), s

n) ∈

T
(n)
ǫ holds. Then for this specificlj0, find ljj such that(qn, un

j (mj0, lj0), v
n
j (mj0, lj0,mjj , ljj), s

n) ∈ T
(n)
ǫ holds.

If successful, thejth encoder sendsvnj (mj0, lj0,mjj , ljj). If not, thejth encoder transmitsvnj (mj0, 1,mjj , 1).

Decoding: Decoder1 finds the unique message pair(m̂10, m̂11) such that(qn, un
1 (m̂10, l̂10), u

n
2 (m̂20, l̂20),

vn1 (m̂10, l̂10, m̂11, l̂11), y
n
1 ) ∈ T

(n)
ǫ for somêl10 ∈ {1, 2, · · · , 2nR

′
10}, m̂20 ∈ {1, 2, · · · , 2nR20},l̂20 ∈ {1, 2, · · · , 2nR

′
20},

and l̂11 ∈ {1, 2, · · · , 2nR
′
11}. If no such unique pair exists, the decoder declares an error. Decoder2 determines the

unique message pair(m̂20, m̂22) similarly.

Analysis of probability of error: Similar to the proof in Theorem 1, we assume message(1, 1) and(1, 1) are sent

for both transmitters. First we consider the encoding errorprobability at transmitter1. Define the following error

events:

ξ′1 =
{

(qn, un
1 (1, l10) , s

n) /∈ T (n)
ǫ for all l10 ∈ {1, 2, · · · , 2nR

′
10}

}

,

ξ′2 =
{

(qn, un
1 (m10, l10), v

n
1 (1, l10, 1, l11) , s

n) /∈ T (n)
ǫ for all l11 ∈ {1, 2, · · · , 2nR

′
11} and previously found typicall10

∣

∣ξ̄′1

}

.

The probability of the error eventξ′1 can be bounded as follows:

P (ξ′1) =
2nR′

10
∏

l10=1

(

1− P
({

(qn, un
1 (1, l10) , s

n) ∈ T (n)
ǫ

}))

≤
(

1− 2−n(I(U1;S|Q)+δ′1(ǫ))
)2nR′

10

≤ e−2n(R
′
10−I(U1;S|Q)+δ′1(ǫ))

,

whereδ′1(ǫ) → 0 as ǫ → 0. Therefore, the probability ofξ′1 goes to0 asn → ∞ if

R′
10 ≥ I(U1;S|Q). (39)

Similarly, for the previously found typicall10, the probability ofξ′2 can be upper bounded as follows:

P (ξ′2) =

2nR′
11

∏

l11=1

(

1− P
({

(qn, un
1 (1, l10) , v

n
1 (1, l10, 1, l11) , s

n) ∈ T (n)
ǫ

}))

≤
(

1− 2n(H(Q,U1,V1,S)−H(Q,U1,S)−H(V1|U1,Q)−δ′2(ǫ))
)2nR′

11

≤
(

1− 2−n(I(V1;S|U1,Q)+δ′2(ǫ))
)2nR′

11

≤ e−2n(R
′
11−I(V1;S|U1,Q)+δ′2(ǫ))

,

whereδ′2(ǫ) → 0 as ǫ → 0. Therefore, the probability ofξ′2 goes to0 asn → ∞ if

R′
11 ≥ I(V1;S|U1, Q). (40)

The encoding error probability at transmitter1 can be calculated as:

Penc1 = P (ξ′1) + P (ξ′2),

which goes to0 asn → ∞ if (39) and (40) are satisfied.
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Now we consider the error analysis at the decoder1. Denote the right Gel’fand-Pinsker coding indices chosen
by the encoders as(L10, L11) and (L20, L22). Define the following error events:

ξ
′

31 =
{

(qn, un

1 (1, L10) , u
n

2 (1, L20) , v
n

1 (1, L10,m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m11 6= 1, and somel11
}

,

ξ
′

32 =
{

(qn, un

1 (1, L10) , u
n

2 (1, l20) , v
n

1 (1, L10,m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m11 6= 1, and somel11, l20 6= L20

}

,

ξ
′

33 =
{

(qn, un

1 (1, l10) , u
n

2 (1, L20) , v
n

1 (1, l10,m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m11 6= 1, and somel11, l10 6= L10

}

,

ξ
′

34 =
{

(qn, un

1 (1, l10) , u
n

2 (1, l20) , v
n

1 (1, l10,m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m11 6= 1, and somel11, l10 6= L10, l20 6= L20

}

,

ξ
′

41 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, L20) , v
n

1 (m10, l10, 1, L11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, and somel10
}

,

ξ
′

42 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, l20) , v
n

1 (m10, l10, 1, L11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, and somel10, l20 6= L20

}

,

ξ
′

43 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, L20) , v
n

1 (m10, l10, 1, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, and somel10, l11 6= L11

}

,

ξ
′

44 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, l20) , v
n

1 (m10, l10, 1, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, and somel10, l20 6= L20, l11 6= L11

}

,

ξ
′

51 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, L20) , v
n

1 (m10, l10,m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, m11 6= 1, and somel10, l11
}

,

ξ
′

52 =
{

(qn, un

1 (m10, l10) , u
n

2 (1, l20) , v
n

1 (m10, l10,m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, m11 6= 1, and somel10, l11, l20 6= L20

}

,

ξ
′

61 =
{

(qn, un

1 (1, L10) , u
n

2 (m20, l20) , v
n

1 (1, L10,m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m20 6= 1, m11 6= 1, and somel20, l11
}

,

ξ
′

62 =
{

(qn, un

1 (1, l10) , u
n

2 (m20, l20) , v
n

1 (1, l10,m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m20 6= 1, m11 6= 1, and somel20, l11, l10 6= L10

}

,

ξ
′

71 =
{

(qn, un

1 (m10, l10) , u
n

2 (m20, l20) , v
n

1 (m10, l10, 1, L11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, m20 6= 1, and somel10, l20
}

,

ξ
′

72 =
{

(qn, un

1 (m10, l10) , u
n

2 (m20, l20) , v
n

1 (m10, l10, 1, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, m20 6= 1, and somel10, l20, l11 6= L11

}

,

ξ
′

8 =
{

(qn, un

1 (m10, l10) , u
n

2 (m20, l20) , v
n

1 (m10, l10,m11, l11) , y
n

1 ) ∈ T
(n)
ǫ

for m10 6= 1, m20 6= 1, m11 6= 1,

and somel10, l20, l11
}

.

The probability ofξ′31 can be bounded as follows:

P (ξ′31) =

2nR11
∑

m11=2

2R
′
11

∑

l11=1

P
(

{(qn, un
1 (1, L10) , u

n
2 (1, L20) , v

n
1 (1, L10,m11, l11) , y

n
1 ) ∈ T (n)

ǫ }
)

≤ 2n(R11+R′
11)

∑

(qn,un
1 ,u

n
2 ,v

n
1 ,yn

1 )∈T
(n)
ǫ

p(qn)p(un
1 |q

n)p(un
2 |q

n)p(vn1 |u
n
1 , q

n)p(yn1 |u
n
1 , u

n
2 , q

n)

≤ 2n(R11+R′
11)2−n(H(Q,U1,V1)+H(U2|Q)+H(Y1|U1,U2,Q)−H(Q,U1,U2,V1,Y1)−δ′3(ǫ))

≤ 2n(R11+R′
11)2−n(I(U1,V1;U2|Q)+I(V1;Y1|U1,U2,Q)−δ′3(ǫ)),

whereδ′3(ǫ) → 0 as ǫ → 0. Obviously, the probability thatξ′31 happens goes to0 if

R11 +R′
11 ≤ I(U1, V1;U2|Q) + I(V1;Y1|U1, U2, Q). (41)

Similarly, the error probability corresponding to the lefterror events goes to0, respectively, if

R11 +R′
11 +R′

20 ≤ I(U1, V1;U2|Q) + I(V1, U2;Y1|U1, Q), (42)

R11 +R′
10 +R′

11 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q), (43)

R11 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q), (44)
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R10 +R′
10 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q), (45)

R10 +R′
10 +R′

20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q), (46)

R10 +R′
10 +R′

11 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q), (47)

R10 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q), (48)

R10 +R11 +R′
10 +R′

11 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q), (49)

R10 +R11 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q), (50)

R11 +R20 +R′
11 +R′

20 ≤ I(U1, V1;U2|Q) + I(V1, U2;Y1|U1, Q), (51)

R11 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q), (52)

R10 +R20 +R′
10 +R′

20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q), (53)

R10 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q), (54)

R10 +R11 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q). (55)

Note that there are some redundant inequalities in (41)-(55): (42) is implied by (51); (43) is implied by (49); (45)

is implied by (47); (46) is implied by (53); (47) is implied by(49); (44), (48), (50), (52), (53), and (54) are implied

by (55). By combining with the error analysis at the encoder,we can recast the rate constraints (41)-(55) as:

R11 ≤ I(U1, V1;U2|Q) + I(V1;Y1|U1, U2, Q)− I(V1;S|U1, Q),

R10 +R11 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q)− I(U1, V1;S|Q),

R11 +R20 ≤ I(U1, V1;U2|Q) + I(V1, U2;Y1|U1, Q)− I(V1;S|U1, Q)− I(U2;S|Q),

R10 +R11 +R20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q)− I(U1, V1;S|Q)− I(U2;S|Q).

The error analysis for transmitter2 and decoder2 is similar to user1 and is omitted here. Correspondingly, (35)

to (38) show the rate constraints for user2. Furthermore, the right hand sides of the inequalities (31)to (38) are

guaranteed to be non-negative when choosing the probability distribution. As long as (31) to (38) are satisfied, the

probability of error can be bounded by the sum of the error probability at the encoders and the decoders, which

goes to0 asn → ∞.

Remark1. The achievable regions in the above theorems are being further studied in several special cases by
only deploying Gel’fand-Pinsker coding for the public message or only for the private message at the transmitters.
In addition, the application of special coding schemes to the strong (or weak) state-dependent IC is also under
investigation.

Remark2. It can be easily seen that the achievable rate regionR1 in Theorem 1 is a subset ofR2, i.e.,R1 ⊆ R2.
However, whether these two regions are equivalent is still under investigation.

IV. CONCLUSION

We considered the interference channel with state information non-causally known at both transmitters. Two

achievable rate regions are established based on two codingschemes with simultaneous encoding and superposition

encoding, respectively.
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