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Abstract—In this paper, recent results in game theory and
stochastic approximation are brought together to mitigate the
problem of femto-to-macrocell cross-tier interference. he main
result of this paper is an algorithm which reduces the impact
of interference of femtocells over the existing macrocellsSuch
algorithm relies on the observations of the signal to interér-
ence plus noise ratio (SINR) of all active communications in
both macro and femtocells when they are fed back to the
corresponding base stations. Based on such observationgnfto
base stations learn the probability distributions over thefeasible
transmit configurations (frequency band and power levels) sch
that a minimum time-average SINR can be guaranteed in the
macrocells, at the equilibrium. In this paper, we introduce the
concept of logit equilibrium (LE) and present its interpretation

Macro-BS

in terms of the trade-off faced by femtocells when experimeting
several actions to discover the network, and taking the aabin
to maximize their instantaneous performance. Finally, nunerical

Fig. 1. Network topology with one macrocell underlaid wittree femtocell

networks. MUE and FUE stand for macro/femtocell user eqeiptmrespec-

tively. MBS and FBS stand for macro and femtocell base statiespectively.

containing their instantaneous signal to interferencs phise
eé%tio (SINR) can be decoded by all FBSs. The repetitive

I. INTRODUCTION

Recently, a new type of indoor Base Station (BS), call
femtocell, has gained the attention of the industry [1] due
the enormous benefits it brings to both end-users and netwgr
operators. For instance, end-users can enjoy better si
qualities due to the reduced distance between the tramsmi
and the receiver, resulting in higher throughputs, powet ag

battery savings. From the operator's point of view, femliSCe rig haner is organized as follows. In Section I, the system

Wl”llll extt(;nd the |tndoo_r coverage, %nhanfe system anp:aty, %nd game model are presented. Section Il describes how FBSs
share the spectrum in a more efficient manner [2]. HOWeVRL . p g 5 reliable image of the average state of the network

these benefits are not easy to accomplish, and there gig.q on noisy observations of the SINR of the active user
challenges that mobile operators must address beforessiCCgy inals in the downlink. Section IV describes a learning
fully deploying femtocell networks. Among these challesige

; S Igorithm for interference mitigation, which is the mairsué
there is thecross-tier interference between macrocells an@f this paper. Numerical results are presented in Section V.
femtocells which highly impact the quality-of-service (&o Finally, Section VI concludes this paper
of the already existing networks. Therefore, distributed a ' '
efficient self-organization strategies need to be designed .
order to make the deployment of femtocell networks feasiblg  notations
Many results exist along this direction, e.g., see [3], [Bpag
others. In [3] and [5], aQ-learning based algorithm was
investigated in the context of network selection for heterd
geneous wireless networks, and channel selection in mu
user cognitive radios, respectively. In [6], a reinforcene
learning framework based dp-learning was studied for inter-
ference mitigation among femtocells. Nevertheless, tteveb % 0s) 5 (s) S
mentioned works often require information exchange amo#fge finite setA. Let the vectore,”" = (%,1 ; ---7@,g,s> eR
transmitters, which represents a non-affordable incréroén denote thes-th vector of the canonical base spanning the space
signaling messages. of real vectors of dimensiof. Here,vn € {1,..., 5} \ {s},
In this paper, we propose a fully decentralized method fef5) = 0 ande!%) = 1.
interference minimization/mitigation from the femtoc&S ’
(FBS) to the macrocell user equipments (MUEs), i.e., o System Model
interest focuses in the downlink interaction between femto Consider a set oM = {1,..., M} macrocell base stations
and macrocell systems, as shown in Fiy. 1. The underlyii®BS) each one operating over an exclusive fixed frequency
assumption over which our work relies on is that, the feekbaband and serving their respective macrocell user equipnent

servation of the SINR is used by the FBS to dynamically
nfigure how often different frequency bands are used such
t, a minimum time-average SINR level can be guaranteed to

MUEs. Our proposal combines recent results in game the-
ry, learning theory, and stochastic approximation to asslr
uch an issue.

M ODELS

Boldface lower case and lower case symbols represent
ectors and scalars. Given a random variahlihe expectation

ith respect to: is denoted byE. [.]. The indicator function is
enoted byl (.,naitiony @nd it equalsl (resp.0) whencondi-
tion is true (resp. false). Given a finite sdt A\ (.A) represents
the set of all probability distributions over the elemenfs o



(MUES) using a time division multiple access (TDMA) policythat
At each time interval, each MBS serves one of its correspond-

/ = ) . 2 . P (1) |1$) (t)|2
ing MUE aiming to guaranteing a minimum time-average, ;= k Lk

SINR over their communication duration. We assume that o7 Z P0,m h(;))“m(t)|2+ Z () hi“jzhj(t)r
there exists a se§ = {1,...,S} of S frequency bands meEM; jeR\{k}

over which MBS can operate. Lat", m € M, denote (2)
the minimum time-average SINR offered by MBS over and for allm € M,

its corresponding fixed frequency band. Consider now a set 20 |G (t)|2

K ={1,...,K} of K femtocells underlaying thé/-cell S- ~{ 7 (t)= - R ;
frequency band macrocell system. Each femtocell can use any ~ «Sm%+ > om0l Y vimanSm 0]
of the available frequency bands to serve its corresponding JEM, \{m} i€\ {k}

femto end-users (FUE) as long as it does not induce a lower _ 3
time-average SINR than the minimum required by the MUBYhere for allm € M, s, is the channel used by MB& and
i.e.,Fél), . ,FéM). At each time interval each FBS serves one((f;;;) and a,(j’”) is the noise power over MUEn and the
FUE over one of the available channels following a TDMAnoise power over FUE on the frequency bansl

policy. All FBSs are interested in optimizing a given interference
Let t € {1,...,00} be a discrete time index. For allMinimization/mitigation metric denoted hy: R M — R,

which determines at each instanthe impact of the interfer-
'dnce on the macro system based on the observation of all the

SINR levelsy\* and~{"", with (k, s) € K x S andm € M.

Later, we provide explicit expressions fordepending on the
interest of all FBSs.

(j, k,m) € M2 x S, h'*)  represents the channel realizatio

between MBSk and MtlEj over channeln at timet. For
all (j,k,m) € K x M xS, h(;jk represents the channel
realization between MB% and FUE; over channes at time

t. Forall(j,k,m) € MxKxS, hff)._k represents the channel
realization between FBS and MUi%’j over channek at time C. Game Theoretic Model

t. Finally, for all (j,k,m) € K? x S, hff)k represents the  The interference minimization problem described in the
channel realization between FBSand FUE; over channek previous section can be modeled by a stochastic game made
at timet. Denote byh(t) the vector of all channel realizationsof a sequence of strategic games played at different states,
at time ¢. All channel realizations, i.e., each component af.g., channel realizations. Let us denote @yh(t)) =

h(t), are independent and identically distributed following &xC, { Ay }rex, {#}rex) the static strategic game and let us
probability distribution which is a parameter of the netior denote byG = {G(h(t))}:~o the stochastic game where at
Let the finite set denoted iy be the set of all possible vectorseach timet, the gamej (h(t)) is played, witht € {1,..., c0}.

h(t), for all ¢ > 0. Finally, channel realizations at tinteare We describe in detail both formulations.

independent of those at time- 1, for all ¢ > 0. 1) Short Term Formulation:Let us describe the network

Let pimax and po.,, with & € K and m € M, be the during the interval from — 1 to ¢ by the gameG(h(t)) =

maximum transmit power of FBS and MBSm, respectively. (K, {Ax}rex.{¢}). Here,K represents the set of FBS in the
For all k € K, let the S-dimensional vectorp,(t) = network. For allk € I, the set of actions of FB$ is the

(1) (€)) : et of power allocation vectors, i.ed; = {q(“) HVANS
(pk (t),....pp, (t?) denote thfs)power allocation .vector Oﬁo,---,Lk}, ands  S}. Finally, 6+ H x A ><kAK R,
FBS k € K at timet. Here p,”’(¢) is the transmit power js the payoff or interference minimization metric of all fem
of femtocell k& over frequency band at time ¢. All FBS tgcells.
are assumed to transmit only over one frequency band aft each timet > 0 and for allk € K, FBS k& chooses
each timet at a given power level not exceedipg max- Let jts action from the finite set4;, following a probability dis-
L. € IN be the number of discrete power levels of FBS.e., tribution 7, (f) = (W (t), (), o ()
Phamax iy ax. FOF all (k, £,s) € KK x {1,..., Lg} x S, T kg0 0 Phgih DA T g e Sk)

See oy Do, For ol (i 9) € wherer, o, isthe probability that femtocedl plays action
Ay
qgkm-) at timet, i.e.,
| g 7 o (Issk)
o) — Ll 1) Ty g =PI (Pr(t) = q"™). (4)

where (I, sk) € {1,..,Lx} x SU{(0,0)}. In the follow-
) ] ing, we describe the long-term gante and we introduce
the power allocation (PA) vector when FBS transmits ovehe method which each FBS uses to choose the probability

channels at power levelt. Denote also byy\””, with k € distribution (), at each time.

K, the S-dimensional null vector, i.eq(®% = (0,...,0) € 2) Long-Term Formulation: The long-term behavior of
R). Thus, FBSk hasN;, = L, - S + 1 possible PA vectors, the network is modeled by the succession of static strate-
q(o70),ql(€171)7”.7q§€Lk-,S)_ gic gamesG = {G (h(t))}+>0. This succession produces

s) ) a Markov gameG = {G(h(t))},5,, where at each stage
Forall (k,s) € K x S, let,” be the SINR of FUE: attime ¢ the gameg(h(t)) is played assuming that the network
t and for allm € M, let 7(()5;3) be the SINR of the MUE in is described by the vectoh(t). According to the system

the macrocelin at timet. Let also the setM, C M, with model, the actual state of the netwdikt) follows a Markov
s € S, be the set of MBS using channelThen, we can write chain with transitions following the ruley (h',h") € H?,



Pr (h(t) =h'|h(t—1) = h”) = Pr(h(t)=h') = mp. [Il. EXPLORATION VS. PERFORMANCE OPTIMIZATION

Here, mp,/, for all K’ € H, are parameters obtained from As shown in Se€I-C, all FBSs face a trade-off between
previous channel modeling studies. Note that transitiogs loptimizing their time-average utility by taking the actitdmat
tween states are independent of the actions of the tramsmittdoes it at each timé, and trying out different actions so
This assumption might appear restrictive, however, itgetly as to improve the estimation of the time-average interfezen
models the time-varying nature of wireless channels, whieh mitigation metric obtained with each action. This implieait
independent of the transmit configurations of radio devicesa reasonable behavioral rule would be to choose the actions
The gameG = {G(h(t))},5, proceeds in infinitely many which yield high payoffs more likely than actions yieldiray
stages. At each stage € {0,...,00}, FBSs choose their payoffs, but in any case, always letting a non-null probgbil
corresponding actiong, (t),...,px(t). When doing so, of playing any of the actions. Following the results in [&],[
each FBSk observes a noisy samplé,(t) of the cor- the behavioral rule described above can be modeled by the

responding instantaneous  interference minimization imetProbability distributionsy (¢, (t)) satisfying,

d(h(t), pi(t), p_1(t)), i€, ﬁk(ék(t)) € argmrengak) [ Z Wk,pk.(/?)k,Pk. (t) + ki H (7))

Ou(t) = oA, P (1), Py () + Enpy 08, ) P A @

where H represents the Shannon entropy function. In general,
where,V(lx, s) € {1,..., L} x SU{(0,0)}, andVk € K, given a probability measurer, ..., 7y over an set ofN
sk’quk,sk)(t) is the realization at time of a random variable glements, it follows that

k . . .
€ g qllromn) which represents the additive noise on the observa-

N
tion'of the instantaneous performang@) when FBSE plays H(my,oomy) = = 3 T In(m). 9)
action q;Wk). Here, we assume thét |, q(ek,sk)] = 0. n=1
1)

Our behavioral assumption is that all FBS are interest&@’ all k € K, the parametek, > 0 represents the interest of
on choosing the probability distribution(t) € A (A,) to FBSk to choose other actions rather than the optimal one in
optimize the time-average interference minimization feit Order to improve the time-average interference minimazati
each timet > 0, i.e., ¢ (t), which is calculated empirically Metric.

based on the observations(t) as follows The unique solution to the right hand side of the optimizatio
' problem in [8) is written as:
t . . ] .
J)k (ﬁ) _ % Z %k (n) (6) Br(Pr(t))= (5,6711;0,0)(¢k(t))73khqi"1,1>(¢k(t))7---ﬂkyqi"Lk,s)(¢k(t)))7
n=1 (10)

where for allk € K and for all (¢, si) € Lr x SU{(0,0)}
To choose the optimal probability distribution(¢), the andk € K:
FBS relies on estimations of the time-average interference 17
minimization metric obtained with each of its actions. For . exp (E%,q;@k’b‘k)(t))
all (L, s) € {1,.... Ly} x SU{(0,0)}, let &y o (2), By, qttee (D1(1)) = T ;A

L . . kg *L i meeAk. exp (m-, ¢k,pk(ﬁ))

be the estimation of time-average interference minimizati R F
metric obtained by playing actioq,(f"’sk). This estimation is where3, c«,..,) (¢x(t)) > 0, with strict inequality regardless
calculated as follows, I

of the estimation vectot, (t), with ¢ > 0. Equation [I1L) is
‘ known in the game theoretic jargon asioothbest response

; _ 1 7 [7] and implies a different concept of equilibrium with resp
(bk,qf’“’”')(t) T, o) @ _1qbk(n)]l{pk(n):qﬁk““}(7) to the classical Nash equilibrium. This equilibrium, known
t " as logit equilibrium or Boltzmann-Gibbs equilibrium [12 i
¢ defined as follows,

where, T’ () = 1 .. Once theN,- Definition 1: (Logit Equilibrium) : Consider the Markov
ko () nz:; {pk(n):qf*"”‘) " gameg = {G(h(t))},5,- The mixed strategy profile* =

dimensional vector of estimations of FBSis obtained, i.e., (77,....,m%) € A (A1), x..., xA(Ag) is a logit equilib-
¢k = ((f)k q(o,o),(bk q(1,1)7 Ce (Z)k q(Lk,S)) for all £k € K, rium, if vk € K,

it is used to determine the optimal probability dis.tribmrtio =0, (ak (ﬂjk)), (12)
ﬂk(t) = (77']c q(o,o),ﬂ'k q(l'l)""’ﬂ-k q(Lk,S) at each timet. N

HE "k e i 1 —
For doing so, we define the functigh, : RV — A (A). Note wbere the N’& dimensional vector i () N
that the probability distributions,, qbk(zf)) must take into (¢k,q§;’v‘” (”—k)’%,q;j*” (ﬂ-_k)""’(z)k,qgf"’s) (”—k))

consideration that, FBSs must experiment between differdd the expected interference minimization metric, i.er,afip
actions such that the estimation vectpy(t) is improved at # € K and for all (¢, sx) € {1,..., Ly} x SU{(0,0)}),

each timet, but also FBSs must optimize their respective

interference minimization metric. In the following, we peat ~ B [ Z H . (ron) -I
the existing trade-off between both goals which might appe&.q ‘- (7=#)=E» [ ey | PG JH")J :
at a first glance as two antagonic processes. P €Ak \JER\{K}



Note that Def.1 implies a fixed point equation as inV(¢x,sk) € {1,..., Ly} x SU{(0,0)},
the case of the classical Nash equilibrium [10], e.g., let

KN [ ¢ on® = & a0+
B RE= N L A(A) x,... x A(Ag) be defined as | Bt koay k)
follows, i {pkm:qgww o
O‘(t) .,.-k q(ekvsk)(t) ¢(t)_¢k-,q§k”sk)(t—1))7
" n ]
B(m) = (/g1 (le (7771)) oo Br (¢K (7"'71())) . P q(ék.,sk)(t) = 7 q(ek.,sk)(t—l)-ﬁ-
H Uk Uk
. . . I l A(t) (ﬂ e (Be®) =7 (00 (t—1>)7

Thus, if #* is a logit equilibrium thenz* = 3 (7*). { palti (BO) 77, oy

It is also imp_o_rtan_t to re_mark that whes, — 0, the where <5 (0) € RM and mx(0) € A (A,) are arbit(r;?))/
resulting probability dlstrl_butlon approac_hes the bespamse ini iaIiz'atikons and\ and « a]Fe learning rgtes chosen such
(BR) correspondence. First, let us define the best respojise:

correspondence as follows:

Definition 2: (Best Response Correspondence)Consider . )
the Markov gamej = {G(h(t))},5,. For all k € K, the A ) alt) +A(1) = oo (16)
best response correspondance in pure strate@iBs : H x Tt=0
. A (A;) — Ay is defined as follows:
Wiy & (A) = Ax Jim Y7 a(t) +A(1)? < oo, and, (17)
T
BRy(h(t), m_x(t)) = 0
lim —= = 0. (18)
t~2 a(t)

arg max ¢(h(t),qx,p_1) i (1) |- (13) .
apeAL Z peE je,l_\[{k} ’ Then, both learning processes [n}15) converge forkadl K,

P_pEA_} .
and it holds that,
Now, we show how both smooth best respofisé (11) and the Jim i (t) = g, (19)
best-responsé (1L3) are related when the perturbationofntr LT ~
term in [8)) vanishes. Jim ¢, e (t) = dp(mly), (20)

Theorem 1:(Theorem2 in [9]) Consider the Markov game . . e
G = {G(R(1))},5o- Then, for allk € K and for all(fy, s,) € “Where = = (mi,...,mj) is a LE of the gamey =

i : {G(h())}150-
Ly x SU(0,0)}, it holds that: The proof of Prop[Jl follows the same steps of the proof of

Prop.3in [9] and can be described in three steps. First, the pro-
]l{q;_’-’k~%>e]3Rk(,,_k)} cessesp, (t),..., ¢y (t) and the processes; (t),...,mwk(t)
. (14) can be written as two stochastic approximation (SA) algo-
| BR: (7] rithms ¢(¢) and 7 (t) by stacking them as a single vectors.
Second, both SA algorithms satisfy the standard conditions
The proof of Theorerfil1 follows the same arguments that tie approximate them by two ordinary differential equations
proof of Theorem2 in [9]. Theorem(]L implies that as long(ODE) [11]. Finally, using [(I8), it can be assumed that the
as_the perturbation vanishes, the mixed strategies ohtz_hi;ne _process(ﬁ(t) sees the process(t) as almost time-invariant,
using the smooth best-response approach a uniform pragabiind the process(t) sees the procegs(t) as always calibrated
distribution over all the actions of the best response avergi to the current value of the former. Applying this reasoniag t
time ¢. the asymptotic analysis of the ODEs leads to the proof of
Conversely to the vanishing perturbation case, whgr-  Prop.[1.
oo, the resulting probability distribution approaches thé- un
form probability distribution over all the set of feasible V. SIMULATION RESULTS
frequency-bands and power-levels sets. In the following se Consider only one macrocell per frequency band and as-
tion, we introduce a novel technique for achieving LE for gumes$ = 4 available frequency bands, i.64 = S = 4. The
given set of constants,, . .., k. macrocell system is underlaid withh = 2 femtocells. We
assume that femtocells have= 3 transmit power levels and
the average signal-to-noise ratio for the macro- and feati®oc
IV. ACHIEVING THE LOGIT EQUILIBRIUM (LE) are 20 dB and 10 dB per frequency band, respectively.
More precisely,V(k,s) € K x S, sNr{®=2kpex—10dBs and
In this section, we focus on the procedure used by FBS§, ¢ M, snrGm)—29m _2dBs. The minimum SINR of
to achieve a logit equilibrium for a given constant set OL T com
the macrocells are given b¥, = (8,9,12,13) dB. The

parameterss,, with & € . We present the main result of; > TS 70 . .
this paper in the following proposition. interference minimization/minimization metric adoptedtis

numerical example is the following:

lim 6k,q2,lkvsm (ak (ﬂ-*k)) -

Kk —0

Proposition 1 Achieving the LE): Consider the game
G = {G(h(t))};>o- Assume that the estimation of the o(h(t),p.(t),p_,(t) =
time-average interference minimization metric and theeahix K S (s M
strategy of FBSkL are calculated as followsyk € K and Dkt 2ot Vi (t>'H'rn=1]l{{ry(()?x')(t)>r[()‘?:;)}}' (21)



This metric at a given instant is different from zero only
if all the MBSs satisfy at timeg the minimum SINR level
required for their own communications. The non-zero valt
represents the sum of the achieved SINR of all the FBS in t
system. Hence, as long as all MBSs see their QoS requirem
satisfied, FBSs obtain a positive reward. This models aicert:
altruism from the behavior of the FBSs which sacrifice the
performance to guarantee the QoS of the macrocell syste
Many other interference minimization functions can be degi
to model the problem depending on particular features of t
network. However this is out of the scope of this paper.

In Figure2, the evolution of the probability distributiowey
the set of actions taken by both FBSs is shown. As time gc
by, FBSk = 1 increases the probability to transmit with the 4 S G A [ S N S S S
maximum power level on frequency bard= 1, while the Time Interval .« Time Interval .«
probability of transmitting on other bands decreases. @n tn
other hand, the probability that FBS = 2 transmits with Fig 3. Evolution of the ergodic transmission rate of fereiba (left) and
maximum transmit power level on carrier= 2 increases with femtocel2 (right).
time, whereas the probabilities of transmitting over thieeot
frequency bands decrease. It can also be seen that altho
femtocells do not communicate with each other, they coorc
nate their access to the spectrum by using different freqyuer
bands with very high probability. Note also that= 1 and
s = 2 are the frequency bands where the corresponding Mt
demands the lowest SINR level. Figlide 3 shows the evolutir
of the corresponding ergodic transmission rate for both.FB
Finally, the evolution of the ergodic transmission rate lod t
macrocells is shown in Figufd 4. Clearly, all requirememés a
satisfied for the macrocell system.
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