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Abstract—We present a closed-form maximum likelihood-
based data detection algorithm for long-haul optical channels
with dominant nonlinear phase noise induced by self-phase mod-
ulation. The closed-form detector is evaluated in terms of symbol
error rate as a function of input power, and compared with other
sub-optimal detectors as well as a non-parametric detector. We
show that the performance of the detector deteriorates for high
input power levels, resulting in an optimal operation region. We
also provide insights into the behavior of the detector in the
highly nonlinear regime.

I. I NTRODUCTION

Coherent optical communication systems employing polar-
ization multiplexed multi-level quadrature amplitude modu-
lation (M-QAM) offers a significant increase in data rate
compared to traditional binary signaling, such as on-off key-
ing. However, M-QAM systems are more sensitive to channel
impairments, due to the encoding of data into the phase of
the optical signal and the more densely packed constellation.
One of the major limitations is the Kerr nonlinearity, which
distorts the propagating signal and, for a given system, gives
rise to a finite optimal input power. The impairments from
the Kerr nonlinearity include both deterministic and stochastic
effects [1]. For example, intrachannel four-wave mixing leads
to nonlinear inter-symbol interference (ISI), but in principle
this effect can be compensated for, as shown in [2]. On the
contrary, the self-phase modulation (SPM)–noise interaction
is interesting to study since it is a fundamental limitation
that only can be partially compensated for using statistical
methods.

The interaction of the signal and optical amplifier noise
via the Kerr nonlinearity leads to nonlinear phase noise
(NLPN) [3], which in signal space can be viewed as symbols
elongated in the phase direction. An experimental investigation
has showed that NLPN is a limiting factor [4] and recent
results indicate that NLPN is important up to 40 Gbaud [5]. A
mitigation technique for this effect was studied in [6] under the
assumption of distributed amplification (see [7]) and constant
amplitude binary modulation.

Maximum likelihood (ML) detection, which requires the
computation of the probability density function of the received
signal, is used extensively in linear wireless communications.
The ML-based algorithms developed for linear channels will
cause catastrophic performance degradations when used for
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Fig. 1. Optical transmission model: the transmitted signalpasses through
Na spans of fiber. Each span induces a non-linear rotation and attenuation.
Every span has an amplifier that compensates for the attenuation and causes
ASE noise.

nonlinear channels. A study on the performance degradation
is presented in [8] for clock recovery in the presence of NLPN.
In [9], ML decision boundaries are derived for an optical chan-
nel with nonlinear phase noise, only considering distributed
amplification. In addition, mitigation for 16-QAM is inherently
sub-optimal as it comprises two stages: ring discrimination
followed by phase post-compensation. Very little work has
been performed on ML detection in the presence of discrete
amplifiers.

In this paper, we derive a closed-form ML-based data
detector for a polarization-multiplexed M-QAM system with
discrete amplification, limited by NLPN. The long-haul link
is assumed to use optical dispersion compensation in order
to be able to neglect the effects of dispersion and nonlinear
ISI. The closed-form detector is compared with a number
of sub-optimal detectors that account for varying degrees of
nonlinearity, as well as a complex non-parametric detector.
Although the latter performs better than the proposed closed-
form detector, the closed-form detector provides the best
complexity-performance trade-off.

II. SYSTEM MODEL

We consider a 16-QAM dual polarization coherent optical
communication system as given in Figure 1. The transmission
system in long-haul optical links consists of multiple amplifier
stages to compensate for the dispersion and signal attenuation.
Each amplifier stage consists of a single mode fiber (SMF)
followed by a dispersion compensating fiber (DCF) with
Kerr nonlinear parametersγSMF andγDCF, respectively. The
DCF is assumed to ideally compensate for the chromatic



dispersion. In each fiber span, the signal power is attenuated
by e−ξ = e−(αSMFLSMF+αDCFLDCF) whereαSMF andαDCF

are attenuation factors andLSMF andLDCF are the lengths
of SMF and DCF, respectively. The amplifiers restore the
signal power to the levels in the transmitter side by a power
gain G = eξ. In addition, each amplification adds amplified
spontaneous emission (ASE) noise, which is modeled as an
additive white Gaussian noise process. The complex baseband
signal fed to the optical link by the transmitter (TX) is given
by

s(t) =
√

Pin

+∞
∑

n=−∞

anp(t− nT ), (1)

wherean = [a
(X)
n , a

(Y)
n ]T ∈ Ω2 is then-th data vector from a

normalized constellationΩ with E[ana
H
n ] = I, T is the symbol

duration,Pin is the launch power, andp(t) is a pulse with peak
amplitude 1 att = 0. The optical signal after thei-th amplifier
is given by

ri(t) = ri−1(t) exp
(

jγLeff ‖ri−1(t)‖2
)

+ ni(t), (2)

wherer0(t) = s(t), γ = γSMF is the nonlinearity parameter of
the fiber1, Leff =

(

1 − e−αL
)

/α is the effective length of the
fiber for attenuation factorα = αSMF and lengthL = LSMF,
the operator‖ ·‖ represents the norm given by‖x‖ :=

√
xHx,

and ni(t) is ASE noise, which is zero-mean and has power
spectral density per polarizationN0,ASE = hνnsp(G− 1) in
whichh is Planck’s constant,ν is the optical frequency,nsp is
the spontaneous emission factor, andG is the amplifier gain.
Prior to launching into the next span, the noise is bandlimited
to a bandwidthB.

In order to simplify the system model and focus on the
effect of SPM, we neglect the effects of polarization mode
dispersion and local oscillator phase noise and assume that
perfect timing and frequency synchronization is achieved.This
implies that the performance we achieve can be interpreted as
a lower bound on the symbol error rate (SER) of a practical
system.

III. D ATA DETECTION

A. Discrete-time Observation

The received signal afterNa consecutive amplifier stages is
converted to the electrical domain, filtered at the bandwidthB
and sampled at the symbol rate1/T . The filter is assumed to be
flat within the signal bandwidth and to be a square root Nyquist
filter for rate1/T . This gives rise to equivalent samplesri,k =
ri(kT ), where

ri,k = ri−1,k exp
(

jγLeff ‖ri−1,k‖2
)

+ ni,k. (3)

Substitutingri−1,k recursively, we find thatrk , rNa,k can
be expressed as

rk = sk exp

(

jγLeff

Na−1
∑

i=0

‖ri,k‖2

)

+ wk, (4)

1Since the input power to the DCF is low, SPM is neglected in theDCF.

wheresk =
√
Pinak (assuming negligible inter-symbol inter-

ference),wk ∼ CN (0, Naσ
2
ASEI), and σ2

ASE = BN0,ASE.
Further substitution of (3) into (4) yields

rk = sk exp
(

jγLeffNa ‖sk‖2
+ jψk + jφk

)

+ wk, (5)

where, conditioned onsk, ψk is a zero-mean Gaussian random
variable with variance

σ2
ψ = 2γ2L2

eff ‖sk‖2 σ2
ASE(Na − 1)Na(2Na − 1)/6, (6)

andφk is a random variable with mean̄φ = γLeffσ
2
ASE(Na−

1)Na/2, but is independent ofsk. The derivation of steps (3)
to (5) and exact expressions forwk, ψk andφk can be found
in Appendix A.

B. Approximate Likelihood Function

In the observation model given by (5), bothψk andφk are
correlated withwk. Due to the correlation, deriving the like-
lihood functionp(rk|ak) is difficult. Eventhough simulations
show thatφk is negligible, we approximateφk ≈ φ̄. We further
assume thatψk andwk are independent, in order to derive a
tractable, near-optimal detector. The likelihood function is then
given by

p(rk|ak) =

+∞
∫

−∞

p(rk, ψk|ak)dψk (7)

=

+∞
∫

−∞

p(rk|ak, ψk)p(ψk|ak)dψk. (8)

Here,p(rk|ak, ψk) andp(ψk|ak) are both Gaussian probabil-
ity density functions given by

p(rk|ak, ψk) (9)

∝ exp

(

− 1

Naσ2
ASE

∥

∥

∥rk − ske
(jγLeffNa‖sk‖

2+jψk+jφ̄)
∥

∥

∥

2
)

∝ exp

(

− ‖sk‖2

Naσ2
ASE

)

× exp





2Re
{

r
H
k ske(

jγLeffNa‖sk‖
2+jφ̄)ejψk

}

Naσ2
ASE



 , (10)

and
p(ψk|ak) =

1
√

2πσ2
ψ

exp

(

− ψ2
k

2σ2
ψ

)

. (11)

Whenσ2
ψ is sufficiently small, the integration overψk in (8)

can be carried out approximately. The complete derivation can
be found in Appendix B, and leads to the following likelihood
function:

p(rk|ak) ∝ exp

(

− ‖sk‖2

Naσ2
ASE

)

I0(|βk|)
I0(1/σ2

ψ)
, (12)

whereI0(.) is the zeroth order modified Bessel function of the
first kind, and

βk =
2rH
k ske

(jγLeffNa‖sk‖
2+jφ̄)

Naσ2
ASE

+
1

σ2
ψ

. (13)



C. Closed-Form Data Detectors

The approximate likelihood function in (12) can be used as
a data detector, which is given by

âk = arg max
ak∈Ω2

p(rk|ak) (14)

= arg max
ak∈Ω2

exp

(

− ‖sk‖2

Naσ2
ASE

)

I0(|βk|)
I0(1/σ2

ψ)
. (15)

In the rest of the work, the detector in (15) will be called the
closed-form detector.

We will also consider two competing detectors: if we ignore
the nonlinearity completely, we have the observation model
rk = sk + nk, leading to the regular ML (RML) detector:

âk = arg min
ak∈Ω2

‖rk − sk‖2 . (16)

Note that in a linear channel, whereγ = 0, the detector in (15)
reverts to the RML detector. The second competing detector
only considers the deterministic part of the nonlinearity,as-
suming rk = sk exp(jγLeffNa||sk||2) + nk, leading to the
regular ML detector with post-compensation (RML-PC):

âk = arg min
ak∈Ω2

∥

∥

∥rk − ske
jγLeffNa‖sk‖

2
∥

∥

∥

2

. (17)

The complexity of the detectors scales asO(|Ω|2), where
|Ω| denotes the number of elements in the constellation.

D. Non-Parametric Detector

As we cannot develop an exact ML detector, there is no
baseline performance indicator. To gain insight into the ap-
proximations we made in developing the closed-form detector,
we here introduce a non-parametric detector [10], which first
learns the distributionsp(rk|ak), for every possible value of
ak, as a function ofrk. Once these conditional distributions are
known, we can evaluatep(r|a) for a new, previously unseen
observationr, for every possible value ofa ∈ Ω2.

1) Training: To train the detector we fix the transmitted
symbol vector toa ∈ Ω2 and generate a large number of
observationsr1, . . . , rN . We then approximate

p(r|a) ≈ 1

N

N
∑

i=1

Kσ (r − ri) , (18)

whereK(·) is a so-called kernel, a symmetric distribution
with unit variance. We choose a two-dimensional complex
Gaussian:

Kσ(x) =
1

(2πσ2)
2 exp

(

−‖x‖2

2σ2

)

. (19)

The parameterσ in (18) is called the bandwidth and is selected
according to the method described in [11]. This procedure is
repeated for every possible value ofa ∈ Ω2. The complexity
of the training procedure scales asO(N |Ω|2).

TABLE I
SYSTEM PARAMETER VALUES

γSMF 1.2 W−1km
−1 γDCF 5.2 W−1km

−1

αSMF 0.20 dB/km αDCF 0.60 dB/km

LSMF 80 km LDCF 11 km

B 14 GHz λ = c/ν 1.55 µm

nsp 1.5 Na 22

2) Testing: Once the detector is trained, we can commence
practical data detection. For every new observationrk, we
evaluatep(rk|a), for everya ∈ Ω2, and find the most likely
value fora. The complexity of the testing procedure scales as
O(N |Ω|2) per observation. This makes the application of the
non-parametric detector unsuitable for online processing.

IV. N UMERICAL RESULTS

A. Simulation Set-up

We present numerical results for 16-QAM with the proposed
closed-form detector, and compare with the three other detec-
tors (RML, RML-PC, and the non-parametric detector). The
number of training samples for the non-parametric detector
is set toN = 2 × 105. The system we consider operates
at 14 Gbaud per polarization, corresponding to an overall
data rate of 112 Gbit/s, which is compatible with emerging
standards for 100 Gigabit Ethernet. It has 22 spans, every
span consisting of 80 km of single-mode fiber and 11 km
of dispersion-compensating fiber. The values of all system
parameters are given in Table I.

B. Symbol Error Rate Performance

We first present results for a single polarization in Figure 2
and then extend to dual polarization in Figure 3. From Fig-
ure 2, we see that the RML detector has the worst performance,
as expected since it does not consider the phase shift due
to SPM. The RML-PC detector performance is significantly
better compared to the RML detector owing to its simple post-
compensation. However, its performance degrades as the input
power increases, because of the assumptionψk = φk = 0.
The closed-form detector and non-parametric detector yield
significantly lower SER values compared to the other detec-
tors. The closed-form and non-parametric detectors yield their
best performance around 4.7 dBm and 5.7 dBm input power,
respectively. The difference is expected due to the assumptions
made in the derivation of the closed-form detector.

For a dual polarization 16-QAM system, Figure 3 indicates
that the performance of the RML and RML-PC detectors de-
grade considerably, whereas that of the closed-form and non-
parametric detector degrade slightly compared to the single
polarization 16-QAM system. The degradation is caused by
the increase in nonlinear phase rotation which is proportional
to the total power inboth polarizations. In case of dual
polarization, the optimal operation region is around 4.2 dBm
and 5.2 dBm for the closed-form and non-parametric detectors,
respectively.

Overall, compared to RML and RML-PC, the closed-form
detector is less sensitive to small changes in the input power
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Fig. 2. SER as a function ofPin for single polarization 16-QAM.

and yields better performance. The non-parametric detector
performs better than the others, but the complexity is signifi-
cantly higher.

C. Discussion

In both Figure 2 and Figure 3, we observe an oscillatory
behavior of the SER performance. This effect is also apparent
in the results from [9], but no explanation was given. This
oscillatory behavior is caused by the signal power dependent
nonlinear phase rotation in the received constellation. The
signal power dependent phase rotation causes the signal points
on a ring with greater radius to rotate faster than the other
signal points. In Figure 4, the normalized received signal con-
stellations of a single polarization 16-QAM system are given
for different input power levels. The 16-QAM constellations
consist of three rings. The inner ring, comprising 4 symbols,
is least affected by SPM, so that increasing the input power
has no significant detrimental effect. The middle and outer
ring, comprising 8 and 4 symbols, respectively, are affected
by SPM, due to the dependence ofσ2

ψ on ||ak||. Two effects
occur: overlap of clusters within a given ring and overlap of
clusters from the outer with the middle ring. The latter effect is
visible at 4.00 dBm and 6.30 dBm (top left and bottom left in
Figure 4). The former effect is more pronounced at 7.10 dBm
(bottom right in Figure 4). The interaction of these two effects
causes the oscillations in SER.

V. CONCLUSION

We have presented a closed-form maximum likelihood-
based data detection algorithm for long-haul optical channels
with dominant nonlinear phase noise induced by self-phase
modulation. The detector is suitable for any memoryless mod-
ulation format. We have evaluated the closed-form detector
in terms of symbol error rate as a function of input power,
and compared with other sub-optimal detectors as well as
a non-parametric detector. From our simulations, we have
observed that the proposed detector yields the best complexity-
performance trade-off. We have also provided a qualitative
explanation of the behavior of the detector in the highly
nonlinear regime.
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Fig. 3. SER as a function ofPin for dual polarization 16-QAM.

APPENDIX A
COMPLETE DISCRETE-TIME OBSERVATION

We explain the transition from (3) to (5) in detail. In the first
step, substitutingri−1,k recursively in (3), and notingrk ,

rNa,k, we find that

rk = rNa−1,k exp
(

jγLeff ‖rNa−1,k‖2
)

+ nNa,k (20)

= rNa−2,k exp
(

jγLeff

(

‖rNa−2,k‖2 + ‖rNa−1,k‖2
))

+ nNa−1,k exp
(

jγLeff ‖rNa−1,k‖2
)

+ nNa,k (21)

= r0,k exp

(

jγLeff

Na−1
∑

i=0

‖ri,k‖2

)

+

Na
∑

i=1

ni,k exp

(

jγLeff

Na−1
∑

l=i

‖rl,k‖2

)

(22)

= sk exp

(

jγLeff

Na−1
∑

i=0

‖ri,k‖2

)

+ wk, (23)

wherer0,k , sk and wk is the second term in (22). In the
next step, further recursive substitution ofri,k yields

rk = sk exp

(

jγLeff

(

Na ‖sk‖2

+

Na
∑

i=1

(Na − i) 2Re

{

s
H
k e

(

−jγLeff

∑

i−1

l=0
‖rl,k‖

2
)

ni,k

}

+

Na−1
∑

i=2

2Re

{

n
H
i,k

i−1
∑

l=1

e

(

−jγLeff

∑

i−1

m=l
‖rm,k‖

2
)

nl,k

}

+

Na−1
∑

i=1

(Na − i) ‖ni,k‖2

))

(24)

= sk exp
(

jγLeffNa ‖sk‖2
+ jψk + jφk

)

+ wk, (25)

whereψk represents the second term andφk represents the
sum of third and and last terms inside the exponential in (24).



Fig. 4. Received 16-QAM constellation for different input power levels: 4
dBm (left top), 5.1 dBm (right top), 6.3 dB (left bottom), 7.1dBm (right
bottom).

Then, it is straightforward to show that

wk ∼ CN (0, Naσ
2
ASEI),

ψk ∼ N (0, 2γ2L2
eff ‖sk‖2

σ2
ASE(Na − 1)Na(2Na − 1)/6),

and

φ̄ = E[φk] = γLeffσ
2
ASE(Na − 1)Na/2.

APPENDIX B
DERIVATION OF THE L IKELIHOOD FUNCTION

We derive the approximate likelihood functionp(rk|ak).
Let g(µ, σ2;x) denote a Gaussian density function inx with
meanµ and varianceσ2 in x. The following property relates
a Gaussian distribution to a von Mises distribution [12].
Property I: Forσ2 ≪ 1 andx restricted to the interval[−π, π)

g(0, σ2;x) ≈ 1

2πI0(1/σ2)
exp

(

cos(x)/σ2
)

, (26)

whereI0(.) is the zeroth order modified Bessel function of the
first kind.

We now return to our problem of determiningp(rk|ak).
Substituting (10) into (8) yields

p(rk|ak) (27)

∝ exp

(

− ‖sk‖2

Naσ2
ASE

) +∞
∫

−∞

exp
(

Re
{

zke
jψk
})

g(0, σ2
ψ;ψk)dψk,

where zk = 2rH
k ske

(jγLeffNa‖sk‖
2+jφ̄)/(Naσ

2
ASE). We now

use Property I and find that

p(rk|ak) (28)

∝ exp

(

− ‖sk‖2

Naσ2
ASE

)

1

2πI0(1/σ2
ψ)

(29)

×
π
∫

−π

exp
(

Re
{

zke
jψk
})

exp
(

cos(ψk)/σ
2
ψ

)

dψk,

= exp

(

− ‖sk‖2

Naσ2
ASE

)

1

2πI0(1/σ2
ψ)

(30)

×
π
∫

−π

exp
(

Re
{

βke
jψk
})

dψk,

= exp

(

− ‖sk‖2

Naσ2
ASE

)

I0(|βk|)
I0(1/σ2

ψ)
, (31)

whereβk = zk+1/σ2
ψ. We remind thatσ2

ψ is itself a function
of ak.
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