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High Throughput Random Access via Codes on
Graphs: Coded Slotted ALOHA

Enrico Paolini, Gianluigi Liva, and Marco Chiani

Abstract—In this paper, coded slotted ALOHA (CSA) is possibly allowing to recover the whole set of bursts trartisdi
introduced as a powerful random access scheme to the MAC within the same MAC frame. This results in a remarkably
frame. In CSA, the burst a generic user wishes to transmit in improved normalized throughpist (defined as the probability

the MAC frame is first split into segments, and these segments N . -
are then encoded through a local a packet-oriented code prido of successful packet transmission per time slot) which may

transmission. On the receiver side, iterative interferene cancel- réachsS ~ 0.55, whereas the peak throughput for pure SA is
lation combined with decoding of the local code is performed S = 1/e ~ 0.37. Further improvements can be achieved by
to recover from collisions. The new scheme generalizes theexploiting the capture effect|[3].[7].

previously proposed irregular repetition slotted ALOHA (I RSA) In [8], [0] irregular repetition slotted ALOHA (IRSA) was

technique, based on a simple repetition of the users’ burstsAn . . .
interpretation of the CSA interference cancellation proces as an introduced to provide a further throughput gain over CRDSA.

iterative erasure decoding process over a sparse bipartitgraph A higher normalized throughput is achieved by IRSA by
is identified, and the corresponding density evolution equéons allowing a variable and judiciously designed repetitiotera

derived. Based on these equations, asymptotically optimalSA  for each burst. As for DSA, the performance improvement
schemes are designed for several rates and their performaac achieved by CRDSA/IRSA has a counterpart in the increment

for a finite number of users investigated through simulationand . - . e
compared to IRSA competitors. Throughputs as high ag).8 are of the average transmitted power. Since CRDSA is a specific

demonstrated. The new scheme turns out to be a good candidateinstance of IRSA, in the following we will refer in general
in contexts where power efficiency is required. to IRSA. In [§] it is also illustrated how the iterative burst

recovery process on the receiver side can be represented
via a bipartite graph and how, under the assumption of an
ideal channel estimation and of a sufficiently large sigoal-
Although demand assignment multiple access (DAMAjoise ratio (SNR), it shares several commonalities with the
medium access control (MAC) protocols guarantee an efticiefyaph representation of the erasure recovery process aémod
usage of the available bandwidthl [1], MAC random acceghannel codes on sparse graghs [10]] [11].
schemes remain an appealing and popular solution for 8sele |n this paper, we introduce a further generalization of
networks. Among them, slotted ALOHA (SALI[1]5[3] is|RSA, namedcoded slotted ALOHACSA). The basic idea
currently adopted as the initial access scheme in bothlaellugf CSA is to encode (instead of simply repeat) bursts using
terrestrial and satellite communication networks [4].Bh §n  |ocal codes prior to transmission in the MAC frame and to
improvement to SA was proposed, namely, diversity slotteémbine, on the receiver side, iterative IC with decoding of
ALOHA (DSA). In DSA, each packet (also calldalrs) is  the |ocal codes to recover from collisions. The new scheme
transmitted twice over the MAC frame, which provides a dlighurns out to be interesting especially in contexts wheregrow
throughput gain over SA. As a drawback, for the same pegfficiency is required. Density evolution equations for CSA
transmission power of the SA scheme, the average transimitige derived to analyze the IC process in an asymptotic gettin
power of DSA is doubled. leading to the calculation of the peak asymptotic throughpu
A more effective use of the burst repetition is provided byjumerical results are then presented to illustrate thediggli
contention resolution diversity slotted ALOHA (CRDSA) [6] of the proposed asymptotic analysis and its effectivenmetiss

whose basic idea is the adoption of interference Canmatidesign of CSA access schemes for a finite number of users.
(IC) to resolve collisions. More specifically, with respeot
DSA, each of the twin replicas of a burst, transmitted within
a MAC frame, possesses a pointer to the slot position where
the respective copy was sent. Whenever a clean burst issimilarly to [6], [8], we consider a random access scheme
detected and successfully decoded, the pointer is extracighere the slots are grouped in MAC frames, all with the same
and the interference contribution caused by the burst copy length (in slots). We further restrict to the case where eesen
the corresponding slot is removed. This procedure is #€rat attempts one burst transmission per MAC frame.
- . . . N ConsiderM users, each attempting the transmission of a
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. . . N sum nodes
user would generate a certain numbef replicas of his burst, osA

where r may be not the same for two different users, and D D
would transmit the- replicas intor slots chosen uniformly at
random among the availabl€s, slots. O

In CSA, when a user wishes to transmit a burst of time I 1 1 I I
durationTsa over the MAC frame, the burst is divided into M burst nodes

k information sub-bursts (also called informatisagments

each of time duratioffcga = TSA/k_ The k information Fig.}\/:b. Graph representatit?]n ofCSA.dCirclezare thee%man_?hrezresent
H e users, squares are the sum nodes and repres: S. e degree

Segmems are then enCOde_d by the user via a paCket_orlemeqlfﬁa burst nodqe is equal to the length of the Fl)ocally employedec ?he

nary linear block code which generates encoded segments,degree of a sum node is equal to the number of collided enceeigahents.

each of time duratiofcsa = Tsa/k. For each transmission, The example is fok = 2.

the code to be employed is drawn randomly by the user from

a set ofn. possible codes. Far € {1,...,n.} the hth code,
denoted byé},, is a(n, k d™ ) code, that is it has length,, Without substantially affecting the obtained results, laswa

7 “min h) in [6] and [9] for CRDSA and IRSA, respectively.

dimensionk, and minimum distancéfn.n. We further impose ] ) )
Each coded segment associated with a BN of tyipes

that 43, has no idle bits and fulfillszclmfi)m > 2. We assume _ g . .

that, at any transmission, each user independently chcbrjrsesequ'pped with information about the r%levant User an.d with

local code according to a probability mass function (p.)n.f‘.a. pointer to the ot_hemh . 1 sggment - On th.e recever

P— [P,]’, which is the same for all users. Denoting agai ide, segments which collided in some slot with those sent
- h=1 .

by Ty the MAC frame duration, the MAC frame is compose y another user are marked as lost, so that a BN is connected
of NI;SA — Ty /Tesa = kNsa siots Then,, coded segments to “known” edges and to “unknown” ones. Hence, some of its
are then transmitted by the user owerslots picked uniformly information bursts are known, and the others unknown. At the

at random. Note that IRSA may be seen as a special caselgpenc BN (say of type,), erasure decoding of the CO%L.
CSA wherek = 1 and eacli;, is a repetition code of length may allow to recover some of the unknown encoded and infor-

nn, and that SA is a special case of IRSA wheye— 1 for all matiqn segments. It is now possible to subtract the intenfes
userdl The overallrate of CSA is defined a® — k/n, where contr_|but|on of_the _newly recovered _encoded segments from
7 := Y7 | Puny, is the expected length of the code employe@e S|gngl reqewed in the corresponding slot/ H 1 segments

by the generic user. Note thatP — n/k — 1/R represents that coII|de<_j in a SN of degre@ have been recovered by the
the increment of average power with respect to pure SA. corresponding BNs, the remaining segment becomes known.

It is now convenient to introduce a graph representation gpe IC process combined with local decoding at the BNs

CSA, depicted in Fig:]1. Let us consider a MAC frame conP—rOCeedS _it_eratively, e, clean_ed segments may aIIQWm}pI
posed ofN¢ga slots, in whichM users attemptatransmission.Other. CO"'S'On.S' Note that this proc_edure IS eqm_va_llent 0
rative decoding of a doubly-generalized low-densityitga

. . |
The MAC frame status can be represented by a bipartite graé &ck (D-GLDPC) code over the erasure charingl [14], where

fgor:e;i’hsbiz’stc?rgi‘:gﬂg e(()jf ii Stﬁteg i; Aj\\é l;l;r;te; ogez(igtgfe variable nodes are generic linear block codes and checksnode
' are single parity-check (SPC) codes.

Ncsa sum nodegone for each slot), and a sétof edges. An ) .

edge connects a burst node (Bl)< B to a sum node (SN) Denoting by N = Ncsa the number of slots (a multiple of
s; € S if and only if an encoded segment associated wify» the logical normalized offered traffic’ is given b

the ith burst is transmitted in thgth slot. In other words, kM

BNs correspond to bursts, SNs to slots, and edges to encoded G = N )
segments. Therefore, a burst split iktanformation segments
and encoded via the codg, is represented as a BN withy,
neighbors. Correspondingly, a slot whetereplicas collide e
is represented as a SN with connections. The number Ofstandard SA we havb = Ge™™.

edges emanating from a node is the node degree. Moreover, gF‘inally, we recall the definition oinformation fungtionof
BN where;, is employed during the current transmission i@ llnéar block COddﬂS)]' LeG be a generator matrix for an
referred to as a BN of typé. (n, k) linear block codé&s’. Thegth un-normalized information

In our analysis, we rely on three assumptionsSaificiently function of #', denoted byég_, is defined as the sur_nmat_ion of
high SNR This allows to claim that, when a segment iéhe ranks over all the possible submatrices obtained sadect

received in a clean slot, it is known at the receiver. ) columns (with0 < g <n) out of G.
Ideal channel estimationUnder this assumption (and the o _ . ,
2In practical implementations, the overhead due to the @iotuof pointers

prewo_us one), 'dea_l IC is pOSS_It_)le, alloyvmg the_ reCOVeRy ihe segment header may be reduced by adopting more efffte@miques.
of collided bursts with a probability that is essentiallyeon For fixedk, one may include in the segment header the code ihdmgether

3) Destructive collisionsSegmentS that collide in a slot arevith arandom seed, out of which it is possible to reconsttogta pre-defined

treated as erasures. These assumptions sim Iify the imalgseudo-random number generator) the positions ofthesegments.
: p P s3'In CSA and IRSA we distinguish tHegical load G from thephysicalload

given by %G = G/R and representing the average number of transmitted
1We point out that CSA may be seen as a generalization als@afdiemes segments per slot. The logical lo&# provides a direct measure of the traffic
proposed in[[12],[T13], where no IC was used. handled by the scheme. Note that the two concepts coincigerna SA.

The normalized throughpuff is defined as the probability of
successful packet transmission per time slot. For exarnfqie,



[1l. DENSITY EVOLUTION, THRESHOLD, AND STABILITY SNs to the BNs. Consider a BN whe#g is employed and let
h . .
The degree distribution of the SNs from a node perspectm(a) be the average probability that an edge carries an erasure

s defined as message outgoing from the BN, after MAP decoding at the
. BN. Then, we have
= Z \deI (2) np—1
d>0 Z P (L= pica)™  [(ng — t)ég;)—t

where W, is the probability that a SN has degrée
Let us consider a user encoding his segments through the (t 4 1)é ~(h) ] @

code %3, and allocating hisn;, encoded segments intoy, Crn—1-t

slots chosen randomly. Then, the probability that the Biherez!" is thegth unnormalized information function ;.

associated with this user (saly) is connected to a SN

A may be expressed as the ratio between the number

ways of connecting ther;, sockets ofU to the N SNs

T&e proof of Propositiofl1 is omitted due to space conssaint
Note that the proof follows exactly the same argument used in
such thatl/ is connected tod. to the total number of [16, Theorem 2] to derive the expression of the EXIT function
ways of connecting the,, sockets ofl/ to the N SNs: of a linear block code without idle bits over the binary erasu

Pr{U is connected toA|U uses?;,} = (N71)/(Y) = = channel.

nh—l Nnhp N

Therefore we have: Proposition 2: Assume MAP decoding is used at each BN.
A At the ith iteration, letp;_; be the average probability that
Pr{U is connected toA} = Z P, N =N an edge carries an erasure message from the SNs to the BNs,

before MAP decoding at the burst node. lkgbe the average
Since each user selects his slots independently of all thebability that an edge carries an erasure message from the
other users, the probability; that a SN has degre&(that is burst nodes to the SNs, after MAP decoding at the BNs. Then:
the probability that the SN is chosen byusers) is given by —

w=() ) -5 ZPh > rhalt = pica)™ (= 020

d N N
@ (M) (nG)d (1 FLG)M_d (t+ 1)é 2,’_1 - ®)
“\d )\ kM kM
he g Proof: For all h € {1,...,n.}, let A, be the probability
- % (% G) as M — oo (3) thatan edge is connected to a BN of typeWe have
where equality (a) follows from{1). Therefore, in the limit An = Ph_nh . (9)
where M (and consequently, for fixed and k£, N through o " )
(@) tends to infinity, [2) may be written as The proposition is proved by observing that
e kG i N4 n (h)
U(z) = Z —— (=G 2l =exp(—-G(1—2)) . (4) Z Ang; (10)
5 ()" - (-0 -)
Using [@) we can now express the probabifitythat an edge and by incorporating {7) an@l(g) inth {10). u
is connected to a SN of degree> 1 as: The following is a well-known result from basic density evo-
. lution on the erasure channel for irregular LDPC codes [11].
nq a
Yad _ Yad _ (3G)  _so )

P S W () (d- 1)
Therefore, the degree distribution of the SNs from an edge
perspective is given by

Proposition 3: At the ith iteration, letq; be the average
%robablhty that an edge carries an erasure message from the

i BNs to the SNs before decoding at the SNs. petbe the

 _ag (% Gz B n average probability that an edge carries an erasure message
plz) =e* Z @—nr P (_EGO - x)) (6) from the SN to the BNs after IC at the SNs. Then:
a>1
andp(z) = ¥(z). pi=1-p1-q). (11)

For given k£ and G, we investigate the evolution of the
decoding process described in Sectioh Il in the asymptotic
case wheré/ — oo (and consequentliV — oo through [1)).

IncorporatingIIB) into[(T]1) and recallingl(6), we obtain the
nonlinear difference equation

np— 1

Y . . ;= - — P 1 — i np—1—t
Proposition 1: Assume MAP decoding is used at eachp eXp{ Z 4 Z pia(l=piza)

BN. At the ith decoding iteration, lep;_; be the average ( ) _(h)

probability that an edge carries an erasure meEsﬁngm the X [(nn = t)ey, = (t+ 1), 1—t]} (12)

4This is the probability that an edge is associated with ameed segment which expresses _the evolution of the average propability
that is still unknown. that an edge carries an erasure message atthhdecoding



iteration. The initial value of[(12) shall be setjpg = 1. The %, irrespective of the order of the columns, and b}ZSW

asymptotic threshold* of the system is defined as the summation over alq ) matricess, (") \We have:
g

G :=sup{G>0:p;, —>0asi— oo, po=1}.

h
The thresholdG* is the supremumG such that, in the F(0) = EZP"GE)
asymptotic setting/ — oo, the normalized throughput h=1 )
fulfills S = G. For all values ofG < G* the offered traffic _2G = P (nn—1)é,2y AL
turns into useful throughput and therefa@ré is the asymptotic ok — g 2 n-2
peak throughput. ne
Using standard bifurcation theory, the thresh@tdis equal @ 2G Z P, [k( h ) ~§lh)2]
to the smallestz > 0 such that, for somé < z < 1, (z,G) k np —2
is a solution to the system of simultaneous equations e *)
= Z Py Z (k — rank(S,,”’5))
f(z,G) == (13) & h=1 g
oG (14) of ph 1 i .
0 if d>3
where
o — In the previous equation list, both (a) and (b) rely on the
flz,G)=1-— exp{ _ Z P, Z at hypothesis thatl,;, > 2 and on [17, Proposition 2]. [
The stability condition is a necessary, but in general not
z'(1 —:v)"h‘l_t} (15) sufficient condition for successful decoding. Note alsot tha
the stability condition implies
andal™ = (nj, — t)el_, — (t+1)e"__,. k
G* < o4, (18)
A. Stability

that will be referred to as the stability upper bound, deddie
Difference equations such ds12) are often used to mo@ﬁL Note that in the IRSA case:(= 1) we haved, = P,

discrete dynamical systems. These systems are typically @here P, is the probability to select the Iengﬁhfepetmon

alyzed as regard to the stability of their fixed (or steady:nde, and therefore for IRSA we obtaii < 2P

state equilibrium) points. A fixed point of z; = f(z,-1) In the case wheré = 2, (I8) may be achieved with equality.

is known to be |OC3.”y stable if there exists > 0 such Indeed, this is the case when = 1 and the b|nary linear

that limg,oc z, = & for all zo such that|zg — Z| < €. block code? employed by all users is a SPC code.
The following well-known result establishes a necessary an

sufficient condition for local stability of a fixed point. Proposition 5:Let n. = 1 and the linear block cod&’
employed by all users be @& + 1, k) SPC code. Then
Lemma 1:A fixed pointz of a discrete dynamical system 1
x¢ = f(ze—1), wheref : R — R is a differentiable and single- G = ] (19)

valued function, is locally stable if and only jf’(Z)| < 1.
and [I8) is achieved with equality.

It is readily shown thap = 0 is a fixed point of [AR), Tne proof is easily obtained by recastifigl(13) and (14) for
corresponding to successful IC. Therefore we may aqup(

_ > i : e special case of SPC codes and by showing(thaﬂ) =
Lemma[l to study its stability. We obtain the following resul (0,1) is a solution to the system and that o< L exists

such that(z, G) is a solution to the system for a@yg x < 1.
Proposition 4 (Stability condition)For h € {1,...,n.},

let 4, be a (nh,k,dfm)n) linear block code employed by IV. CSA FROM RANDOM LINEAR BLOCK CODES
each user with probability, at each transmission andf,” So far the generic user has been assumed to encode, at each
be the number of weight- codewords ofz;,. Moreover, let transmission, its: information segments via afny,, k, dfm)n)
d = min, {d7) } andD = {h: d") = d}. If d =2, then the binary linear block code picked randomly with p.mP=
fixed pointp = 0 of (1) is locally stable if and only if [P}, from an ensemble of,. candidate codes. In this
k section, we consider a slightly different situation. Sfieally,
G <o+ 51 (16) we assume that, at each transmission, the generic user picks
2
randomly a codeword lengthh, > £ from the ensemble
whered; =3, .5 PhAgh) is the average number of weight- {nq,... n, . } with p.m.f. Q= [Q, ]y and encodes hig
codewords. Else, il > 3, then the fixed poinp = 0 of (12) segments through a binaf¥ x n,) generator matrix generated
is stable for any value ofs. uniformly at random from the set of all rarik{k x n) binary

Proof: Let us define agairf(z,G) as in [I5) and let us matrices representing,, k) linear block codes without idle
denote bySq the generidk x ¢) matrix obtained by selecting bits and with minimum distance at leaktWe are interested
¢ columns in (any representation of) the generator matrix of calculating the expected threshalt for this scheme. The



TABLE |
OPTIMIZED PROBABILITY DISTRIBUTION P FORIRSA SCHEMES WITH RATESL/3, 2/5 AND R = 1/2 AND OPTIMIZED PROBABILITY DISTRIBUTION Q
FORCSASCHEMES WITHk = 2 AND RATES 1/3,2/5, 1/2 AND 3/5 UNDER THE RANDOM CODE HYPOTHESIS

IRSA G* &
(2,1) (3,1 (6,1)
R=1/3 0.554016 0.261312  0.184672 0.8792  0.9025
R=2/5 0622412 0255176 0.122412 0.7825  0.8033
R=1/2 1.000000 0.5000  0.5000
CSAk =2 G* G,
(3,2) (4,2) (5,2) (8,2) 9,2) (12,2)
R=1/3 0.088459 0.544180  0.121490 0.245871 | 0.8678  0.9427
R=2/5 0.153057 0.485086 0.135499  0.114235 0.112124 0.7965  0.8391
R=1/2 1.000000 0.6556  0.7500
R=3/5 0.666667 0.333333 0.4091  0.4091
advantage of aandom code hypothesis to allow to release where Eg, ,(a:) = [(ns — t)Eqg,_, (€n.—t) — (t + 1)
the analysis from considering a specific setpfcodes. EG,. 4 (én.—1-¢)], G* is equal to the smallest’ > 0 such

With respect to the previous case, the expres§ibn (Z)(ef) that, for somed < z < 1, (x,G) is a solution of [(IB) and
and the expressiohl(6) ofx) remain unchanged, provided the(I4), where nowf(z, G) is replaced byf(z, G).
definition of 72 is updated a& = }_°"y* Q. n,. Analogously, Using a proof technigue analogous to that of Proposiilon 4,
(I1) is not affected by the random code hypothesis. On thds easy to show that the stability bound is still given bg)1
other hand, we now updatfé (8) by replacipgvith its average where nowA,; = Do omex Qnsﬁgns’k) and
valueg;. Denoting byG,,_ 1) the ensemble of all rank-(k x )

N . . . . min{k,ns—2}

ns) binary matrices representing linear block codes wnhoutA(nSyk)_ s\ [
idle bits and with minimum distance at le@stand byEg, 2 “\2 N Z
the expectation operator ove,,, ), we have

K(k,ng,ns —2,u, k)

T (ks k)

u=1

is the expected number of weighteodewords of ar(ns, k)

Smax ns—1

1 t —1—t linear block code picked uniformly at random in the ensemble
i == e io1(1—pi—1)™ : i . . )
"5 ; Q ; Pica(l=pica) of all (ns, k) linear block codes without idle bits and with
~ ~ minimum distance at leagt
X [(ns - t)EG(ns,k) (ens—t) - (t + 1)EG(ns,k)(eﬂs—1—t)]
where agaim = Y "7 Q,,ns. The expectatiofig, ,, (&) V. NUMERICAL THRESHOLD OPTIMIZATION AND
may be calculated using the following result developed in COMPARISON WITHIRSA

[18], where a recursive technique to calculate the funstion

. . The analysis tool developed in Section Il allows to caltala
J(k,n, k) and K(k,n, g,u, k) is also available. ¥ P

the threshold for a given choice of the linear block codes

Proposition 6: For given positive integers, k < n, and %, h € {1,...,n.}, and of the p.m.fP. Analogously, the
g<n, EG(nyk)(ég) is given by tool developed in Sectidn 1V allows to evaluate the thredhol
of a CSA scheme under the random code hypothesis, for a
~ o\ mindkgt K(k,n,g,u,k) given choice of thes,,., lengthsn,, n € {1,..., smax}, and
EG, 1 (€9) = <g> W (20)  of the p.m.f.QQ. These tools can be exploited to derive optimal
u=1 T (in the sense of maximizing the threshaf@) probability

whereJ (k,n, k) is the number of rank- (k x n) binary matri- distributionsP and Q in the two cases.
ces without zero columns and without independent columns,Some optimized distribution profiles are shown in Tdble I.
and whereK (k,n, g, u, k) is the number of rank- (k x n) Among the several possible algorithms available to find the
binary matrices without zero columns, without independegtobal maximum of a nonlinear function, differential evidun
columns and such that the firgtcolumns have rank [19] has been used. In the upper part of the table, optimized
probability distributionsP are reported for an IRSA scheme
with rates1/2, 2/5 and1/3, while in the lower part optimized
robabilities distributions) are illustrated for a CSA scheme
with £ = 2 and with the same rates, with the inclusion of

The average threshol@* may be calculated by properly up-
dating the simultaneous equatiofisl(13) &dnd (14). Spedyfica
defining the functionf(x) as

- Smax ns—1 R = 3/5, under the random code hypothesis. All distributions
f(z,G) =1~ eXP{ - Z Qn, Z Eg,_ . (a) have been optimized under the constraint that the smallest
s=1 t=0 local rate allowed for each user 1g6. For each distribution,
x zt(1 _x)ns—l—t} (21) the corresponding threshol@* and stability bound (right-

hand side of[{18)) are shown. Note that in the CSA case the
5In this context, a column is said to be independent when idglehe threshold values are average values: Specific choices of the
column from the matrix does not affect the rank of the matrix. codes%;, may lead to threshold&™* larger thanG*.



0.9 T T T T

M can be obtained froni}1). We observe a very good match
between the asymptotic analysis and the simulations, tgera
peak throughput of CSA than IRSA also f& = 1/3 being
essentially due to the specific choice of the component codes
(recall thatG* is an average value).

VI. CONCLUSION

Coded slotted ALOHA has been introduced as a new
opportunity for high-throughput random access to the MAC
channel. Density evolution equations for CSA have been
derived, optimal CSA schemes designed for several rates and
their performance for a finite number of users simulated. The
new scheme is promising when power efficiency is required.

08 | CSAR=1/2k =2 -
| |==CSAR=2/5k=2 ]
— CSAR=1/3k =2
0,7 |o--o IRSAR = 1/2 —
L |e-° IRSAR =1/3 4
| |*=°IRSAR=2/5 |
06 +——< CSAR=3/5k =2
N Slotted ALOHA 7
05
0
0,4
0,3
0,2
01
% o1 02 03 04 05 06 07 08 09 1
G
. . 1
Fig. 2.  Throughput versus the normalized offered trafficfor IRSA and [1]

CSA schemes with p.m.f’s in Tale I. The bursts of each CSéy ase split

) 2
into kK = 2 segments, so tha¥csa = 2Nsa. Ncsa = 1000, Nga = 500. (21

(3]

From Tablell we see that CSA is capable to achieve bett%
thresholds than IRSA foR = 1/2 and R = 2/5, while for
the lowest rateR = 1/3 IRSA exhibits a better threshold.
Accordingly, the IRSA scheme seems to be preferable in thiél
case of low ratesk (i.e., for higher values of the excess
power A P), while CSA is more interesting for higher values [6]
of R (i.e., when a higher power efficiency is required). Note
also that CSA allows to achieve values of the overall rate
R > 1/2, whereas only low rate® < 1/2 can be obtained [7]
from IRSA, unless some users transmit their burst in the MAC
frame with no repetition. (In this latter case, however, nqg
successful iterative IC can be guaranteed, so that we always
have G* = 0.) For example, in Tabl¢l | an optimized CSA o]
distribution of rateR = 3/5 is reported. This distribution has
no IRSA counterpart.

To validate our asymptotic analysis, we performed niiol
merical simulations in the case of a finite numb&f of
userd In Fig. [2, the throughput curves of IRSA and CSA11]
schemes with the probability profiles from Talfle | are de-
picted as functions of the normalized offered traffic The [y
throughput achieved by SAS = Ge~¢, is also shown
for reference. Note that in our simulations for the CS’?lS]
case, we combined the p.m.fQ derived under the ran-
dom code hypothesis with a specific choice of the com-
ponent codes. In particular, we used linear block cod&4l
with the following generator matriceg s oy = [110,011],
Gy = [1100,0111], G(5) = [11100,00111], G(g o) =
[111100000,0111111], G = [111110000,011111111],
G (12,2) = [111111110000,0000011111111]. To stay fair, we
compared CSA K = 2) and IRSA schemes for the samgie]
frame duration7g, which implies a number of slot&/cga
twice the number of sloteVs,. Specifically, the simulations 17,
are for Ncga = 1000 and Nga = 500. For each value ot7,

[15]

SHere, one shall consider that each segment has to be enciadeghwsical [18]
layer error correcting code before transmission on the MA@neel, and that

the physical layer code for CSA g times shorter than the corresponding
code for IRSA. Thus, CSA may require working at slightly higiSNRs than [19]
IRSA, especially when short segments (and then short pliykiger codes)

are used. This aspect is not considered in this work.
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