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Abstract

The capacity of a network in which a multiple access chanMAg) generates interference to a single-user
channel is studied. An achievable rate region based on pogiEon coding and joint decoding is established for
the discrete case. If the interference is very strong, tipadity region is obtained for both the discrete memoryless
channel and the Gaussian channel. For the strong intecierease, the capacity region is established for the discrete
memoryless channel; for the Gaussian case, we attain agdgment on the boundary of the capacity region. Moreover,
the capacity region for the Gaussian channel is identifiedHe case when one interference link being strong, and
the other being very strong. For a subclass of Gaussian efsamith mixed interference, a boundary point of the
capacity region is determined. Finally, for the Gaussiaandel with weak interference, sum capacities are obtained
under various channel coefficient and power constraint itiond.

I. INTRODUCTION

In a cellular system, co-channel cells are strategicalicgdl to ensure that interference is kept at a minimum.
As such, the downlink transmission within each cell is tgflicmodeled as a broadcast channel (BC) while uplink
transmission is modeled as a multiple access channel (MA@} effectively isolates each cell from all the other
co-channel cells and makes it feasible to characterizeghfegmnance limits as the capacity regions for the Gaussian
BC and the Gaussian MAC have been completely determined1$ee

However, as the need for spectrum reuse increases, varequsehcy reuse schemes have been proposed in recent
years and it is no longer realistic to disregard co-chanmekierence in both downlink and uplink transmissions.
For downlink transmissions, the Gaussian broadcastfararce channel model has been studied in [2]-[4] with an
emphasis on the one-sided interference model. The capagityns of such channels with very strong and slightly
strong interference, and some boundary points on the dgpagions of that with moderate and weak interferences
were determined. It was shown that the capacity is achieyeflilly decoding the interference when it is strong,

partially decoding the interference when it is moderatel @eating the interference as noise when it is weak.

This work was supported in part by the National Science Fatiod under Grants CCF-0905320, and CNS-0905398, and trbgahe Air
Force Office of Scientific Research under Grant FA9550-08€43. The material in this paper was presented in part atBR& International
Conference on Communications (ICC), Kyoto, Japan, Jund.201
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In this paper, we consider an uplink model with interferenw@mely the multiple access-interference channel.
As with [2]-[4], we focus on the MAC with one-sided interfe®, an example of this channel model is depicted
is illustrated in Fig. 1. The same model can be used to desthié channels between microcell and femtocell, or
between microcell and picocell, etc. Mobile us&rX; and7 X, belong to celll while T'X5 belongs to cell 2 and
the transmissions df' X; and T X, cause interferences @ X, the base station at cell The interference from
T X3 to RX4, on the other hand, is assumed to be negligible.

A similar model has been studied by [12] and [11], both of watonsidered the two-sided interference between
the two cells. The authors in [12] derived the capacity redar the very strong and some of the strong interference
cases, and provided an upper-bound of the sum-rate for th& iméerference case which is nearly optimal in low
signal-to-noise ratio regime, while [11] characterizeel tapacity region in the from of interference alignment unde

the weak symmetric interference assumption.

<

Fig. 1. Two-cell uplink transmission.

Fig. 2 is an abstract model of the above network. Transmittemd2 and received form a MAC. Transmitter
3 and receiver2 form a single-user channel and receieis subject to interference from transmittersand 2.

Specifically, the channel outputs are given by

Y1 = Xi+Xo+ 74, (1)

Yy = VaXi+VbXo+ Xs+ Zo, €
whereX; andY; are the transmitted and received signals of transmitterd receiveyj, respectively, for = 1,2, 3
andj = 1, 2. For eacly, Z; is Gaussian noise with zero mean and unit variance and wenasall the noise terms
are independent of each other and over time. For channdisanliitrary coefficients and noise variances, standard

normalization can be applied such that its capacity is edent to the above channel, i.e., the gainsXar X, in Y}

and X3 in Y5 are all assumed to be The channel coefficients andb are fixed and known at both the transmitters
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Fig. 2. The Multiple-Access-Z-interference Channel model

and the receivers. Without loss of generality, we assunbe> 0, i.e., they are strictly positive. For transmitter
the user/channel input sequenke , X, - -, X;, is subject to a block power constrali 221 E[ka] < nP;. We
denote the rates for messadé&s, W, andWs by Ry, R, and Rs, respectively. The channel defined here is referred
to as a Multiple-Access-Z-Interference channel (MAZIChlie the two-user Z-interference channel (ZIC), there
are more than one interference signal from multiple inddpabhsenders. For example, in the Gaussian case, the
interference signals are multiplied by different coeffitg®e One cannot claim equivalence to degraded channels as
in the two-user ZIC case. As such, capacity analysis beconoes complicated. Our goal in this paper is to obtain
capacity results for the strong, mixednd weak interference cases for the MAZIC.

The rest of the paper is organized as follows. We give thelproormulation in Section Il. Section Il gives
an achievable rate region for the discrete memoryless MAZW@ the result is extended to the Gaussian case.
Capacity results for the strong, very strong, mixed and wiatdference cases are derived in Sections IV, V, VI

and VII respectively. Section VIII concludes the paper.

1. PRELIMINARIES
A discrete memoryless MAZIC is defined byx;, Ao, X3, p, V1, )s), where X;, X> and X3 are finite input
alphabet sets);, and ) are finite output alphabet sets; ap@y;y2|z12223) is the channel transition probability.
As the receivers do not cooperate, the capacity dependsoontlye marginal channel transition probabilities. Thus
we can only consider two marginal distributioQgy: |z122), p(y2|z12223)). The channels are memoryless, i.e.,

n
ptyslatasay) = [ [ pwrivelvuizairs:), 3)
1=1

IHere, the notion of mixed interference refers to the stiemgl the two interference links with coefficien{ga and v/b. It differs from the
classical notion of mixed interference where the interfeeeis imposed on two different receivers.
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wherex] = i1, Zi2, - - -, Tin] ANAYT = [y;1,Yj2, - - -, yjnl, fOri = 1,2, andj = 1, 2, 3. The message for transmitter
iis W; € {1,2,--- 278} i =1,2 3. A (2nfa 2nf2 onlls ) code consists of three encoders:
fios {1,202y o xp
foo {1,2,---,2n02) oA
fz o {1,2,---, 2781 5 AR
and two decoders:
g1 Y= {1,220y (1,2, .. 2nf2),
g2 Yy —{1,2,--. 2"},
The error probability is defined as
Pe =Pr{gi(Y") # (W1, W2), or g2(Y3'") # Ws}.

AssumingW;, W, and W3 are all uniformly distributed, a rate tripleR;, Ro, R3) is achievable if there exist a
sequence of 2" 2nfz onfls ) codes forn sufficiently large such thaP, — 0 whenn — oo. Throughout
this paper, we make the assumption that all the transmitigslement deterministic encoders instead of stochastic
encoders as one can easily prove, following the same apgpesathat of [5], that stochastic encoders do not increase
the capacity for a MAZIC. Before proceeding, we introducenemnotation that will be used throughout the paper.

« px(z) is the probability mass function of a discrete random vaeiab, or a probability density function of

a continuous random variablg, and is simplified ap(x).

. AE”)(X) denotes the set of length<-typical sequences oX.

e I(-;+), H(-) andh(-) are respectively the mutual information, discrete entrapg differential entropy.

« () denotes the empty set.

e T=1—ux.

« x ~ N(0,S) means thak has a Gaussian distribution with zero mean and covariantexns

The following properties of Markov chains are useful thrbagt the paper (see [6, Section 1.1.5]):

o DecompositionX — Y —ZW — X -Y — Z;

e Weak UnionnX - Y —ZW = X - YW — Z;

« Contraction:(X - Y - 2Z)and(X -YZ-W)= X -Y - ZW.

Ill. AN ACHIEVABLE REGION FOR THEGENERAL MAZIC

We use superposition coding and joint decoding to derive dnmesable rate region. Consider the independent

message$l; and W, generated by transmitteisand 2, respectively. We split them into

Wl - [Wlm Wlp]a

Wy = [Wae, Wayl,
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whereW;. and W,. denote the common messages that are to be decoded at batereteand2; and W5, and
Wa, represent the private messages that are to be decoded aelgeaterl.

We first introduce the auxiliary random variabl€s U, and U,, where@ is a time-sharing random variable,
and U; and U, contain the informatiori¥;. and W, respectively. The distribution of@, U1, Uz, X7, X2, X3)

factorizes as

plquiuar12273) = p(q)p(u1|g)p(w1|ur, @)p(uzlg)p(w2|uz, ¢)p(3]q). (4)

The following achievable rate region can be obtained whaeefgs given in Appendix A.

Theorem 1:For a discrete memoryless MAZIC, an achievable rate regiagivien by the set of all nonnegative
rate triples(R1, R, R3) that satisfy

Ry < I(X1;Y1]X2Q), (5)

Ry < I(X2;Y1[X1Q), (6)

Ry < I(X3; Y2|UhU2Q), )

Ry + Ry < I(X1X2: Y1|Q), (8)

R+ R3 < I(X1; Y1|U1 X2Q) + I (U1 X3; Y2 |U2Q), 9
Ry + Ry < I(X2; Y1|U2X1Q) + (U2 X3; Y2|U1Q), (10)

Ri+ Ry + Ry < I(X1 X2; Y1[{U1U2Q) + I(U1U2 X3 Y2|Q), (11)
Ri+ Ry + Ry < I(X1 X2; Y1|{U1Q) + 1(U1 X33 Y2|U2Q), (12)
Ri+ Ra + Ry < (X1 X2; Y1(U2Q) + 1(U2X3; Y2|U1Q), (13)
Ri+2Rs + Ry < I(Xo; V1|{U2 X1 Q) + I(X1 X V1[U1Q) + I(U1U2 X355 Y2(Q), (14)
2Ry + Ry + Rz < I(X1; Y1|U1X2Q) + (X1 X2; V1[U2Q) + I(U1U2X5; Y2|Q), (15)

where the input distribution factors as (4). Furthermohe, tegion remains the same if we impose the constraints
QI <12, [Uh]l < [[Xa]l + 5, and|[Uz]| < [[ X2 + 5.

The MAC and the Z-interference channel (ZIC) are two spetiales of a MAZIC. On setting’sU;Us = (), we
obtain the capacity region for the MAC:

Ry < I(X1;Y1|X2Q),
Ry < I(X9;Y1]X1Q),
Ri+ Ry < I(X1iX9;11|Q).
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Alternatively, on settind/> X» = (), we obtain Han and Kobayashi's achievable rate region ferAtC [7] [8] [9]:

R

IN

I(X1;111Q),

Rs3 I(X3;Y2|UhQ),

IN

Ri+R3y < I(X1;V|U1Q) + I(U1 X35 Y2|Q).

Theorem 1 allows us to obtain a computable achievable regioGaussian MAZICs.

Corollary 1: For any nonnegative pajr, 5] € [0,1], the non-negative rate triplgR;, Rz, R3) satisfying the

conditions (16)-(26) are achievable for a Gaussian MAZIC.

Ry < %log(l + P), (16)

Ry, < %log(l + Py), a7

Ry = %log (1 1T aalID:BJr bBP2> ’ (18)

Ri+Ry < %log(1+P1—|—P2), (29)

Rit Ry < %log (1+aP)+ % log (1 - +“f‘a1j},l++i3ﬁ P2> , (20)
Ro+Ry < %log(l + BP,) +%log (1 + 1+bff;1++i3ﬁpz> , 21)
Ri+Ro+Ry < %log(l +aPy + BP) + %log (1 + alo‘flal‘;lﬁ?b;f) : 22)
Ri+Ry+ Ry < %log (1+aPy +Py) + % log (1 - +“f‘£;i‘”’ﬁpz> , (23)
Ri+Rs+Rs < %log(l + P+ BP) + % log (1 - 1+bff;1++i3’ﬁp2> : (24)
Ri+2Rs+ Ry < %log(l + 8Py + % log (1 + aPy + Py) + %log (1 + "f‘flazlﬁlﬁfzb;é?’) . (25)
R, + Ry + Ry < %log(l +aPy)+ % log (1+ Py + AP,) + %1og <1 + “f‘flaz;lﬁfb;;”) . (26)

Proof: Corollary 1 follows directly from Theorem 1 by choosifi@|| = 1, X; ~ N (0, P1), X2 ~ N (0, P),
and X, = U+ Vi, Xy = Us+V3, wherely, Us, V; andV; are independent random variables with~ A (0, aP;),
Us ~ N(0,8P), Vi ~ N(0,aP;) andVa ~ N (0, BPs). |
In the following, we discuss capacity results for differ@mterference regimes for MAZICs.

IV. MAZIC s WITH STRONG INTERFERENCE
A. Discrete Case

Similar to [10], the discrete MAZIC with strong interferemis defined as a discrete memoryless MAZIC satisfying

I(X1; V1| X2) < I(Xq; Y| X2 X3), (27)
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I(X2; V1] X1) < I(X2: Yo X1 X5), (28)
I(X1X2; Y1) < I(X1X2; Y| X5), (29)
for all product distributions ot} x X5 x Aj.
The above single letter conditions imply multi-letter cdiwhs as stated below.

Lemma 1:For a discrete memoryless interference channel, if (29)-&e satisfied for all product probability
distributions onX; x X5 x X3, then

I(XT; Y X)) < I(XT3 Y9 [ X5 Xy, (30)
I(X5 Y XT) < I(X35 V3! | X7 X)), (31)
I(XT X35 Y") < I(XT X35 Y5 XY). (32)

Proof: From the channel model, we have

I(XT Y X3Xy) = I(XT5 Y XY,
IX Y XT X)) = I(Xg5 Y'[XT),
I(XTX5Y'Xg) = I(XTX55Y").
The rest of the proof can be established using techniquéatasita that of [10], hence is omitted. ]

The above lemma leads to the following theorem.

Theorem 2:For a discrete memoryless MAZIC with conditions (27)-(2&) &ll product probability distributions
on X; x X; x X3, the capacity region is given by the set of all the nonnegatite triple R1, Rz, R3) that satisfy

Ry < I(X1;11]X20), (33)
Ry < I(Xo;Y1|X1Q), (34)
Ry < I(X3;Y2]X1X2Q), (35)
Ri+ Ry < I(XiX2:Y1]Q), (36)
Ro+ Ry < I(X2X3;Y2[X1Q), (37)
Ri+Rs < I(X1X35Y2[X0Q), (38)
Ri+ Re+ Ry < I(X1X2X35;Y2|Q), (39)
where the input distribution factors as
p(gz1z2w3) = p(a)p(w1]q)p(w2]q)p(wslq). (40)

Furthermore, the region remains invariant if we impose thestraint|| Q|| < 8.

The proof is given in Appendix B.
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B. Gaussian Case

For a Gaussian MAZIC, the strong interference is defined ascise wheree > 1 andb > 1, which are
sufficient and necessary conditions for (27) and (28), respmdy. However, it is hard to find a sufficient and
necessary conditions for (29), and there are counter examplwhich condition (29) is violated evendf> 1 and
b > 1. That is, there exist input distributions such that (29)sdnet old witha > 1 andb > 1.

While Theorem 1 still applies, a better rate splitting sigat can be devised for this case.(R1, Rq, R3) is
an achievable rate triple, then receiZecan reliably recoverX; and X, at these rates. Therefore, receiZecan
decode whatever receivérdecodes. Thus, if we choose the private message sets far luseid 2 to be empty,
i.e.,a = 8 =0, we obtain an achievable rate region.

In the following, we give an outer-bound on the capacity oegi

Corollary 2: For a Gaussian MAZIC with conditions, b > 1, an outer-bound on the capacity region is given

by the set of all the nonnegative rate tripld?,, R, R3) that satisfy

R, < % log (1+ Py), (41)
Ry, < % log (1+ P), (42)
Ry < % log (1+ Ps), (43)
R +R, < %log(1+P1 + P), (44)
Ro+ Ry < %log(1+bP2+P3), (45)
Ri+Rs < %log (1+aP + Ps). (46)

The proof of this corollary is very similar to the proof of Tdvem 2, except for the bound d®, + Rs + R3. The

reason is that wittu > 1 andb > 1, I(X; X2; X1 + Xo + Z1) < I(X1 Xo;V/aX1 + VbX, + Z5) is generally not

true for every possible input distribution, hence we do reteh(29). Therefore, inequality (39) cannot be obtained.
Next, let us consider one interference link being stronggi@mmple,l < a < 1+ Ps. In this case, we can easily

get the following outer-bound:

Ry < %1og(1 + P), 47)
Ry < %1og(1 + P»), (48)
Ry < % log(1 + Ps), (49)
Ri+Ry < % log(1+ P, + P2), (50)
Ri+Rs < % log(1+ aPy + Ps). (51)

On the other hand, by setting = 5 = 0 in the achievable region for Gaussian MAZICs in Corollaryohge
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would have an achievable rate region with all nonnegatite m@ples(R;, R2, R3) that satisfy

R < % log(1+ P1), (52)

Ry < % log(1 + P), (53)

Ry < %log(l + P3), (54)

Ri+ Ry < % log(l1+ P, + P), (55)
Ri+R; < % log(1+ aPy + P3), (56)
Ro+Rs < % log(1 4+ bP, + P3), (57)
Ri+Ry+ Ry < %log(l 4 aPy + bPy + P3). (58)

The following theorem summarizes the cases where some sgegohehe line: the intersection of the two

hyperplanes defined by
R+ Ry = %log(l + P, + Py), (59)
Ri+ Rz = %1og(1 +aP; + Ps) (60)
is on the boundary of the capacity region.

Theorem 3:For a Gaussian MAZIC with < a <1 + B, if

14+aP,+ P3
b> ——— = 61
=T 1+ P (61)
a segment of the line defined by (59) and (60), which starts at
1 1 P 1 Ps
—log(1+ Py), =1 1+ —-),=1 1 62
<2 og(1+F) 3 °g< +1+P1>’2 °g< +1+aP1>)’ (62)
and ends at
1 1 bPs 1 bPs 1 14+aP, +bP; + P3
<§10g(1+P1+P2)_510g<1+71+aP1+P3)’510g<1+71+aP1+Pg>’§10g< TPt b )>7(63)

is on the boundary of the capacity region of the channel.

Proof: Consider the rate tripléR;, R2, R3) on the line defined by (59) and (60). Any achievable rate eripl
on this line that also satisfies (57) and (58) must appear erbtlundary of the capacity region as it belongs to
both the inner and outer bounds.

Consider the rate triple defined by (62). It is achievable if

1 P, 1 bP;
“log (1 <Zlog(1+——02 64
20g<+1+P1>_20g<+1+aP1+P3>’ (64)
ie.,
1+CLP1+P3
p> LTS 65
o 1+ P ’ (65)

as receiveil first decodesX,, subtracts it, and then decod&s; reciever2 also first decodeX,, subtracts it, and

then decodes(s by treatingX; as noise.
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The other rate triple defined by (63) satisfies (58) with eitahnd satisfies (57) il < a < 1+ P; and

1+aP;+Ps
b> LtaPiis

Therefore, the line segment between these two rate triplsand (63) is on the boundary of the capacity region,
and is achieved by time sharing. ]

Fig. 3 gives an example where a line segment defined by (59j&0)ds on the boundary of the capacity region.

Fig. 3. The line2 defined in Eq. (59) and Eq. (60) appears as the boundary litteeafapacity region. (Plankis defined byR; + Rz + Rz =
% log(1 + aP1 + bP> + P3); Region3 is defined by inequalities (52)-(58)); Pointsand 5 are the two endpoints of the line segment that is
on the capacity region. For this example, the correspondirannel parameters are:= 1.2, b =3, P = P3 =2, Py = 3.

Increasingb even further for the case af > 1 will ensure that (57) and (58) are never active. Specifically
have
Corollary 3: For a Gaussian MAZIC wittw > 1 andb > 1 + aP; + P3, the capacity region is the set of all

nonnegative rate triple§R;, Ro, R3) that satisfies

R, < % log(1+ P1), (66)
Ry, < % log(1+ P), (67)
Ry < % log(1 + Ps), (68)
Ri+Ry < % log(1+ P, + P,), (69)
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1
R1 +R3 S 510g(1+CLP1 —|—P3) (70)

Proof: With « > 1 andb > 1 + a P, + P3, (57) and (58) are redundant in the achievable region. Asaltre

the inner-bound and outer-bound coincide with each other. [ |

V. MAZIC s WITH VERY STRONG INTERFERENCE
A. Discrete Case

The discrete MAZIC with very strong interference is definedaadiscrete memoryless MAZIC satisfying

I(X1;Y1|Xs) < I(X31;Y2|Xo), (71)
I(X2;Y1|X1) < I(X2;Y2|Xy), (72)

for all product distributions ot} x X5 x Aj3.
It is easy to see that the condition specified by (71)-(73) special case of the strong interference condition
(27)-(29). Therefore, one can immediately obtain the ciypaegion of the MAZIC with very strong interference

from Theorem 2.

Corollary 4: For a discrete memoryless MAZIC with conditions (71)-(7@) &ll product probability distributions
on X; x X5 x X3, the capacity region is given by the set of all the nonnegatite triple Ry, Rz, R3) that satisfy

Ry < I(X1;11|X2Q), (74)
Ry < I(Xy;V1|X:Q), (75)
Ry < I(X3; Y2 X1X20Q), (76)
Ri+ Ry < I(X1X2Y1|Q), (77)
where the input distribution factors as
p(gz12w3) = p(q)p(w1]q)p(w2]q)p(wslq). (78)

Furthermore, the region remains invariant if we impose thestraint|| Q|| < 5.

B. Gaussian Case

For a Gaussian MAZIC, very strong interference is defined, as> 1+ P5. Notice that the condition, b > 1+ P;
is not a sufficient condition for (71) and (72), as discussefilB, Theorem 2]. Again, it is a special case of the

strong interference case, therefore, the capacity reqagonbe readily obtained from Corollary 2.
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Corollary 5: For a Gaussian MAZIC with conditions, b > 1 + Ps, the capacity region is given by the set of
all nonnegative rate triple§R;, Rz, R3) that satisfy

R, < % log (14 P), (79)
Ry < % log (14 P2), (80)
R; < % log (1 + Ps), (81)
Ri+Ry < %1og(1—|—P1 +P). (82)

VI. THE MAZICS WITH MIXED INTERFERENCE
A. Discrete Case

The discrete MAZIC with mixed interference is defined as amite memoryless MAZIC satisfying

plyryalrizars) = p(yr|rrz2)p(yalzizaws) = p(yrz122)p (Yol wsziyr), (83)
for somep’ (yo|zsx1y1), and
I(X2; Y11 X1) < I(X9; Y| X1 X3), (84)

for all input distributions that factorizes agz1)p(x2)p(z3)*.

Condition (83) means that we can find another discrete mdessyMAZIC with (p(y1|z122), 0 (y2|rsz1y1))
that has the same capacity region as the orginal MAZIC. Euntlore, the alternative MAZIC admits the Markov
chain

X1 — (X9, X5, 11) - Yo (85)

For this class of channel, we can outer-bound the capadipmeas follows.
Theorem 4:For a discrete memoryless MAZIC with mixed interference cater-bound to the capacity region

can be expressed as a set of nonnegative rate (firsR.) satisfying the following inequalities:

Ry < I(X;Y|XeUhQ), (86)
Ry < I(Xy;Y1|X1Q), (87)
Ry < I(X3 Y2 X1X2Q), (88)
Ry < I(U1X5:Y1]Q), (89)
Ri+ R < I(XiXiY1|Q), (90)
Ro+ Ry < I(X2X3Y2|X1Q), (91)

where the input distribution is factorized a&;)p(u1|q)p(x1|u1q)p(z2|u1q)p(23lq).
1(Condition 83) is refered to the link of weak interferencad @ondition (84) is refered to the link of strong interfezen
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Proof: Inequalities (87) and (88) are trivial outer-bounds, and) (8 the same as the sum-rate upper-bound
for the MAC. Moreover, (91) is the same as the sum-rate uppend for the two-user IC with strong interference

[10]. It remains to show (86) and (89). First, let us consider

n(Ry —e) (X5 Y")

(a)
<
< I(X5Y'X3)
= Y I(X7YulX5yyh

=1
= > {HMuX3Y7 ) - H(YulX3Yi ' X))}

i=1

= Z {H(Y1i|X§_1X2iY1i_1) - H(Y1i|X1z‘X2i)}

i=1

< Z {H(Y1i| X2;Uri) — H(Y14| X1: X2:Un4) }
i1

= Z I(X1i; Y14 X2:U1i),
=1
where(a) comes from Fano’s inequalityb) is because of the independence betwa&&hand X7; (c) is because
that conditioning reduces entropy and the channel is assumée memoryless; fofd), first we identifyUy; =
(X471 v/~1) and also the memoryless property induces the Markov chigin- (X1;, Xa;) — Yi;.

Now, let us showX;; — Uy; — X5;. Due to the memoryless property, the following Markov chiagtds:
(X1 X2) — (X7 X5 -y L
By weak union property, we obtain the following Markov chain
Xoi — (Xu, X7 H Xa7h) - v

Together with the Markov chaiXy; — X4 — X1; X{ ™', which due to the independence betweghand X3, we

obtain the following Markov chain by the contraction prager
Xoi — X571 — (X0, X{H Y770, (92)
Hence, we get the Markov chain
Xoy — (X5 YH) — Xy (93)

by the weak union and then the decomposition property.
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Next, we consider

n(Rs — €) (X2, Y9

I(X35Y5' | X5)

= D (X5 YaulX5YiTh
=1
= N {HYaulXPY;Y) - H(Yaul X3X5Y;h)

<
=

—~
3}
~

M-

@
Il
A

{H (Yas| Xo:) — H(Yai| X5 X3Y7'Y{ 1)}

=
INgh

@
Il
s

{H (Yai|X2i) — H(Yoi| X3 X5Y™1)}

=
]+

{H(Y2i|X2i) — H(Yai| X0: X3: X5 Y1)}

<.
=

3

= Z {I(X3;U1; Yoi | X2:) }
i1

where(a) follows the Fano’s Inequality) is from the independence betwe&' and X7; (c) is because of the
fact that conditioning reduces entroyl) is due to the memoryless property of the channel, and theadedness
condition X; — (Xs, X3,Y1) — Ya, henceY; ' is independent of any other random variables givgn ', Xi~' and
Yy then (X2, X5, Ya) — (X371, X471, Y{ 1) — YJ ! forms a Markov chain. By the weak union property, the
Markov chainYs; — (X4, X%, Yy~!) —Y;~" holds;(e) is because of the Markov chaitXs ;1, X5 ', X5, 1) —
(X3, X3, Yf‘l) —Ys;. The easiest way to prove it is using thelependence GraplAlternatively, we first note

that the Markov chain
(X5 X3, X XS YY) — (X, Xo, X3i) — (Y4, Yai)

holds because of the memoryless property of the channelh8ydécomposition property, the following Markov

chain is obtained:
(X3 1 X5, X5 X3, YY) — (X, Xai, Xai) — Yo
Further by the weak union property, we obtain the followingrkbv chain
(X501, X5 1 X5 00) — (Xus, X5, Xai, Y1) = Yo, (94)
On the other hand, again because of the memoryless progetitg @hannel, the Markov chain
(X1, Xoi, X34, X341, X?Z;ileg,z‘H) —(Xhxs ) -yt
holds. Using the weak union property, we obtain the Markoairch

(X3, X7 X5 0) — (Xug, Xog, X, X1 X5 =Y
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Together with the markov chain
(X3, X571 X3 0) — (X5 X0 X3:) — (X1, X1a)
due to the independence amoAg§, X3 and X7, we attain the Markov chain
(X3 X571 X3 ) — (X5 X, Xai) — (X1, X, Yi7)
by the contraction property. Then by the weak union propang the decomposition property, the Markov chain
(X3 i1, X571 X5 0) — (X571, Xai, Xai, Y1) — X (95)
holds. Combine (94) with (95) by the contraction propertg, lave the Markov chain
(X5, X5~ X3 0) — (X571, Xog, X33, Vi) — (X4, Yai) (96)

as desired. The rest of the proof is done by introducing threegharing variabl&), similar to the proof of the

capacity region for MACs [1]. [ ]

B. Gaussian Case

The mixed interference case corresponds to the conditienl, b > 1 ora > 1,b < 1 for the Gaussian MAZICs.
As mentioned before, the notion of “mixed” differs from ttadtthe classical two-user GIC with mixed interference:
here the two interferences go to the same receiver.

First of all, we can extend the outer-bound for the genersdréte memoryless MAZICs to the Gaussian case.

Corollary 6: For a Gaussian MAZIC with mixed interferenae € 1 andb > 1), an outer-bound to the capacity

region can be expressed as a set of nonnegative rate(pairf.) satisfying the following inequalities:

R < %10g(1 + aPy), (97)
Ry < %10g(1 + Py), (98)
Ry < %10g(1 + P3), (99)
Ry < glog W0l (100)
Ri+Ry < %1og(1 + P+ Py, (101)
Ryt Ry < log(l+bPs +Py) (102)

Proof: This is a direct extension of Theorem 4. Inequalities (988)( (101) and (102) comes from the
corresponding inequality in Theorem 4 and the fact thatrgthe variance of random variables, Guassian distribution

will maximize the entropy.
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As for (100),
Ry < I(UX3;Ys|X2Q)
= h(Y2]X2Q) — h(Y2| X2 X3UQ)
= h(VaX1+ X3+ Z2|Q) — h(vVaX:1 + Z2|UQ)

1 1
< 5 1og[(27re)(1 + CLP1 + Pg)] - 5 IOgCL — h(Xl + Z1 + Z£|UQ)

1 1 1 1-
B log[(2me)(1 4+ aPy + P3)] — B loga — 3 log (22h(X1+Z1|UQ) + (2me)( - a)>

c

1 1
< 3 log(1+ aPy + Ps) — 3 log [a2*f* +1 —a] ,

—
~

where (a) is by the fact that Gaussian distribution maximizes the agytrfor a given variance, and’, ~
N (0, 1 1), independent of all other random variablés) is from the entropy power inequality¢) is because
that from (86),
1
Rl S I(Xl,YllXQUQ) = h(Y1|X2UQ) — h(Zl) = h(YﬂXQUQ) — 5 10g(2ﬂ'€).
Furthermore, since

0< Ry < h(Yi|XoUQ) — M(Zy) = h(X1 + Z1|[UQ) — h(Zy) < h(X1 + Z1|Q) — h(Zy) < = log(1 + P1),

N =

there exists amv € [0, 1], such that
R = %lOg(l + CYPl). (103)
Then,

1 1 1 1—a)P, + P
R; < B log(1 + aPy + Ps3) — B log(1 + aaPy) = 3 log <1 + w) .

14+ aaP;
[ |
Remark: The outer-bound in Theorem 4 is an extension of Kramer'srsouter-bound [14, Thoerem 2] to the
dicrete memoryless case. To see this, we can consider aabpaseé of Corollary 6 by choosirg, = 0, such that the
remaining transmitters and3, and receiver$ and2, form a Gaussian ZIC. The outer bound in Corollary 6 reduces
to that consists of only (97), (99), and (100) with the inpistribution factorizes ag(q)p(u|q)p(x1|ug)p(xslq). If

we Ichooses = &PPI, whereP = aP; + P3, we can rewrite the outer bound as:

ﬂ—P), (104)
a

(1-p)P
1+ 8P

which is exactly Kramer’s second outer bound on the capaedion of a Gaussian ZIC [14, Theorem 2]. Therefore,

Ry

IN

1
—log(1
5 og(l+

)’

1
R; < ilog(l—i-

the outer bound in Theorem 4 is a generalization of Kramarterbound to the discrete memoryless case, and an
extension from the ZIC to the MAZIC.

November 21, 2018 DRAFT



17

In the following, we consider a subclass of Gaussian MAZI@ wixed interference, and we determine some

boundary points of the capacity region.

Lemma 2:For a Gaussian MAZIC satisfying conditions< 1 andb > 1+ aP; + P, an achievable rate region

is given by the set of all nonnegative rate triplg®;, R, R3) that satisfy

1
Ri < Slog(1+ Py, (105)
1
Ry < 510g(1 + Py), (106)
1 P
< — - -
R3_210g<1+1+aaP1)’ (207)
1
R1+R2§510g(1+P1+P2), (108)
1 1 acP, + Ps
< =—log(1 P —1 14+ —- 109
R1+R3_20g( +a 1)+20g(+1+aaP1>’ (109)
1 1 aaP; + Ps
< Z—log(1 P+ P. —1 14+ —- 110
R1+R2+R3_2og( +aP; + 2)+2og(+1+aapl>, (110)

for a € [0,1].

Proof: If b > 1+ aP, + P5, we know that receive?2 can decode useX's message by treating its own signal

as well as the interference from uskrm@s noise. Therefore, there is no need to use rate splittingder2, i.e.,
B = 0. On applying Corollary 1 and removing all the redundant iraijies, we get Lemma 2. [ ]

Remark:% log(1+aP + P) + %log (1 + %) is an increasing function of if a(1 4+ P2) < 1. Thus,
the maximal achievable sum rate for the above achievabke regjion is attained when = 1, which equals
R, = %10g(1 + P+ P)+ %log (1 + 1+PT3131)- However, since the expression Bf is generally not a concave
function of P, we can achieve a larger sum rate thanby time sharing.

From Lemma 2 and Corollary 6, we can directly get a corner tpomthe capacity region.

Corollary 7: For a Gaussian MAZIC withw < 1 andb > %, the rate triple(R7, R3, R%) is on the
boundary of the capacity region, where

1
R = Zlog(l+P), (111)
.1 P,
Ry, = 21og (1+ 1+P1)’ (112)
1 Py
o= =1 1+ —. 113
R 2°g< +1+aP1> (113)

It is easy to see that this boundary point is achieved by fdégoding the interference from transmitterand

treating the interference from transmitteas noise.
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VIl. THE MAZICS WITH WEAK INTERFERENCES
A. Discrete Memoryless Case

Definition 1: A discrete memoryless MAZIC is said to haweak interferences the channel transition proba-

bility factorizes as

p(yryeleizexs) = p(yileize)p’ (yoleezsyr), (114)
p(yelrizers) = p(yilzize)p” (yolzi23y1) (115)

for somep’ (y2|z2x3y1) andp” (yz2|z123y1), Or, equivalently, the channel is stochastically degraded

In the absence of receiver cooperation, a stochasticafiyadied interference channel is equivalent in its capacity
to a physically degraded interference channel. As such, Wasgume in the following that the channel is physically
degraded, i.e., the MAZIC admits the Markov chailig — (X5, X3,Y7) — Yo and Xo — (X1, X35,Y1) — Y. As a

consequence, the following two inequalities hold
I(U1; Y2| X2 X3) < I(Up;Y1]X2), (116)

I(Ug; Yo X1 X3) < I(Us; Y1|X1) (117)

for all input distributionsp(xs)p(u1)p(z1|u1)p(xa|ur) andp(zs)p(us)p(z1 |uz)p(x2|us) respectively.
The above definition of weak interference leads to the falgwouter-bound.
Theorem 5:The capacity region of a discrete memoryless MAZIC with wedkrferences is outer-bounded by

the region determined by the following inequalites:

Ry < I(X;nXU1Q), (118)
Ry < I(Xy;Y1|X102Q), (119)
Ry < I(X3 Y2 X1X2Q), (120)
Ry < I(X3U1;Y2[X2Q), (121)
Ry < I(X3U2Y2|X1Q), (122)
Ri+ Ry < I(XiX:Y1|Q), (123)

where the input distributiop(ujuszi 2223) = p(uiuz)p(zy |uruz)p(ze|uiuz)p(as).
The proof is similar to that of Theorem 4 and is hence omiti#d. note that the auxiliary random variables are

defined a§]1i = (X;il’ylifl) and UQ'L — (X{717}771)_

B. Gaussian Case

The weak interference case for the Gaussian MAZIC corredpém the condition withu, b < 1.

First, Theorem 5 can be extended to the Gaussian case.
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Corollary 8: For a Gaussian MAZIC satisfying conditiomsb < 1, an outer bound to the capacity region is

given by the set of all nonnegative rate triplg®;, Rz, R3) such that

1
Ry < B log(1 + aPy),

N =

Ry < = 10g(1 + /BPQ),

[

Rs < —log(1 + Ps),

a(l —a)P; + P
1+ aaP; ) ’

b(1—B)P + Py
1+ b8P ) ’

log(1+ P + P).

[\

R3; < =log (1—|—

Rs; < —log (1—!—

— N = N

Ri+ Ry < 5
The proof is very similar to that of Corollary 6, hence is awmit here.
For a two-user Gaussian ZIC, treating interference as nisigptimal in terms of sum-capacity for the weak
interference case. One may conjecture that a similar réasidis for the Gaussian MAZIC if both interferences are
weak @, b < 1). Indeed, similar sum-rate capacity result holds for theecaith0 < a = b < 1.

Corollary 9: For the Gaussian MAZICs satisfyimt< a = b < 1, the sum-rate capacity is

1 1 Ps
C=-log(1+P+P)+=log [14+—23 . 124
plog(l+ At Po)+ g °g< +1+aP1+bP2> (124)

Proof: This is a direct extension of the sum-capacity result of W tiser Gaussian ZICs with weak interference
by viewing X; and X, as a group. [ ]
However, the above sum-capacity result is not true in gémwath asymmetric interference. We begin with the
following theorem that gives a sum-rate upper-bound.
Theorem 6:Any achievable rate tripletl{;, R2, R3) for the Gaussian MAZIC with) < a < b < 1 must satisfy

the following constraint

n(Ry + R2+ R3) < @Lﬁ{gbg ((Pl +P2+1)((LP1 +bP2+02) — (\/5P1 +\/BP2 +\/a)2)

—g log(aPy +bP +1) — g log(o? —a) + g log(aPy + bPs + P3 + 1)} .

Proof:
n(R1 + Ry + Rg) — ne
(a)
< IXTX YY) + 1(X55Y5')
= (X XP4+Z0) + I(XS X7+ X5+ Z0) + I(X55VaX? + VoXy + X3+ Z)
®)
< XD XP+Z0) + (X X7+ X3+ 20, VaX] + VX + NT)

(X VaX] + VXY + X5+ Z)

WXT + Z7) = h(Z}) + h(VaX] + VbX3 + NT)
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+h(X] + X3+ Z7|WVaXT] + \/EXS + N7) — h(v/aX] + NJ") — h(X] + Z7|VaX] + N7
+h(vVaX? + VoXE + X2+ Z1) — h(vaX? + VbX§ + Z3)
= WX+ 2Z}) — h(aX] + NI') + h(v/aX? + VX3 + N7

—h(VaX? +VoXP + Z3) — h(ZP) + h(X] + X5 + Z}VaX " +VbXy + NP

h(Vaxy +VoX3 + Xi + 23) — h(Z} - %N{‘N&X{l D)

= WX+ Z7) — MVAXT + NP1Z = 2= NY) + WA + VIXp + M)
—h(aX? +VoXP + Z3) — h(ZP) + h(X] + X5 + Z}\/aX? +VbXy + NI
Fh(VaXp + VbXP + XD+ Z3) — h(Z} — %N{l)

,\
INe

glog ((Pl + P+ 1)(aPy + 0Py + 02) — (\/EPl + \/BPQ + \/6)2)
—g log(aPy +bPy + 1) — glog(cr2 —a)+ glog(apl +bPy+ P34+ 1)

where(a) is from Fano’s inequality(b) is by giving side information/a X} +vbX3 + N to the second mutual

information whereN7* is an i.i.d. Gaussian random variables whose covariancexwaith 7 is

Z 1
Cov L re ;
Ny po o2
(c) is the result of applying the extremal inequality [15] to tirst two terms, and to the third and forth terms

respectively. for the first two terms,

1
WX+ 27) = h(VaX] + NP|Z) = =N < glog(l +P)— glog(aPl +a)
_ny
= 5 oga,
since the use of the extremal inequality requivas-(N,|Z; — \/LENl) > a = po = /a. For the third and fourth

terms,
n n n n n n n 2 n
h(VaX? + VXY + NJ) — h(vVaX] +VbXJ + ZF) < 7 log(aPy +bP, +0%) = log(aPy +bPy +1)

as the use of the extremal inequality requisés< 1.
For the conditional entropy(X}* + X% + Z7|v/aX} + vVbXE + N7), identically and independently distributed
(i.i.d) zero-mean Gaussiali;’ and X are the maximizing distributions [16]. ]
Corollary 10: For the Gaussian MAZICs satisfyiry< a < b < 1, if the power constraints satisfy
1—Vab
Vab—a’

b —
P3 Z b—1+(b—a)P1: - — ab,
a

P =

the sum-rate capacity is

(125)

1 1 bP, + P
C—§log(1+P1)+§log<1—|— 2 3>.

1+CLP1
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Proof: For the achievability part, let receivérdecode messages from usérand 2, and receiveR decode

messages from usegsand 3, we have the following achievable rate tripl€t®;, Ro, R3):

R < %log(l—i—Pl), (126)
Ry, < %log (1 + lffpl) : (127)
Ry < %log (1 + 1+P2P1> , (128)
Ri+Ry < %log(l + P+ Py), (129)
Ry+ Ry < %log (1 + %) : (130)

Apply Fourier-Motzkin elimination with respect t8 = R; + R» + R3, the resulting achievable sum-rate is

bP2+P3) 1

1 Py
“log(1+ Py + Py) + = log [ 1
Thap, )28ttt 2)+20g( +1+apl)}’

1 1
R+ Ry + Rs Smin{Qlog(1+P1)+§log <1+

if (b—a)P1 Sl—b'i‘Pg,

Py
1+ aP1

1 1
ilog(l + P+ P)+ §log (1—!—

1 1 bP, + P
>2510g(1+P1)+§10g(1+$>.

1+GP1

hence,} log(1+ P;) + 3 log (1 + ﬁ#{?) is an achievable sum-rate, and is achieved by uisigcodingX first,
subtracting it off, and then decoding;; and user decodingX, and X3 simultaneously by treatin; as noise.
For the converse part, at the last step of the proof of ThedBenf we further let the Gaussian variables

X3 — (VaX? +VbXy + NP) — (XJ + X7 4 Z7) form a Markov chain, then

p =Yoo (131)
a—+ab
The sum-rate upper-bound becomes
% log(l1+ Py) + % log(1 + %) + %1og(1 + Hmijﬁ)
Leto? =1, (131) become®, = %Z/_“_ab naturally, this requires < b, andv/ab < 1 such that (131) is non-negative.
This is because > b is infeasible as it implies/ab < «, i.e., (131) is negative whem? = 1. [ ]

It is perhaps not intuitive that the sum-rate (125) is optioaly if P, = kﬁ—@ Specifically, given that this
sum-rate capacity is achieved when the interference fopris treated as noise &f, it might be expected that
with smaller P;, the same scheme should also be optimal. We show that thist isue.

First, fora <1,

1—bS1—\/@ (132)
b—a \/%—a
But for P; < H the achievable sum-rate
1 1 Py
—log(1+ P + P. —1 1+ — 133
5 log(l+ P+ 2)+20g(+1+aP1+bP2) (133)

is greater than the sum-rate (125).
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Now consider any?; with % <P < 1#;/_“_2 The following function is an achievable sum-rate fr < i/;_;)/_“_ab

However, it is easy to show thgtis not concave inP; around the pointi%i. Therefore, sum-rates strictly larger
; b 1—Vab (|ai ; ;
than (125) can be achieved f%ﬁ; <P < ﬁTfa using time-sharing.

1 1 P i 1-b
I 5 log(1+ P + P2) + 5log (1 + 1+aP1+bP2) , I P <=2,

1 =
1 1 bPy+Ps £ 1-0b 1—vab
210g(1+P1)+210g(1+—1+aP1 , if .=2 <P < T

11.6282 T T T
achievable sum-rate by proposed time—sharing scheme
— - — - achievable sum-rate by Eq. (125)
11.628 —
11.6278 — -
11.6276 - -
™
@
+
o 11.6274 i
+ -
o i
7
11.6272 - —
) -
7
7
11.627 / —
7/
/
7/
/
11.6268 / —
11.6266 ‘ ‘ ‘ ‘ ‘ ‘
60 70 80 90 100 110 120 130

Fig. 4. The Comparison of the sum-rates achieved by proptisedsharing scheme and Eq. 125 Whﬁ\g <ph< Z_ﬂ

Next, let us consider an even simpler case, where one of t#s ¢ink gain vanishes, for example= 0. With
only one weak interference link, we are able to obtain a bamndurve of the capacity region.
Theorem 7:For a Gaussian MAZIC witlw = 0 and % <b<1(P; < P), then the following rate triple is

always on the boundary of the capacity region:

1 P 1 _ 1 BPs 1
-1 1+ ——— ), =log(l P. -1 1+ —=—— ), —log(l+ P, 134
<2og<+1+ﬁp2>,2og( +8 2)+20g<+1+P1+BP2>,20g(+ 3)>, (134)
wheres € [0, 1] and satisfy
1 _ 1 BPy 1 bPs
—log(1 P. =1 1+ ——) <=1 1 . 135
5 log(1+5 2)+20g<+1+P1+BP2)_20g<+1—|—P3) (135)
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Proof: By settinga = 1, the general achievable rate region in Corollary 1 reduges t

1
Rl < ilog(l—’—Pl)a
1
Rg S 5 10g(1 + Pg),
1 Py
Ry < =1 1+ ——F—
3 = 2Og<+1+bﬁp2)a
1
Ri+Ry < 5 10g(1 + P+ PQ),
1 1 bBP; + Py
Ry + Ry < =log(l+ pBP =1 1+ ———
2+ Ry < 20g( +5 2)+20g( + 1+bﬁP2)’
1 1 bBP2+P3
Ri+Ry+ Ry < —log(l+P P =1 1+ ——.
1+ Ry + Ry < 2og( +P+p 2)+20g< + 1+ 03k,
If let R3 = %1og(1 + Ps), the achievable rate region reduces to
1
Ry < glog(l+Py), (136)
1 bPy
< =1 1 137
2= 2Og(+1+P3)’ (137)
1
Ri+Ry < 5log(1+P1+P2). (138)

If o> ﬁ]ﬁj (P; < Pp), inequality (138) is always active. Therefore, the raipler(134) is always achievable.

For the converse part, (138) is a natural upper-boundzfo# Rs. [ ]

VIII. CONCLUSION

In this paper we have studied the capacity of an uplink ndtweaith co-channel interference. By modeling
such networks using a multiple access interference chamitielone-sided interference, we have obtained an inner
bound to the capacity region for both the discrete memaosytese and the Gaussian case. The capacity region
for the discrete memoryless channel model with strong amyg s&ong interference has been established; for the
Gaussian MAZIC, we have determined the capacity regiontferviery strong interference case, and for the case
that one interference link being strong and the other onegoetry strong; for the strong interference case, we have
obtained a boundary line segment of the capacity regiontlmixed interference case, a boundary point of the
capacity region has been obtained. For the weak interferease, we have obtained the sum-rate capacity for the
symmetric channel coefficients whose result is analogoubabof the two user Gaussian one-sided interference
channel. For the general case, a sum-rate upper bound hasbtgned which gives rise to a sum-rate capacity
result under certain power constraint conditions. Furtifare, it does not change the capacity results if we allow
more users intended for receiv@mwithout interfering receiveil. In this case,R; is replaced by the sum-rate of

all those added users.
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APPENDIX

A. Proof of Theorem 1

Fix p(q)p(u1lg)p(a1]uiq)p(uz|q)p(z2|uzq)p(zs|q).
Codebook generation: Randomly generate a time sharingeseqy™ according to]]"", p(¢;). Randomly

generate2"?: sequences?y(ms), ms € [1 : 2"%3], according to[ [}, p(z3i|g;). Forj = 1,2, randomly generate
2""i sequences (I;), I; € [1 : 2""3], each according t§];"_, py,|q(uji|¢:). For eachu?(l;), randomly generate
2n5; sequences’ (15, kj), k; € [1 : 2"%i], each according tq];, px;|u,.o(x;|usi(l;),a). The codebook is
available at all transmitters and receivers.

Encoding: For usey, j = 1,2, to send message:; = (I, k;), encoderj transmitsz’ (;, k;). For user3, to
send messagers, encoderd transmitszy (m;).

Decoding: Upon receiving?', decoderl finds the unique message turﬁe,l},l%l,léz) such that

(", uf (), uy (Ia), a2 (11, k), w3 (I, k), ) € AT (QULUL X, X V7). (139)
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If no such unique tuple exists, the decoder declares an. error
Upon receivingyy, decoder2 finds the unique message; such that
(", uf (), uz (I2), 25 (13)) € AT (QUIU2 X5Y2), (140)

for somel; € [1:2""1] and somd, € [1: 2"T2]. If no such uniquen; exists, the decoder declares an error.
Analysis of the probability of error: By the symmetry of thedebook generation, we assume that the transmitted

indices arel; = lo = k1 = ko = mg = 1. For userl, we define the following event:
Bl ks = {(q",u?(ll),ug(b),:z:’f(ll, k), @5 (lo, ko), yf) € A™ (QU1U2X1X2Y1)} : (141)

The error probability at receiver is

(&
el = Pf{Ehu UU(lllzklk2)¢(1=171-,1)El11l2k1k2}
c
< Pr(Biy )+ Z Pr(E} 111) + Z Pr(Ej,,) + Z Pr(Ejy,1)
li#1,la=k1=ky=1 lo#1,l1=hky=ko=1 k11,0 =lo=ko=1
Z Pr(Eiyy,) + Z Pr(E} 1) + Z Pr(Ef 13,1)
ko#1l1=la=k1=1 l1,l2#1,k1=ka=1 l1,k1#1,l2=k2=1
Pr(E} 114,) + Z Pr(BEi, 1) + Z Pr(Eiy,1p,)
l1,k2#1,la=k1=1 la,k17#1,l1=k2=1 lo,k2#1,l1=k1=1
Pr(BEiipk,) + Z Pr(Ef ,5,1) + Z Pr(E} ;,11,)
k1, ko #1,l1=1l2=1 ly,l2,k1#1,ko=1 ly,l2,k2#1,k1=1
Z Pr(E} 13,x,) + Z Pr(Eiy, p,k,) + Z Pr(E} 1 k,)
l1,k1,ka#1,l2=1 l2,k1,k27#1,11=1 l1,l2,k1,k2#1

It is obvious thatPr(E1,,,“) — 0 whenn — co. From the joint typicality we have

1
Pr(Ej 111)
l1#1,la=k1=ko=1
T
< omh > p(ut, 27 |q")p(q ubh yr)
(a7 uf g of o up ) €A
< 2nT1277,(H(QU1U2X1X2Y1)+€)2—77,(H(U1X1‘Q)—26)2—R(H(QU2X2Y1)—€)
— 271(T17[(U1X1;Yl‘UQXQQ)+4€) — 271(T17[(X1;Y1‘X2Q)+4€)
1
Pr(Ey,11)
lo#1l,li=k1=ko=1
< 2" > p(ud, 25 |q")p(q ui iy
(qmuf uf of gy ) e AL
< 2nT22n(H(QU1U2X1X2Y1)+e)27n(H(U2X2\Q)725)27n(H(QU1X1Y1)76)

2n(T2—I(U2X2;Y1 ‘U1X1Q)+4€) — 2n(T2—I(X2;Y1 ‘X1Q)+4€)
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1
Pr(Eyik,1)
k1#1l,lLi=la=ko=1
S

< 2" > p(atul, ¢")p(q¢" uiuz x5 YY)

(q"ul gt 2y ) e AL
< 2n512n(H(QU1U2X1X2Y1)+e)27n(H(X1\UlQ)72e)27n(H(QU1U2X2Y1)7E)
—  gn(S1-I(X111|U1U2X2Q)+H4e) _ gn(S1-1(X1;¥1|U1 X2Q)+4e)

1
Pr(Eqy,)
ko#lli=la=k1=1
S

< 2o > p(a5lus, ¢")p(q uiuszly})

(a7 uf g oy o up ) €A
< 2nS22n(H(QU1U2X1X2Y1)+€)2—77,(H(X2‘UQQ)—2€)2—7I(H(QU1U2X1Y1)—6)
_ 2n(527[(X2;Y1\U1U2X1Q)+4€) — 271(52*1(X2§Y1|U2X1Q)+45)

1
Pr(Ej};,11)
l1,l2#1,k1=ka=1
< on(hitTe) > pul, 2}, ug, 251q")p(q"yT)
(a7 uf ug o o3,y ) €A
< 2n(T1+T2)2H(H(QU1U2X1X2Y1)+€)2771(H(U1X1U2X2|Q)72€)27’n,(H(QY1)7E)

IN

IN

IN

IN

271(T1+T2—1(U1X1 U2 X2;Y1|Q)+4e) _ 2"(T1+T2_I(X1X2?Y1 |Q)+4e)

Z Pr(Ellllkll)

l1,k1#1,la=ka=1

ST > p(uf, 27 q")p(¢" us x5 yy)

(n)
(a7 uf 2t @3y ) €AL

2”(51+T1)2H(H(QU1 U2X1X2Y1)+€)2—77,(H(U1X1Q)—26)2—H(H(QU2X2Y1)—E)

on(S1+T1—I(U1 X1;Y1|U2X2Q)+4€) _ 9n(S1+T1—I(X1;Y1]|X2Q)+4e)

Z Pf(Ezll 11ks)

l1,k2#1,l2=k1=1

n(So+TH n .n _n|,n.n n, n,n
gn(S241h) E p(ug, z1, 25 luy'q")p(g"uiyy)
(g up ug 27 25 yp) €A

271(S2+T1)2H(H(QU1 U2X1X2Y1)+€)2—H(H(U2X1X2 ‘UlQ)—2€)2—’ﬂ(H(QU1Y1)—6)

2n(S2+T17[(U2X1X2;Y1 ‘UlQ)+4E) — 277,(52+T17](X1X2;Y1 ‘UlQ)+4E)

26
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IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

1
PY(E112k11)
la,k17#1,l1=k2=1
n(S1+7T: n .n _n|.n.n n. . n,n
2n(S1+72) E p(uf, o7, x5 uyq™ )p(q" uyyy')
(qmu} ug ap ay yp) €A

on(S1+T2) gn(H(QU1U2X1X2Y1)+e) g —n(H (U1 X1 X2|U2Q) —2€) 9 —n(H (QU2Y1) —¢)

2”(51+T2—1(U1X1X2;Y1 |U2Q)+4e) _ 2n(S1+T2—I(X1X2;Y1 |U2Q)+4¢)

1
Pf(Elzw@)
l2,k2#1,l1=k1=1
n(So+1T: n _.n| . n n,.n.n n
gr(S2+12) E p(uy, 51" )p(q" uiziyy)
(g7 up ug ot ofyp) €A

2”(52+T2)2R(H(QU1 U2X1X2Y1)+€)2—77,(H(U2X2 ‘Q)—26)2—R(H(QU1X1Y1)—E)

gn(S2+T2—1(U2 X2;Y1|U1 X1Q)+4e) _ gn(S2+T2—1(X2;Y1|X1Q)+4e)

PI"(E111k1 kg)
k1,k2#1,l1=l2=1
2n(51+82) > plat|ulq™)p(ah lus g™ )p(q"ul usyt)
(g up ug =7 25 yp) €A

2"(51+52)2"(H(QU1U2X1X2Y1)+6)27n(H(X1X2 \U1U2Q)72e)27n(H(QU1 UsY1)—e€)

9n(S1+82—I(X1 X2 Y1|U1U2Q)+4e) _ on(S1+S2—1(X1X2;Y1|U1U2Q)+4e)

1
E Pr(Elllgkll)
l1,l2,k1#1,ka=1
n(S1+T1+T: n ..n n n|,.n n. n
(SiATiAT) > p(uy, 7, uy, v5q")p(q"yy')
(q"ul g ot ag yp) e AL

2n(S1+T1+T2)2"(H(QU1 U2X1X2Y1)+€)2—"(H(U1X1 U2 X2 \Q)—26)2—"(H(QY1)_6)

2”(51+T1+T2—1(U1X1 U2X2;Y1|Q)+4e) _ 2n(S1+T1+T2—I(X1X2;Y1 |Q)+4€)

Z PY(E11112 1k2)

l1,l2,k2#1,k1=1

n(T1+Ss+T: n .n ,n .nl.n n,n
(T 452 4T2) E p(ut, z7, uy, 251" )p(q" Y1)
(qmuy ug oy oy ,yp) €A

2n(T1+Sz+T2)2"(H(QU1 U2X1X2Y1)+€)2—"(H(U1X1X2U2 \Q)—26)2—"(H(QY1)_6)

9n(S1+T1+82— (U1 U2 X1 X2;Y1|Q)+4€) _ gn(T1i+82+T2—1(X1X2;Y1|Q)+4e)
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1
Pr(Ep, 1x,x,)
l1,k1,k2#1,l2=1
S1+T1+S.
< gn(siTitsa) > p(ut, ot a5 uyq™)p(q usyT)
(amup ug 2 of yp) Al
< 27’7.(51JrTl+Sz)271(H(QU1U2X1X2Y1)+€)27H(H(U1X1X2‘UQQ)72€)2771(H(QU2Y1)7E)
—  on(S1+T1 45— I(U1 X1 X2;Y1|U2@)+4e) _ gn(S1+T1+52—1(X1X2;Y1|U2Q) +4€)
1
Z Pr(Eq, k)
l2,k1,ko#1,l1=1
S1+S2+4T:
< on(Si+SetTy) > puy, 7, agut g™ )p(q"uiyy)
(qmup ug 2p g yp)eAl™
< 9n(S1+824+T2) on(H(QUIU2 X1 X2 Y1) +€) 9 —n(H (U2 X1 X2|U1Q) —2€) o —n(H (QU1 Y1) —€)

_ 277,(51+S2+T27I(U2X1X2;Y1 ‘UlQ)+4E) — 277,(51+S2+T27[(X1X2;Y1 ‘UlQ)+4€)

Z Pr(El11l2k1k2)

l1,l2,k1,k2#1

< on(SitTitST) > pul, 2, ug, 25 1q")p(q"yT)

(g upuf a2 yr)eAl™)

< 277,(51+T1+S2+T2)2H(H(QU1U2X1X2Y1)+€)2777,(H(U1X1 Us Xo \Q)725)27n(H(QY1)75)

277,(S1+T1+SQ+T2—I(U1U2X1X2;Y1 |Q)+4€) — 277,(S1+T1+S2+T2—I(X1X2;Y1 |Q)+4e)

Putting them together, we have
n < e UM I(XYXeQ)He) | on(Te—I(X2iY1| X1 Q) +4e)
49T =I(X15Y1[U1 X2Q)+4e) | gn(S2—1(X2:Y1|U2 X1Q)+4e)
4oUTiATe—1(X1 X23Y1|Q)+4€) 4 gn(S1+T1—1(X1;Y1]X2Q)+4e)
1 on(S2 AT —I(X1 X2:Y1|U1Q)+4e) | on(S1+Te—1(X1 X2V |U2Q)+4e)
4o (S2+ T2 —1(X23Y1 | X1Q)+He) y gn(S148>—1(X1 X23Y1|[U1 U2 Q) +4e)
1 9n(S1HTI+ T~ (X1 X2:Y1|Q)+4e) 4 on(Ti+S2+T2 (X1 X2:Y1|Q)+4e)

+2n(Sl+T1+S27](X1X2;Y1|U2Q)+4E) 4 2n(51+52+T2*I(X1X2§Y1 |U1Q)+4e)

+2n(S1+T1 +S2+To—1(X1X2;Y1|Q)+4e)

For user2, we define the following event:

Bty = { (@03 (1), 03 (12), 2% (ms), 43) € AP (QUIUX3Y2) } (142)
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The error probability at receiveX is

2 ¢ 2
Pen2 = PY{E111 UUm3¢1,any(l1,l2)El1l2m3}

PI‘ (Efllc) + Z PI‘ (E121m'a) + Z PI‘ (El21lm'a)

ma#l,l1=la=1 l1,m3#1,l2=1

+ Z Pr (E%lzms) + Z Pr (El21l2m3)

l2,m3#1,l1=1 l1,l2,m37#1

IN

Again, it is obvious thaPr(E?,“) — 0 whenn — co. From the joint typicality we have

> Pr(Bh,,) < 2" > p(ailq™)p(q™, uy, uy, y3)
mg;él,ll:lg:l (q”,u’f,ug,zg,yg)GAgn)
S 27LR3277,(H(QU1U2X3Y2)+€)2—77,(H(X3‘Q)—26)2—H(H(QU1U2Y2)—6)
— 271(R37](X3;Y2|U1U2Q)+4€)
> Pr(ERy,,,) < 2"t > p(ul, 25 |q")p(q"™ us, y5)
hms#L 1=l (" uf ug zf yg) €A
< 9n(Ti+R3)gn(H(QU1U2X3Y2)+€) g —n(H(U1,X5|Q)—2€) 9—n(H(QU2Yz2) —¢)

277,(T1+R3—I(U1X3§Y2‘UQQ)+4€)

To+R
> Pr(Bh,,) = 20 > plug. a3lg"p(" uf . v5)
lg,mg;él,ll:l (q",u?,ug,xg,yS)GAgn)
< 277,(T2+R3)277,(H(QU1U2X3Y2)+€)2—77,(H(U2,X3IQ)—2€)2—R(H(QU1Y2)—€)
2n(T2+R371(U2X3;Y2‘UlQ)+4€)
Pr(Efpym,) < 20 > p(u, uf, 251g")p(a", v5)
f1,l2,ma 71 (amuy ug oy ,y3) €A™

< 2n(T1+T2+Rs)2"(H(QU1U2X3Y2)+5)2*"(H(U1U2X3 \Q)*QE)Q*"(H(QYﬂ*é)

—  on(Ti+T2+Ra—1(U1U2X3;Y2|Q)+4e)

Therefore, for receive?,
P% < e+ Qn(Rs—1(X5:Y2|U1U2Q)+4e) | gn(Ta+Rs—1(U1X5;Y2|U2Q)+4e)
€

+2n(T2+R3—I(U2X3;Y2‘UlQ)+4€) + 271(T1+T2+R3—I(U1 U2X3;Y2|Q)+46)
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In order thatP}, P — 0, from above inequalities, we must have

T < I(X1;Y1]X2Q), (143)

T, < I(X2;Y1|X1Q), (144)

T < I(X1;Y1|U1X2Q), (145)

Sy < I(X;Y1|U2X1Q), (146)

I+T < I(X1X2:Y1]Q), (147)
Si+T < (X Y1|X2Q), (148)
So+Ti < (X1 X2 Y1|UhQ), (149)
Si+Ty < I(X1 X 11|U2Q), (150)

S+ Ty < I(X2;Y1[X1Q), (151)
S48 < I(X1Xg; Y1|UhU:Q), (152)
Si+T+Ty < I(X1X9;Y1|Q), (153)
i+ S+Ty < I(X1X2;Y1|Q), (154)
Si+Ti+85 < I(X1Xe:Y1|U2Q), (155)
S1+ 8+ Ty < I(X1X2;Y1|UhQ), (156)
Si+Ti+S+T, < I(X1X1|Q), (157)
R3; < I(X3Ys|U1U2Q), (158)

T+ Ry < I(U1X3:Y2|U:2Q), (159)

To+ Ry < I(UxX3:Y2|U1Q), (160)

Ty +To+ Ry < I(U1UzX3;Y32|Q). (161)

Using the Fourier-Motzkin elimination on (143)-(161) anetting rid of redundant inequalities, we obtain (5)-(15).

The cardinality bounds on the auxiliary random variables faom the Caratheodory Theorem.

B. Proof of Theorem 2

The achievability part follows directly from Theorem 1 byttsey U; = U = (). For the converse, (33), (34) and
(36) form an outer bound on the capacity region of the coordmg MAC with X; and X, as inputs and; as

output. Moreover, (35) is a natural bound &3. Therefore, we only need to prove (37)-(39). First,
n(R2 +R3) — NeE = H(WQ) —|—H(W3) — NeE
I(X3: Y+ (X3 Y5

< IS YXT) + I(XE5 Yo' XT)
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I(X3; Y3 [ XTXE) + T(X35 Y5 | XT)

= I(XJX5Y5'|XT)

= H(YP|X]) - HYS|XPX3XD)

= S {HMuY;'X]) - H(YailY3 XPXEXT))
=1

< Z{H Yoi| X1:) — H (V2| X1 X2 X3:)}

- I(XQngz,YQ1|Xlz)

where (@) is from Fano’s inequality(b) is because of the mutual independence am&rig X3 and X3; (c) is
due to (31); andd) uses the fact that conditioning reduces entropy and the m@dess property. Similarly, we

can prove the bound oR; + R3. We further have

n(Ry + Re+ R3) —ne = HWy,Wa)+ H(W3) —ne
I(XT X35 Y") + 1(X55Y5")
I(XT X5 Y)") + 1(X5;Y3")
(X7 X35 Y5 [ Xg) + 1(X55Y5")
= XXX V)

= H(YY") - H(Y'| X' X5 X))

- Z{H You| V5 ™1) — H(Yas|Y; 7' XTXEXE) }

(d &
< Z }/21 }/21|X11X21X31))}
=1

= I(XquiX&',Yzi)-

By introducing a time-sharing random varialgle we obtain Theorem 2. The cardinality ¢f can be verified using

the Caratheodory theorem.
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