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Decoding the ‘Nature Encoded’ Messages for
Distributed Energy Generation Control in Microgrid

Shuping Gong, Husheng Li, Lifeng Lai and Robert. C. Qiu

Abstract—The communication for the control of distributed
energy generation (DEG) in microgrid is discussed. Due to the
requirement of realtime transmission, weak or no explicit channel
coding is used for the message of system state. To protect the
reliability of the uncoded or weakly encoded messages, the system
dynamics are considered as a ‘nature encoding’ similar to convo-
lution code, due to its redundancy in time. For systems with or
without explicit channel coding, two decoding procedures based
on Kalman filtering and Pearl’s Belief Propagation, in a similar
manner to Turbo processing in traditional data communication
systems, are proposed. Numerical simulations have demonstrated
the validity of the schemes, using a linear model of electric
generator dynamic system.

I. I NTRODUCTION

In recent years, smart grid has attracted significant studies
due to its capability of improving the efficiency and robustness
of power grid [2]. An important component in smart grid is
the microgrid [1] [6], which is a network containing multiple
distributed energy generators (DEGs, like solar panels, micro-
turbines or wind turbines) and multiple loads. A microgrid can
either be connected to or be separated from the power grid. In
normal situations, the microgrid is connected to the power grid
and obtains energy according to its own energy generation.
When the power grid experiences an emergency, e.g., a large
area blackout, the microgrid can be disconnected from the
power grid and work in an island mode. At this time, the power
load within the microgrid will be supported by the DEGs. Such
a microgrid has been implemented in many testbeds, e.g., the
Electric Reliability Technology Solutions (CERTS) Microgrid
supported by the US Department of Energy.

An important aspect of the microgrid is the communication
infrastructure for controlling the DEGs since they could be
located at different places. In such a communication infrastruc-
ture, the observations at sensors are sent to a processor (either
centralized or decentralized) for system state monitoringor
control. In traditional microgrids, wired communicationsare
employed. For example, an RS-485 (digital computer based)
link or an ethernet is used in the Oak Ridge National Lab
(ORNL) microgrid system [3]. An alternative approach for
the communication for DEG control is to use wireless com-
munication systems due to its fast deployment. In wireless
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Fig. 1: An illustration of the communication procedure and
dynamic system.

medium, fading, noise and interference may cause damage to
the received signal of messages for DEG control. Therefore,
a channel coding scheme is needed to protect the messages.
However, there is a stringent requirement on the delay of
messages due to the dynamics of DEGs. Hence, it is impossi-
ble to accumulate sufficiently many bits for a long codeword
length and the corresponding coding gain since this will incur
a substantial delay. Therefore, an effective approach is touse
short codeword length which loses the protection on the bits
in the message.

In this paper, we studythe decoding procedure (including
the demodulation procedure) for the messages with no or weak
channel coding protection in the context of DEG control in
microgrid. The key point is toexploit the redundancy in the
system state, which can be considered as a ‘nature encoding’
for the messages. In this paper, a linear system model is
adopted, wherex(t + 1) = Ax(t) +Bu(t) + n(t) is used to
describe the dynamics of system statex subject to the control
u(t) and noisen(t). We observe that the system state is similar
to the convolutional codes except that the ‘encoding’ of the
system state is in the real field instead of the Galois field.
Hence, the message actually has been channel coded by the
nature although no explicit or little explicit channel coding
is used at the transmitter. We use both schemes of Kalman
filtering and Pearl’s Belief Propagation (BP) for the soft
decoding, combined with the soft demodulation to improve the
reliability of demodulation and decoding. A practical dynamic
system for the DEGs will be used for numerical simulation,
which demonstrates the performance gain of incorporating the
inherent redundancy in the ‘nature encoding’. The procedure
is illustrated in Fig. 1. Note that such a scheme is similar
to the Turbo processing techniques like Turbo decoding [8],
Turbo multiuser detection [11] and Turbo equalization [12]
in wireless communication systems. However, the ‘nature
encoding’ is analog and implicit, thus resulting in a different
processing procedure.

The remainder of this paper is organized as follows. The
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system model is introduced in Section II. The decoding
procedure is discussed for the schemes of Kalman filtering
based heuristic approach and the BP approach in Sections III
and IV, respectively. Numerical simulation results are shown
in Section V. Finally, the conclusions are drawn in Section
VI.

II. SYSTEM MODEL

A. Linear System

We consider a discrete time linear dynamic system, whose
system state evolution is given by

{

x(t+ 1) = Ax(t) +Bu(t) + n(t),
y(t) = Cx(t) +w(t)

, (1)

where x(t) is the N -dimensional vector of system state at
time slot t, u(t) is the M -dimensional control vector,y
is the K-dimensional observation vector andn and w are
noise vectors, which are assumed to be Gaussian distributed
with zero expectation and covariance matricesΣn and Σw,
respectively. For simplicity, in this paper we do not consider
u(t).

We assume that the observation vectory(t) is obtained
by a sensor1. The sensor quantizes each dimension of the
observation usingB bits, thus forming a bit sequence which
is given by

b(t) = (b1(t), b2(t), ..., bKB(t)) . (2)

B. Communication System

Suppose that binary phase shift keying (BPSK) is used for
the transmission from the sensor to the controller. The bit
sequence is passed through an optional channel encoder, which
generates anL-bit sequences(t). Then, the received signal at
the controller is given by

r(t) = s(t) + e(t), (3)

where the additive white Gaussian noisee(t) has a zero
expectation and varianceσ2

e . Note that we ignore the fading
and normalize the transmit power to be 1. The algorithm and
conclusion in this paper can be easily extended to the case
with different types of fading.

III. K ALMAN FILTERING BASED HEURISTIC APPROACH

In this section, we adopt a heuristic approach, which is
based on Kalman filtering, to exploit the redundancy in the
system state. We first carry out the Kalman filtering and then
apply the prediction to the soft demodulation.

A. Kalman Filtering

When the observationsy(t) are sent to the controller
perfectly, the controller can use the following Kalman filtering
to predict the future system state, whose expectation is given
by

x(t+ 1|t) = Ax(t|t), (4)

1It is easy to extend to the case of multiple sensors.

where

x(t|t) = x(t|t− 1) +K(t) (y −Cx(t|t− 1)) , (5)

and

K(t) = Σ(t|t− 1)CT
(

CΣ(t|t− 1) (C)
T
+Σo

)−1

, (6)

and the covariance matrix given by

Σ(t|t) = Σ(t|t− 1)−KtCΣ(t|t− 1), (7)

where

Σ(t+ 1|t) = AΣ(t|t)AT +Σp. (8)

B. Soft Decoding and Demodulation

Based on the Kalman filtering, the controller can obtain the
distribution of the observation, which is Gaussian distributed
with the expectationx(t|t − 1) given by Eq. (4) and the
covarianceΣ(t|t− 1) given by Eq. (8).

Because different dimensions in the observationyt are not
independent, it is challenging to directly compute thea priori
probability for each bit, which is given by (suppose thati is
used to describe thei-th bit in b(t))

ξi(t) , P (bi(t) = 1|y(−∞ : t))

=
1

√

2π|Σ(t|t− 1)|

∫

I(bi(t) = 1,y(t) = y)

× exp(−
1

2
(y − x(t|t− 1))T ×Σ−1(t|t− 1)

× (y − x(t|t− 1)))dy. (9)

We propose to use the Monte Carlo simulation to obtain a
series of samples of{yt} based on the prediction of Kalman
filtering, then quantize these samples to obtain a series of
samplesbt−1 and calculate the prior probabilityξi(t) for bt.
We use{ξi(t)} as thea priori probability of being 1 for
demodulatingb(t). Then, thea posteriori probability of bi(t)
is given by

P (bi(t) = 1|r(−∞ : t))

=
P (r(t)|bi(t) = 1)ξi(t)

P (r(t)|bi(t) = 1)ξi(t) + P (r(t)|bi(t) = 0)(1− ξi(t))
,(10)

where

P (y(t)|bi(t) = 1) =
1

√

2πσ2
0

exp

(

−
(ri(t)− 1)2

2σ2
e

)

. (11)

P (y(t)|bi(t) = 0) =
1

√

2πσ2
0

exp

(

−
(ri(t) + 1)2

2σ2
e

)

. (12)

Note that the Kalman filtering is no longer rigorous in the
networked control system due to the quantization error and
possible decoding error. The proposed heuristic approach is
based on the assumption that the Kalman filtering is very
precise. As will be shown in the numerical results, this
approach will be seriously affected by the propagation of
decoding errors.
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Fig. 3: Message Passing of BP.

IV. BP BASED ITERATIVE DECODING

In this section, we consider the iterative decoding using BP
with the mechanism of message passing between the system
state and received signals. The key observation is thatthe
entire information passing is similar to a concatenated coding
structure, as illustrated in Fig. 2. The outer coding is carried
out by the dynamic system, where the system statex is
encoded similarly to a convolutional code and the observation
y is linearly encoded by the observation matrixC and the
system statex. The inner code is the explicit encoding of
the observation vector. Hence, we can adopt the iterative
decoding approach in Turbo codes or LDPC codes [7]. In a
sharp contrast, the proposed Kalman filtering based heuristic
approach has only one round.

[10] has shown that many iterative decoding algorithm,
such as Turbo decoding can be considered as the application
of Pearl’s BP algorithm [9]. In this section, we first illustrate
the principle through an example and then explain how to
apply Pearl’s BP into our dynamic state system.

A. Introduction of Pearl’s BP

As shown in Fig. 3, random variableX has parents
U1, U2, · · · , UM and childrenY1, Y2, · · · , YN . The message
passing of Pearl’s BP is indicated by green arrows and red
arrows in the figure. Green arrows transmitπ-message which
is sent from parent to its children. For instance, the message

passing fromUm to X is πUm,X(Um), which is the prior
information of Um conditioned on all the informationUm

has received. Red arrows transmitλ-message which is from
children to its parent. For instance, the message passing from
Yn to X is λYn,X(X), which is the likelihood of X based
on the informationYn has received. AfterX receives allπ-
messageπUm,X(Um) from its parentsU1, U2, · · · , UM and all
λ-messageλYn,X(X), X from its childrenY1, Y2, · · · , YN ,
X updates its belief informationBELX(x) and transmitsλ-
messagesλX,Um

(Um) to its parents andπ-messageπX,Yn
(x)

to its children. The expressions of the quantities are givenby

πX(x) =
∑

U

p(x|U)

M
∏

m=1

πUm,X(Um) (13)

γX(U) =
∑

x

N
∏

n=1

λYn,X(x)p(x|U) (14)

BELX(x) = α×
N
∏

n=1

λYn,X(x)× πX(x) (15)

λX,Um
(Um) =

∑

U, 6=Um

γX(U) ×
∏

j 6=m

πUj ,X(Uj) (16)

πX,Yn
(x) = πX(x) ×

∏

i6=n

λYi,X(x) (17)

whereU = (U1, U2, · · · , UM ) andY = (Y1, Y2, · · · , UN)
In the initialization procedure of Pearl’s BP, some initial

values are needed for the running of Pearl’s BP. The initial
values are defined as

λX,U (u) =

{

p(x0|u), X is evidence,x = x0

1, X is not evidence
,(18)

and

πX,Y (x) =

{

δ(x,x0), X is evidence,x = x0

p(x), X is source, not evidence
.(19)

B. Application of Pearl’s BP in Microgrid

The Bayesian network structure of the control system and
communication system in the DEG networked control in mi-
crogrid is shown for three time slots in Fig. 4. In the Bayesian
network, the system state is dependent on the previous system
state and the control action; the observation is dependent
on the system state; the uncoded bits are dependent on the
observation vector; the received signal is dependent on the
uncoded bits. Here we omit the coded bits as the relationship
between the uncoded bits and the coded bits is deterministic.
Fig. 4 shows the Bayesian Network structure for the dynamic
system with three observations:xt−2, xt−1 andxt.

Based on the Bayesian network structure, the iterative
decoding procedure can be derived. Fig 4 shows the message
passing in the dynamic system.xt−2 summarizes all the
information obtained from previous time slots and transmits
π-messageπxt−2,xt−1

(xt−2) to xt−1. The BP procedure can
be implemented in synchronous or asynchronous manners. As
the decoding process has a large overhead, we implement
asynchronous Pearl’s BP. The updating order and message
passing in one iteration is as follows: step 1):xt−1 → yt−1;
step 2):yt−1 → bt−1; step 3):bt−1 → yt−1; step 4):yt−1 →
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Fig. 4: Bayesian network structure and message passing for
the dynamic system.

xt−1; step 5):xt−1 → xt; step 6):xt → yt; step 7):yt → bt;
step 8):bt → yt; step 9):yt → xt; step 10):xt → xt−1; step
11): xt−1 updates information. The mathematical derivation
for each step is provided in Appendix A. Due to the limited
space, we provide only the most challenging steps. The full
derivation will be given in our journal version.

V. NUMERICAL SIMULATIONS

In this section, we use numerical simulations to demonstrate
the algorithms proposed in this paper.

A. Dynamic System Model

We consider a dynamic system of DEG in which the system
state is a 7-dimensional vector. The system is in the continuous
time. The system dynamics is described by a differential
equationẋ(t) = A′x(t), where the matrixA′ is given by (20)
(Example 12.9 in [4]). The physical meanings of the system
states are given in Table I. For simplicity, we assume that the
system is unregulated, i.e.,B = 0, and the sensor can sense
the system state directly, i.e.,C = I. We approximate the
continuous time system using the discrete time system with
a small step sizeδt. Therefore, the matrixA in the discrete
time system is given byA = I+ δtA′.

TABLE I: Physical Meaning of System States
x1,x2 rotor swings
x3 excitation circuit
x4 damping circuit in thed-axis and excitation circuit
x5 damping circuit in theq-axis
x6 voltage controller and excitation circuit
x7 voltage controller

We run the simulations using Matlab to compare the perfor-
mances of Kalman filtering and Pearl’s BP based algorithms
for systems with and without channel coding. The baseline
approach is the separated Kalman filtering and decoding
process. In the following, these three algorithms are referred
as ‘KF with Prior’, ‘Pearl BP’ and ‘KF’, respectively. The
performance metrics are the mean square error (MSE) of each
sample and the average bit error rate (BER). Each simulation
runs 1000 times slots. The configuration for both systems are
as follows: for the dynamic system of DEG described in (1):
δt = 0.01, Σp = 0.05, Σ0 = 0.05. Each dimension of the
observationyt is quantized with 16 bits, and the dynamic
range for quantization is[−200, 200]. A 1/2 rate Recursive
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coding

Systematic Convolutional (RSC) code is used as the channel
coding scheme; and the code generator isg = [1, 1, 1]. The
decoding algorithm is Log-Map algorithm.

B. Uncoded Case

Figures 5 and 6 show the simulation results for the uncoded
case with differentEb

N0

. When Eb

N0

≥ 5, the performance of
‘Pearl BP’ is much better than ‘KF’ and ‘KF with Prior’;
when Eb

N0

≥ 7, the performance of ‘KF with Prior’ is better
than ‘KF’. This demonstrates that the redundancy in the system
state can improve the performance whenEb

N0

is high. Compared
with ‘KF with Prior’, the performance gain of ‘Pearl BP’ stems
from the utilization of soft decoding output in the system state
estimation. However, in the lowEb

N0

regime, the performances
of ‘Pearl BP’ and ‘KF with Prior’ are worse than ’KF’. This is
because the cascading effect of the decoding error and system
sate estimation error. The worst case is that some highest bits
of observations are not decoded correctly, then the estimated
observation largely deviates from the correct value; and then
this error will propagate to succeeding time slots and thus will
lead to the collapse of ‘KF with Prior’ or ‘Pearl BP’ algorithm.
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A′ =





















0 1 0 0 0 0 0
−20.316 0 0 −25.048 −1.411 0 0
−0.061 0 −0.773 −0.083 0.018 15.06 30.12
−0.213 0 7.050 −5.026 0.063 0 0
−2.654 0 0 −1.463 −12.958 0 0

0 0 0 0 0 0 1
−0.008 0 0 −0.565 0.971 −3.33 −33.33





















(20)
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Fig. 7: Mean Square Error comparison for system with channel
coding

C. Coded Case

Figures 7 and 8 show the simulation results for the channel
coded case with differentEb

N0

. As shown in the figures, the
performance of ‘Pearl BP’ is always the best except that the
bit error rate is worse than ‘KF with Prior’ occasionally. In
a contrast to the ‘Pearl BP’ for the uncoded case, ‘Pearl BP’
does not collapse for coded case due to the gain of channel
coding. WhenEb

N0

≥ 3, the performance of ‘KF with Prior’ is
better than that of ’KF’. These results demonstrate that using
the redundancy in system state can improve performance in the
coded case. The performance gain of ‘Pearl BP’ over ‘Kalman
Filter with Prior’ in low Eb

N0

shows the gain of using soft
decoding output in state estimation. WhenEb

N0

≥ 5, these three
algorithms have good performance which is due to the gain
of channel coding.

VI. CONCLUSIONS

In this paper, we have proposed to use Kalman Filter
based and Pearl’s BP based decoding procedure (including
the demodulation procedure) to exploit the redundancy, i.e.,
the nature encoding in the system state for the system with
no or weak channel coding protection in the context of DEG
control in microgrid. The numerical simulation results have
shown that, whenEb

N0

is high, the proposed algorithms achieve
significant performance gain, compared with traditional sep-
arated decoding and system state estimation. However, when
Eb

N0

is low, the proposed algorithms may incur performance
degradation due to the error propagation. This motivates usto
study the mechanism to prevent such an adversarial effect.
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APPENDIX A
DERIVATION OF KEY STEPS IN THEPEARL’ S BP

In the following derivation part, we will use the following
two basic equations, whereN (x, µ, σ is the probability density
function of Gaussian distribution with expectationµ and
varianceσ at x:

∫ ∞

−∞

N (x,m1,Σ1)N (y,Cx,Σ2)dx

∝ N (y,Cm1,CΣ1C
T +Σ2), (21)

and

N (x,m1,Σ1)N (x,m2,Σ2) ∝ N (x,m3,Σ3), (22)

where the variance is given by

Σ3 = (Σ−1
1 +Σ−1

2 )−1, (23)

and the expectation is given by

m3 = Σ3(Σ
−1
1 m1 +Σ−1

2 m2). (24)
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Below is the notation used throughout the derivation:

πxt−1,xt
(xt−1) = N (xt−1,xπx,t−1, Pπx,t−1)

πxt−1,yt−1
(xt−1) = N (xt−1,xπy,t−1, Pπy,t−1)

πyt,bt
(yt) = N (yt,yπ,t, Sπ,t)

πxt
(xt) = N (xt,xl,t, Pl,t)

πyt
(yt) = N (yt,yl,t, Sl,t)

λyt,xt
(xt) = N (xt,xλy ,t, Pλy,t)

λxt,xt−1
(xt−1) = N (xt−1,xλx,t−1, Pλx,t−1)

λbt,yt
(yt) = N (yt,yλ,t, Sλ,t)

BEL(xt) = N (xt,xBEL,t, PBEL,t)

p(xt|xt−1) = N (xt, Axt−1 +But−1,Σp).

1) Step 1:xt−1 → yt−1: we have

πxt−1
(xt−1)

=

∫ ∞

−∞

p(xt−1|xt−2)πxt−2,xt−1
(xt−2)dxt−2

= N (xt−1,xl,t−1, Pl,t−1), (25)

where the expectation is given by

xl,t−1 = Axπx,t−2, (26)

and the variance is given by

Pl,t−1 = A× Pπx,t−2 ×A
T +Σp

πxt−1,yt−1
(xt−1) = πxt−1

(xt−1)λyt−1,xt−1
(xt−1)

= N (xt−1,xl,t−1, Pl,t−1)× 1

= N (xt−1,xπy ,t−1, Pπy ,t−1) (27)

where

xπy ,t−1 = xl,t−1;Pπy ,t−1 = Pl,t−1. (28)

2) : Step 4:yt−1 → xt−1: we have

λyt−1,xt−1
(xt−1) = γyt−1

(xt−1)

=

∫
∞

−∞

λbt−1,yt−1
(yt−1)p(yt−1|yx−1)

= N (xt−1,xλy,t−1, Pλy ,t−1), (29)

where the expectation is given by

xλy ,t−1 = C−1 × yλ,t−1, (30)

and the variance is given by

Pλy,t−1 = C−1(Sλ,t−1 +Σo)× (C−1)T . (31)

3) Step 5:xt−1 → xt: we have

πxt−1,xt
(xt−1) = πxt−1

(xt−1)× λyt−1,xt−1
(xt−1)

= N (xt−1,xπx,t−1, Pπx,t−1), (32)

where the variance is given by

Pπx,t−1 = (P−1
l,t−1 + P−1

λ,t−1)
−1, (33)

and the expectation is given by

xπx,t−1 = Pπx,t−1 × (P−1
l,t−1 × xl,t−1

+ P−1
λ,t−1xλ,t−1).

The belief is thus given by

BELxt−1 = α× 1× λ(yt−1,xt−1)(xt−1)

× πxt−1
(xt−1)

= N (xt−1,xBEL,t−1, PBEL,t−1), (34)

where the variance is given by

PBEL,t−1 = (P−1
λy ,t−1 + P−1

l,t−1)
−1, (35)

and the expectation is given by

xBEL,t−1 = PBEL,t−1 × (P−1
λy ,t−1 × xλy ,t−1

+ P−1
l,t−1 × xl,t−1). (36)

4) Step 10:xt → xt−1, we have

λxt,xt−1
(xt−1) = γxt

(xt−1)

=

∫ ∞

−∞

λyt,xt
(xt)p(xt−1|yt−1)dxt

= N (xt−1,xλx,t−1, Pλx,t−1), (37)

where the variance is given by

Pλx,t−1 = A−1(Σp + Pλy,t)(A
−1)T

xλx,t−1 = A−1xλy,t. (38)
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