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Abstract—The communication for the control of distributed Dynamic system
energy generation (DEG) in microgrid is discussed. Due to th
requirement of realtime transmission, weak or no explicit diannel ety I i
coding is used for the message of system state. To protect the | I” Channel | ot System :
reliability of the uncoded or weakly encoded messages, thgstem | Modutaton > Sodng T decoding [ 7] S

A A A I | (optional) } estimation
dynamics are considered as a ‘nature encoding’ similar to ao/o- Sesssss
lution code, due to its redundancy in time. For systems witho ~  ‘--------mmmommmmmooeoos e
without explicit channel coding, two decoding procedures ased Sensor Processor

on Kalman filtering and Pearl’s Belief Propagation, in a simiar Fia. 1: An ill . fth L d d
manner to Turbo processing in traditional data communication I9. 1: An illustration of the communication procedure an

systems, are proposed. Numerical simulations have demonated ~ dynamic system.
the validity of the schemes, using a linear model of electric
generator dynamic system.

medium, fading, noise and interference may cause damage to
the received signal of messages for DEG control. Therefore,
. INTRODUCTION a channel coding scheme is needed to protect the messages.
In recent years, smart grid has attracted significant ssudidowever, there is a stringent requirement on the delay of
due to its capability of improving the efficiency and robuests  messages due to the dynamics of DEGS. Hence, it is impossi-
of power grid [2]. An important component in smart grid idle to accumulate sufficiently many bits for a long codeword
the microgrid [1] [6], which is a network containing multgpl length and the corresponding coding gain since this williinc
distributed energy generators (DEGs, like solar panelstani a substantial delay. Therefore, an effective approach is&
turbines or wind turbines) and multiple loads. A micrograhc short codeword length which loses the protection on the bits
either be connected to or be separated from the power grid.imnthe message.
normal situations, the microgrid is connected to the powiel g  In this paper, we studyhe decoding procedure (including
and obtains energy according to its own energy generatidhe demodulation procedure) for the messages with no or weak
When the power grid experiences an emergency, e.g., a laggannel coding protection in the context of DEG control in
area blackout, the microgrid can be disconnected from the@crogrid. The key point is toexploit the redundancy in the
power grid and work in an island mode. At this time, the powesystem state, which can be considered as a ‘ nature encoding’
load within the microgrid will be supported by the DEGs. Sucfor the messages. In this paper, a linear system model is
a microgrid has been implemented in many testbeds, e.g., #topted, where(t + 1) = Ax(t) + Bu(t) + n(t) is used to
Electric Reliability Technology Solutions (CERTS) Micmid) describe the dynamics of system statsubject to the control
supported by the US Department of Energy. u(t) and noisen(t). We observe that the system state is similar
An important aspect of the microgrid is the communicatiot® the convolutional codes except that the ‘encoding’ of the
infrastructure for controlling the DEGs since they could bsystem state is in the real field instead of the Galois field.
located at different places. In such a communication infugas Hence, the message actually has been channel coded by the
ture, the observations at sensors are sent to a proceséar (enature although no explicit or little explicit channel codi
centralized or decentralized) for system state monitoong is used at the transmitter. We use both schemes of Kalman
control. In traditional microgrids, wired communicatioage filtering and Pearl's Belief Propagation (BP) for the soft
employed. For example, an RS-485 (digital computer basetfcoding, combined with the soft demodulation to improwe th
link or an ethernet is used in the Oak Ridge National Lafgliability of demodulation and decoding. A practical dymia
(ORNL) microgrid system[[3]. An alternative approach fosystem for the DEGs will be used for numerical simulation,
the communication for DEG control is to use wireless comwhich demonstrates the performance gain of incorporatieg t
munication systems due to its fast deployment. In wirele§izherent redundancy in the ‘nature encoding’. The procedur
is illustrated in Fig[IL. Note that such a scheme is similar
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system model is introduced in Sectigd Il. The decodinghere

procedure is discussed for the schemes of Kalman filtering

based heuristic approach and the BP approach in Se€fions Ill x(t[t) = x(t|t — 1) + K(t) (y — Cx(t|t — 1)), (5)
and[1V, respectively. Numerical simulation results arevamo

in Section[Y. Finally, the conclusions are drawn in Sectiodnd

VI K(t) = 3(¢t — 1)CT (CE(t|t -1 ()" + zo) G

Il. SYSTEM MODEL . L
. and the covariance matrix given by
A. Linear System

We consider a discrete time linear dynamic system, whose (tlt) =2t — 1) — K:CX (¢t — 1), @)
system state evolution is given by

{ x(t +1) = Ax(t) + Bu(t) + n(t), )
y(t) = Cx(t) + w(t) ’ Bt +1t) = AS(t[t) AT + 2, (8)
where x(t) is the N-dimensional vector of system state at
time slot ¢, u(t) is the M-dimensional control vectory
is the K-dimensional observation vector and and w are
noise vectors, which are assumed to be Gaussian distributegased on the Kalman filtering, the controller can obtain the
with zero expectation and covariance matrid&s and X,,,  distribution of the observation, which is Gaussian distél
respectively. For simplicity, in this paper we do not coesid with the expectationx(¢|t — 1) given by Eq. [#) and the
u(t). covarianceX(t|t — 1) given by Eqg. [(8).

We assume that the observation vecidt) is obtained  Because different dimensions in the observaggrare not
by a sensék The sensor quantizes each dimension of thedependent, it is challenging to directly compute ghpriori
pbsgrvation using3 bits, thus forming a bit sequence whichprobability for each bit, which is given by (suppose thas
is given by used to describe theth bit in b(t))

b(t) = (b (), ba(t), ... brc s (2)) . @)

where

B. Soft Decoding and Demodulation

&(t) = Pbi(t) =1ly(—c0: 1))

1
B. Communication System = Nl /I(bi(t) =Ly() =y)
Suppose that binary phase shift keying (BPSK) is used for 1
the transmission from the sensor to the controller. The bit x - exp(—5(y — x(t|t - )T x =N (tt - 1)
sequence is passed through an optional channel encodeh whi x (y —x(t|t — 1)))dy. 9)
generates ail-bit sequence(t). Then, the received signal at
the controller is given by We propose to use the Monte Carlo simulation to obtain a
series of samples dfy;} based on the prediction of Kalman
r(t) = s(t) +e(t), (3) filtering, then quantize these samples to obtain a series of

- . . . samplesb;_, and calculate the prior probability(¢) for b;.
where the additive white Gaussian noiee/) has a zero we use{¢,(¢)} as thea priori probability of being 1 for
expectation and variance?. Note that we ignore the fading demodulatingb(t). Then, thea posteriori probability of b;(t)
and normalize the transmit power to be 1. The algorithm argigiven by

conclusion in this paper can be easily extended to the case

with different types of fading. P(bi(t) = 1'“‘;? :(f))|)b-(t) e
= PEOBE = D& + PEDb0) = 01 - &D

I1l. KALMAN FILTERING BASED HEURISTIC APPROACH

In this section, we adopt a heuristic approach, which ighere
based on Kalman filtering, to exploit the redundancy in the

1 i(t) — 1)2
system state. We first carry out the Kalman filtering and thenP(y(¢)[b;(t) = 1) = = exp <—(T(2)72)) . (11
apply the prediction to the soft demodulation. 2mag Te
PO = 0) = — I e (<L) az)
y(©)[bi(t) = 0) = xp|——55— "
A. Kalman Filtering \V2mo] 202

When the observationg(¢) are sent to the controller Note that the Kalman filtering is no longer rigorous in the
perfectly, the controller can use the following Kalman fig networked control system due to the quantization error and
to predict the future system state, whose expectation BNYiVhossible decoding error. The proposed heuristic approgch i
by based on the assumption that the Kalman filtering is very

x(t + 1[t) = Ax(t[t), () precise. As_will be _shown in the numerical results_, this
approach will be seriously affected by the propagation of
1t is easy to extend to the case of multiple sensors. decoding errors.



System dynamics passing fromU,, to X is 7y, x(Uy), which is the prior

information of U,, conditioned on all the informatioi/,,

on the informationY,, has received. AftetX receives allr-

! Outer code i has received. Red arrows transmimessage which is from
| System System | Sensing children to its parent. For instance, the message passing fr
1 state observation [~ Y, to X is Ay, x(X), which is the likelihood of X based
| |

| |

| |

——————————————————————————— messagery,, x (Up,) fromits parentd/y, Us, - -- ,Ups and all
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i T\ ! oded bit X updates its belief qurma‘uoBELX (x) and transmits\-

' | odulation Channel | sequence messagesd x v,, (Uy,) to its parents aneg-messagerxy, (x)

e coding [~ 1~ to its children. The expressions of the quantities are ghen

i Inner code i

,,,,,,,,,,,,,,,,,,,,,,,,,,,

M
mx(x) = > px[U) [[ 70, xUn)  (13)
U m=1

Fig. 2: An illustration of the coding structure.

N
parents o x(U) = > [ vx®pxU) (14)
x n=1
N
BELx(x) = ax []Av.x(x)x7x(x) (15)
n=1
AU, (Un) = Y x(@) x [] 7v,.x(U;) (16)
U,#£Up, j#m
mxy,(x) = mx(x) x []Avix(x) (17)
i#n

whereU = (U;,Us, -+ ,Uy) andY = (Y1,Ys, -+ ,Un)

In the initialization procedure of Pearl’s BP, some initial
values are needed for the running of Pearl's BP. The initial
values are defined as

Fig. 3: Message Passing of BP.

_ p(xolu), Xis evidencex = xq
Axu(a) = { 1, Xis not evidence 19
IV. BP BASED ITERATIVE DECODING and
In this section, we consider the iterative decoding using BP §(x,xp), Xis evidencex = x,
with the mechanism of message passing between the systéFﬁfY(x) = p(x), X is source, not eviden eg)

state and received signals. The key observation is tiat
entire information passing is similar to a concatenated coding B, Application of Pearl’s BP in Microgrid
structure, as illustrated in Figl]2. The outer coding is carried

out by the dynamic system. where the system statés The Bayesian network structure of the control system and

- . .communication system in the DEG networked control in mi-
encoded similarly to a convolutional code and the obseraati L : . )
crogrid is shown for three time slots in FIg. 4. In the Bayasia

y is linearly encoded by the observation matfix and the . .
) : e . etwork, the system state is dependent on the previoussyste
system statex. The inner code is the explicit encoding o - T
State and the control action; the observation is dependent

the observation vector. Hence, we can adopt the iterative . )
decoding approach in Turbo codes or LDPC codés [7] Inon the system state; the uncoded bits are dependent on the
9 app S oL (? servation vector; the received signal is dependent on the

sharp contrast, the proposed Kalman filtering based heuris : . . . .
aporoach has onlv one round uncoded bits. Here we omit the coded bits as the relationship
PP Y . . . .. between the uncoded bits and the coded bits is deterministic
[10] has shown that many iterative decoding algorlthr%i [4 shows the Bayesian Network structure for the dynamic

such as Turbo decoding can be considered as the applica io% . Lo

system with three observations;_», x;_; andx;.

of Pearl’s BP algorithm[9]. In this section, we first illuate . . .
. - ) Based on the Bayesian network structure, the iterative
the principle through an example and then explain how Eo

) . . ecoding procedure can be derived. Eig 4 shows the message
apply Pearl's BP into our dynamic state system. N . .
passing in the dynamic systenx; o summarizes all the
. information obtained from previous time slots and transmit
A. Introduction of Pearl’s BP T-messagery, , x,_,(X:_2) to x,_;. The BP procedure can
As shown in Fig.[B, random variablé& has parents be implemented in synchronous or asynchronous manners. As
Up,Us,---,Up and childrenYy, Ys,--- | Yy. The message the decoding process has a large overhead, we implement
passing of Pearl's BP is indicated by green arrows and radynchronous Pearl's BP. The updating order and message
arrows in the figure. Green arrows transmitmessage which passing in one iteration is as follows: step ¥): 1 - y;_1;
is sent from parent to its children. For instance, the messagep 2):y;:—1 — b:_1; step 3):b;—1 - y:—1; step 4):y:—1 -
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Fig. 4: Bayesian network structure and message passing for
the dynamic system. 10 |
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x;_1; Step 5):x;_1 — xy; step 6):x; — yy¢; step 7).y; — by;

step 8):b; — y:; step 9)ly: — x;; step 10)x; — x;—1; step Fig. 5: Mean Square Error comparison for system without
11): x;_; updates information. The mathematical der'Vat'OEhannel coding

for each step is provided in AppendiX A. Due to the limited

space, we provide only the most challenging steps. The full
derivation will be given in our journal version. 10
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G
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V. NUMERICAL SIMULATIONS

In this section, we use numerical simulations to demorestrat
the algorithms proposed in this paper.

Bit Error Rate
=
(=}

A. Dynamic System Model

We consider a dynamic system of DEG in which the system 107
state is a 7-dimensional vector. The system is in the cootisu
time. The system dynamics is described by a differential ]
equationk(t) = A’x(t), where the matrixA’ is given by [2D) BE T I iEh,N w ° 1 8
(Example 12.9 in[[4]). The physical meanings of the system ’
states are given in Table I. For simplicity, we assume thet tig . Bt Error Rate comparison for system without channel
system is unregulated, i.d3 = 0, and the sensor can SeNsoding
the system state directly, i.eGC = I. We approximate the
continuous time system using the discrete time system with
a small step sizét. Therefore, the matriA in the discrete
time system is given bA =T + §tA’.

Systematic Convolutional (RSC) code is used as the channel
coding scheme; and the code generatoy is [1,1,1]. The

decoding algorithm is Log-Map algorithm.
TABLE I: Physical Meaning of System States

1,72 rotor swings
T3 excitation circuit
Z4 damping circuit in thed-axis and excitation circuit B. Uncoded Case
5 damping circuit in thez-axis . . .
T6 voltage controller and excitation circuit F|gured:$ aan show the simulation results for the uncoded
x7 voltage controller case with dlfferentEb When Eb > 5, the performance of

‘Pearl BP’ is much ‘better than ‘KF’" and ‘KF with Prior’;

We run the simulations using Matlab to compare the perforhen L, > 7, the performance of ‘KF with Prior is better
mances of Kalman filtering and Pearl's BP based algorithrttsan KF’ This demonstrates that the redundancy in theesgst
for systems with and without channel coding. The baselirstate can improve the performance wl'%ms high. Compared
approach is the separated Kalman filtering and decodingth ‘KF with Prior’, the performance gain of ‘Pearl BP’ stem
process. In the following, these three algorithms are reter from the utilization of soft decoding output in the systemitest
as 'KF with Prior’, ‘Pearl BP' and 'KF’, respectively. The estimation. However, in the Iovﬁ— regime, the performances
performance metrics are the mean square error (MSE) of eadhPearl BP’ and ‘KF with Prior’ are worse than 'KF'. This is
sample and the average bit error rate (BER). Each simulatibecause the cascading effect of the decoding error andsyste
runs 1000 times slots. The configuration for both systems aate estimation error. The worst case is that some hightsst bi
as follows: for the dynamic system of DEG described[ih (1bf observations are not decoded correctly, then the esinat
0t = 0.01, X, = 0.05, 3y = 0.05. Each dimension of the observation largely deviates from the correct value; arh th
observationy; is quantized with 16 bits, and the dynamichis error will propagate to succeeding time slots and thilis w
range for quantization i$—200,200]. A 1/2 rate Recursive lead to the collapse of ‘KF with Prior’ or ‘Pearl BP’ algorith
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Fig. 7: Mean Square Error comparison for system with chanrféy. 8: Bit Error Rate comparison for system with channel
coding coding

C. Coded Case

FiguredY anfI8 show the simulation results for the channel
coded case with differenf:. As shown in the figures, the
performance of ‘Pearl BP’ is always the best except that the

bit error rate is worse than ‘KF with Prior’ occasionally. In | the following derivation part, we will use the following

a contrast to the ‘Pearl BP’ for the uncoded case, ‘Pearl BRyg pasic equations, wheré(z, 1, o is the probability density

does not collapse for coded case due to the gain of chanfgction of Gaussian distribution with expectatign and
coding. When%: > 3, the performance of ‘KF with Prior’ is yarianceo at

better than that of 'KF’. These results demonstrate thatgusi
the redundancy in system state can improve performancein th

APPENDIXA
DERIVATION OF KEY STEPS IN THEPEARL'S BP

coded case. The performance gain of ‘Pearl BP’ over ‘Kalman /OO N(x,my, ;)N (y, Cx, 55)dx
Filter with Prior’ in low f,—z shows the gain of using soft —o0
decoding output in state estimation. Whgh > 5, these three x N(y,Cm;,CZ;CT + %), (21)

algorithms have good performance which is due to the gain

of channel coding. q
an

VI. CONCLUSIONS

In this paper, we have proposed to use Kalman Filter N (x,my, )N (x, mg, ¥3) oc N(x, m3, X3), (22)
based and Pearl's BP based decoding procedure (including
the demodulation procedure) to exploit the redundancy, i.e , .
the nature encoding in the system state for the system Wwﬁ]ere the variance is given by
no or weak channel coding protection in the context of DEG
control in microgrid. The numerical simulation results dav _ g1 —1\—1
shown that, wher is high, the proposed algorithms achieve Bg = (Z 43,07 (23)
significant performance gain, compared with traditiongl-se
arated decoding and system state estimation. However, WhgRj the expectation is given by
]%'_Z is low, the proposed algorithms may incur performance
degradation due to the error propagation. This motivates us
study the mechanism to prevent such an adversarial effect. msz = 23(2f1m1 + E;lmg). (24)



Below is the notation used throughout the derivation:

Txeae(Xe—1) = N(Xe—1, X, -1, Pr,t-1)
Txeryye(Xio1) = N(Xi—1,Xr,0-1, Pryi—-1)
Tyob (¥t) = NVt ¥mt, Snt)
T, (Xt) = N(X Xlt7Plt)
Ty, (yt) = N(ye,yie,Sie)
Ayex, (Xt) = N(X XAy,hP)\ t)
Moo (Xe—1) = N(xe—1,%a,,0-1, Pa,t—1)
Abiy: (¥e) = N(¥e.yaeSie)
BEL(x:) = N(x¢,XgeL¢, PeL, 1)
p(x¢|xi—1) = N(xt, Ax4—1 + Bup_1,%,).

1) Step 1:x;1 - y¢_1: we have
Txy_1 (Itfl)

oo
= / p(xt71|xt72)7rxt,2,xt,1(Xt72)dxt72

— 00

= N(xe—1,x10-1,Pi-1), (25)
where the expectation is given by
X1 = AXg, -2, (26)

and the variance is given by

Pi1 = AXProxA"+3,
Txe_1,¥¢—1 (thl) = Tx;_q (l’tfl))\yt,l Xe_1 (Xt71)
= N(xt—1,%1,t-1,P-1) x 1
= N(xtflvxwy,tfh Pﬂ'y,tfl) (27)

where
Xy t—1 = Xit-1;Pryt-1=PF 1. (28)
2) : Step 4iy;—1 — x¢—1: We have
Avioyxi—1 (Xe-1) Yy (Xt-1)
= /w Aberyeoy (Ye-1)P(Ye-1lyz—1)
= A;(Zt,l,xAy,t,l,PAy,t,l), (29)
where the expectation is given by
XA -1 = C7'xyaio1, (30)
and the variance is given by
Pyi1 = CHSyvi1+3%,) x (CH. (31)
3) Step 5:x;_1 - x;: we have
Ty 1%, (Xi—1) Ty 1 (Te—1) X Ay 1% 1 (Xi—1)
= N(xi—1,%Xn,1-1,Pr,1-1), (32)
where the variance is given by
Pro-1 = (P + P )™ (33)

and the expectation is given by

Xp,t—1 =

—1
+  PyiiXai-1).

—1
Pﬂx,tfl X (Pl,t—l X X t—1

[20]

(11]

[12]

The belief is thus given by
BELx; 1 =

X Txy_y (Xt—l)
= N(x¢—1,%8eLt—1, PeeL,i—1), (34)

where the variance is given by

ax1x /\(ytflaxtfl)(xtfl)

Peere—r = (P, +P;L)7 (39
and the expectation is given by
XBeLt—1 = FrELt—1 X (P;yl,t_l X XA, t—
+ Pty xxe)- (36)

4) Step 10x; - x;_1, we have

Ve (Xt* 1 )

/.

)\xtht—l (thl) =

Ay (Xe)P(Xe—1]ye—1)dxe

= N(xi—1,%x5,,0-1, Py, -1), (37)
where the variance is given by
Pyio1 = ATNE, 4+ Py, 0A T
X, t—1 = A_1X>\y7t. (38)
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