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Abstract—A construction using the E8 lattice and Reed-Solomon
codes for error-correction in flash memory is given. Since E8lattice
decoding errors are bursty, a Reed-Solomon code over GF(28)
is well suited. This is a type of coded modulation, where the
Euclidean distance of the lattice, which is an eight-dimensional
signal constellation, is combined with the Hamming distance of the
code. This system is compared with the conventional technique for
flash memories, BCH codes using Gray-coded PAM. The described
construction has a performance advantage of 1.6 to 1.8 dB at a
probability of word error of 10

−6. Evaluation is at high data rates
of 2.9 bits/cell for flash memory cells that have an uncoded data
density of 3 bits/cell.

I. I NTRODUCTION

While single-level flash memory stores a single bit per memory
cell, data density can be increased by using two, three or more bits
per cell [1] [2]. Along with this increase in density, the influence
of noise also increases. Numerous error-correcting approaches
have been considered, although BCH codes are predominant in
practice.

A conventional multilevel-flash chip uses Gray-coded PAM and
presents hard decisions externally. Because the signal-to-noise
ratio in flash can be characterized as high, Gray-coded PAM
results in single bit errors. Further, errors in flash memories tend to
be uncorrelated. Thus, the errors may be characterized as random,
isolated errors of one bit, and flash memory systems (such as SSD)
use BCH error correcting codes of high rate. The decoder in such
chips is a hard-input BCH decoder, implemented in an external
chip.

In carrier-based AWGN systems, two-dimensional constella-
tions such as QPSK and QAM are used. Trellis-coded modulation
is a low-complexity method to improve the performance by
combining the Euclidean distance of the constellation withthe
Hamming distance of a convolutional code, or a more powerful
error-correcting code [3]. In fact, trellis-coded modulation with
convolutional codes and a QAM constellation (PAM over two
dimensions) has been considered for general memories [5], and
have been evaluated for flash memories [4]. In carrier-based
systems, two-dimensional constellations aid with synchronization
at the receiver, but this is not needed with flash memories.

This paper considers the use of lattices — that is, higher dimen-
sional constellations — for error-correction in flash memories. In
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particular, the E8 lattice, which is the best-known latticein eight
dimensions, is considered for flash memory. While E8 has greater
minimum Euclidean distance than PAM, an outer error-correcting
code is still needed to guarantee data reliability. Whereastrellis-
coded modulation uses a convolutional code, in this paper Reed-
Solomon codes, which are a type of block code, are used.

Because E8 decoding induces burst-like errors, Reed-Solomon
(RS) codes constructed over GF(28) are used for error correction.
One RS code symbol is encoded to eight memory cells; a group
of eight memory cells represents one lattice point. When an E8
decoding error occurs, with high probability it will be one of the
240 neighboring lattice points. Thus, the constellation (lattice)
to codeword mapping needs only to distinguish between these
neighbors. Only the modulo-2 value of the lattice points are
protected by the RS codes; the Euclidean separation of the lattice
points is also important.

The E8 lattice has a number of desirable properties. It is the
the best-known lattice in eight dimensions, in the sense of having
the densest packing, highest kissing number and being the best
quantizer [12, p. 12]. It also has an efficient decoding algorithm.
The lattice generator matrix is triangular, which makes it suitable
for encoding. In addition, the E8 lattice points are either integers
or half-integers; for implementations, this may be more suitable
than writing arbitrary values to memory.

Previously, the E8 lattice has been considered for trellis-coded
modulation with a convolutional code and average power shaping
[6]. In addition, there are numerous proposals for including RS
codes in trellis-coded modulation [7] [8]. However, the combi-
nation of the E8 lattice and RS codes described in this paper
appears to be unique. For error-correction in flash memories,
BCH codes have received the most attention; however recently
RS codes, which can be constructed over a smaller field for the
same block length, have also been considered for flash memory
[9]. At high rates, the rate loss of RS codes compared to BCH
codes is relatively small, and the smaller field size makes RS
decoding more efficient.

II. BACKGROUND

This section gives some background. First the assumed channel
model is described, followed by a brief overview of lattices
in general. Then, the E8 lattice and some of its properties are
described.
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A. Channel Model

The assumed model hasN flash memory cells, which can store
an arbitrary value between 0 andV . The uncoded information rate
is log2 q bits per cell. In conventional multilevel flash memory,
this is accomplished by choosingV = q − 1 and storing one of
{0, 1, . . . , q − 1} in each cell. For lattices of dimensionn, the
lattice encodesqn levels, orn log2 q bits in n cells.

The flash reading and writing process introduces noise, which
is modeled as additive white Gaussian noise with mean zero
and varianceσ2. A more advanced model, which assigns higher
variances to the levels0 andq − 1 is difficult to apply to lattice
coding, since the cells store continuous values (see for example
[4]). The channel SNR used in this paper is:

V 2

σ2
, (1)

whereV 2 represents the peak signal energy.

B. Lattices and Lattice Codes

An n-dimensional latticeΛ is an infinite set of pointsx =
(x1, x2, . . . , xn)

t defined by ann-by-n generator matrixG, for
which

x = Gb, (2)

whereb = (b1, . . . , bn)
t is from the set of all possible integer

vectors,bi ∈ Z. The i, j entry of G is denotedgij . The setΛ
forms a group under addition inRn, so lattices are linear in the
sense that the sum of any two lattice points is a lattice point.

The minimum of the squared Euclidean distance between any
two distinct lattice points is the minimum norm. The latticepoints
at this distance from the origin are the minimum vectors. The
number of points at this distance is called the kissing number,
denotedτ . Because of the linearity of lattices, all lattice points
have the same number of nearest neighbors, corresponding tothe
minimum vectors. The packing radiusρ is taken to be half the
square root of the minimum norm. In terms of finite-field codes,
the minimum vectors are analogous to the minimum-weight non-
zero codes words, and the packing radius is analogous to halfthe
minimum distance. When the lattice is scaled byα, its generator
matrix isαG and the packing radius isαρ.

A practical coding scheme must select a finite subset of the
lattice; a codebook may be constructed by the intersection of
a shaping regionB and the latticeΛ. In general, codebook
construction is difficult, but whenB is an n-cube andG is a
triangular matrix, there exists a practical method [10] [11]. In
particular, letB be ann-cube, given by:

0 ≤ xi < M, (3)

and leta = (a1, . . . , an) be information-containing integers, with

ai ∈ {0, 1, . . . , M
gii

− 1} (4)

for i = 1, . . . , n. The diagonal elements must satisfy the condition
thatM/gii is an integer. It is convenient to assume thatM/gii is
a power of two, to aid encoding from bits to integers.

In general the lattice pointG · a is not in B. Instead, the
encoding finds a vectork = ( k1

g11
, . . . , kn

gnn
), which determines

b:

b = a+Mk, (5)

such that

x = G · b (6)

is in the cubeB. Because the generator matrix is lower triangular,
the ki can be found by solving the inequality (3):

0 ≤ ∑i−1

j=0
gjibj + gii

(
ai +

M
gii

ki) < M (7)

for ki, which is unique. From the triangular structure ofG, first
k1, thenk2, . . . , kn are found in sequence. In particular:

ki =
⌈−∑i−1

j=0
gjibj − giiai

M

⌉
, (8)

where the computation at stepi depends uponb1, . . . , bi−1.
Since the power constraint for flash memory is cubic, one might

expect that this encoding scheme is sufficient, by choosingM =
V . Unfortunately, the strict upper inequality in (3) is necessary for
ki to be unique. As a result, it is not possible to find lattice points
for which xi = M , which reduces the size of the codebook. But
this problem is resolved for the E8 lattice in the next section.

Decoding is straightforward. If̂x is a lattice point, and̂b =
G−1x̂, then â is found as:

âi = b̂i mod
M

gii
. (9)

C. E8 Lattice

The E8 lattice is an eight-dimensional lattice, which can be
described in terms of the D8 checkerboard lattice [12, p. 120].
The D8 lattice points are all integers that have an even sum. The
E8 lattice is the union of the D8 lattice, and a coset of the D8
lattice:

E8 = D8∪ D8+ 1

2
(10)

where,

1

2
= ( 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2). (11)

A generator matrix is:

G =




1/2 0 0 0 0 0 0 0
1/2 1 0 0 0 0 0 0
1/2 −1 1 0 0 0 0 0
1/2 0 −1 1 0 0 0 0
1/2 0 0 −1 1 0 0 0
1/2 0 0 0 −1 1 0 0
1/2 0 0 0 0 −1 1 0
1/2 0 0 0 0 0 −1 2




.(12)

The kissing numberτ of the E8 lattice is 240. The minimal
vectors are sequences(±12, 06) (there are4 ·

(
8

2

)
such sequences)

and (± 1/2,± 1/2,± 1/2,± 1/2,± 1/2,± 1/2,± 1/2,± 1/2), where there are
an even number of minus signs (there are27 such sequences).
The packing radiusρ is 1/

√
2.



The E8 lattice has an efficient decoding algorithm, which finds
the lattice point̂x closest to an arbitrary pointy ∈ R

8 [13]. The
decoding algorithm is low-complexity: it requires only rounding
operations, wrong-way rounding of the least reliable position, and
comparison of Euclidean distance.

III. PROPOSEDCONSTRUCTION

This section describes the proposed construction. First, the
codebook is created by scaling the lattice byα < 1. Then, the
encoding is given, which partitions the flash memory into blocks
of 8 cells, each encoded using an E8 lattice. Each block corre-
sponds to one RS code symbol. Finally, the decoding algorithm is
described, including a post-processing step which uses thelattice
error patterns to recover the integer sequence.

A. Lattice Codebook

The lattice code is the set of lattice points which satisfy the
constraint that the cell value is between 0 andV (inclusive), and
cell values correspond to lattice points. A significant point is that
the encoding described previously does not allow encodingxi =
M , but the physical system allowsxi = V . The lattice should be
scaled so that the lattice code (that is,B ∩ Λ) containsq8 lattice
points. For the E8 lattice, it is observed that choosing

α =
V

V + 0.5
and (13)

M = V + 1 (14)

will satisfy this rate criteria and the power constraint. Toshow this,
consider an example withq = 4 andV = 3. Initially encode the
unscaled E8 lattice using notM = 3, butM = 4; this violates the
power constraint. Because the E8 lattice consists of integer points
and half-integer points, this encoding results in lattice points with
a maximum value of 3.5. By scaling the lattice by3/3.5 the half-
integer lattice points are placed exactly on the boundaryV .

Using the unscaled lattice, the total number of lattice codewords
that satisfy0 ≤ xi ≤ V + 1 is for the E8 lattice is:

(V + 1)n

| detG| = (V + 1)n = qn. (15)

The scaling does not change the number of lattice codewords.For
convenience, encoding is done with the unscaled lattice, (12), and
scaling is applied before writing to memory.

The scaling reduces the separation between lattice points.For
the E8 lattice and largeq, ρ approaches the maximum value of
1/

√
2. For the small value ofq = 4, α = 6/7 results in an

effective packing radius of 0.606; this is higher 0.5, the packing
radius of the PAM constellation.

B. Encoding

ConsiderN flash memory cells. TheseN cells are separated
into blocks, each block consists of 8 cells, so there areN/8 blocks.
Let x denote the vector of blocks, that is:

x = (x1,x2, . . . ,xN/8), (16)

where eachxi is a lattice point.
A (nc, kc, t) shortened, systematic RS code constructed over

GF(28) is used. Each RS code symbol is assigned to a block,

so nc = N/8. Blocks to which systematic RS symbols and
parity symbols are assigned are called systematic blocks and parity
blocks, respectively. The blockxi is systematic fori = 1, . . . , kc
and is parity fori = kc, . . . , nc. The information integers are
represented as:

a =
(
a1, a2, . . . , akc

, akc+1, . . . , anc

)
, (17)

written to separate the integers in systemic blocks and integers in
parity blocks.

Encoding for systematic blocks is identical to the general lattice
encoding described previously. For an example ofq = 8, within
any systematic block, ifa is the vector of information integers,
thena1 ∈ {0, 1, . . . , 15}, a8 ∈ {0, 1, 2, 3} and the remaining six
integers are from{0, 1, . . . , 7}.

Encoding for parity blocks requires combining the computed
RS parity checks and additional information integers. For each
systematic block, compute:

ui = ai mod 2, (18)

for i = 1, . . . , kc, where u = a mod 2 means component-
wise modulo-2. The eight bits(u1, . . . , u8) form a single GF(28)
RS symbol. Using informationu1, . . . ,ukc, compute the RS
parity symbolsp1, . . . ,pnc−kc. For each parity block,p =
(p1, p2, . . . , p8), pi ∈ {0, 1}.

To perform lattice encoding in the parity blocks, integers are
formed where the least-significant bit is the RS parity, and the
remaining part is information. The information integers inthe
parity block areai ∈ {0, 1, . . . , M

2gii
}. For the example ofq = 8:

a1 ∈ {0, 1, . . . , 7}, a8 ∈ {0, 1} and the remaining six integers
are from{0, 1, 2, 3}. The integers to be lattice encoded in parity
block i are:

pi−kc
+ 2 · ai, (19)

for i = kc + 1, . . . , nc, and addition is over the real numbers.
Thus, additional information is embedded in the parity blocks,
because only the LSB of the parity block is needed by the RS
parity symbol. Note also that Gray coding is not used.

The total number of encoded information bits isk,

k = kc · 8 log2 q + (nc − kc)
(
− 8 + 8 log2 q) (20)

and the total number of cells used isN = 8nc, so the code rate
R = k/N , measured in bits per cell is:

R =
kc
nc

log2 q +
nc − kc

nc

(
− 1 + log2 q) bits/cell. (21)

C. Decoding

The encoded lattice point is scaled byα = V/(V +0.5), passed
through an AWGN channel, and scaled by1/α by the decoder.
Let this received sequence be denoted by

(
y1,y2, . . . ,ync

)
.

Block-by-block E8 lattice decoding is performed [13], and the
integer sequence

(
â1, . . . , ânc

)
is obtained. Computêu = â

mod 2 and perform RS decoding. Consider any single block.
If lattice decoding is successful, then the RS symbol will be
correct. However, if lattice decoding is unsuccessful, with high
probability, a minimal vector error is made, that is, the lattice



x̂− x â− a û⊕ u

error patterns of type(±12, 06)
-1 -1 0 0 0 0 0 0 -2 0 1 2 3 4 5 3 0 0 1 0 1 0 1 1
1 1 0 0 0 0 0 0 2 0 -1 -2 -3 -4 -5 -3 0 0 1 0 1 0 1 1

-1 1 0 0 0 0 0 0 -2 2 3 4 5 6 7 4 0 0 1 0 1 0 1 0
1 -1 0 0 0 0 0 0 2 -2 -3 -4 -5 -6 -7 -4 0 0 1 0 1 0 1 0
1 -1 0 0 0 0 0 0 2 -2 -3 -4 -5 -6 -7 -4 0 0 1 0 1 0 1 0

-1 1 0 0 0 0 0 0 -2 2 3 4 5 6 7 4 0 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0 2 0 -1 -2 -3 -4 -5 -3 0 0 1 0 1 0 1 1

-1 -1 0 0 0 0 0 0 -2 0 1 2 3 4 5 3 0 0 1 0 1 0 1 1
-1 0 -1 0 0 0 0 0 -2 1 1 2 3 4 5 3 0 1 1 0 1 0 1 1
1 0 1 0 0 0 0 0 2 -1 -1 -2 -3 -4 -5 -3 0 1 1 0 1 0 1 1

-1 0 1 0 0 0 0 0 -2 1 3 4 5 6 7 4 0 1 1 0 1 0 1 0
1 0 -1 0 0 0 0 0 2 -1 -3 -4 -5 -6 -7 -4 0 1 1 0 1 0 1 0

...
...

...

error patterns of type(± 1/2, · · · ± 1/2)
- 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1/2

1/2
1/2

1/2
1/2

1/2
1/2

1/2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2

1/2 1 -1 -2 -3 -4 -5 -6 -3 1 1 0 1 0 1 0 1
- 1/2

1/2
1/2

1/2
1/2

1/2
1/2 - 1/2 -1 1 2 3 4 5 6 3 1 1 0 1 0 1 0 1

- 1/2
1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2

1/2 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1/2 - 1/2

1/2
1/2

1/2
1/2

1/2 - 1/2 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1
1/2

1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 1 0 -1 -2 -3 -4 -5 -3 1 0 1 0 1 0 1 1
- 1/2 - 1/2

1/2
1/2

1/2
1/2

1/2
1/2 -1 0 1 2 3 4 5 3 1 0 1 0 1 0 1 1

- 1/2 - 1/2
1/2 - 1/2 - 1/2 - 1/2 - 1/2

1/2 -1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1/2

1/2 - 1/2
1/2

1/2
1/2

1/2 - 1/2 1 0 -1 -1 -1 -1 -1 -1 1 0 1 1 1 1 1 1
1/2 - 1/2

1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 1 -1 -1 -2 -3 -4 -5 -3 1 1 1 0 1 0 1 1
- 1/2

1/2 - 1/2
1/2

1/2
1/2

1/2
1/2 -1 1 1 2 3 4 5 3 1 1 1 0 1 0 1 1

- 1/2
1/2

1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 -1 1 2 2 2 2 2 1 1 1 0 0 0 0 0 1
1/2 - 1/2 - 1/2

1/2
1/2

1/2
1/2

1/2 1 -1 -2 -2 -2 -2 -2 -1 1 1 0 0 0 0 0 1
...

...
...

TABLE I
SEVERAL OF THE 240MINIMUM NORM ERROR PATTERNS FOR THEE8 LATTICE . THE VECTORû⊕ u IS SUFFICIENT TO IDENTIFY THE ERROR PATTERN, EXCEPT

FOR A SIGN CHANGE.

decoder erroneously selects one of the 240 neighboring lattice
points.

If the number of block errors (that is, lattice decoding errors) is
less than the error-correcting capabilityt of the RS code, then the
blocks which have errors can be identified. But since the RS code
only protects the least-significant bits, RS decoding alonecannot
recover all the information. The distance properties of thelattice
will be used. This may be regarded as a type of post-processing
step.

The differencêa−a denotes the integer error pattern, andû⊕u

= |û−u| denotes the bit error pattern. Sinceu is provided by the
RS decoder,̂u⊕u is known. A sample of some of the 240 error
patterns is given in Table I. Except for a sign change throughout,
the bit error pattern̂u ⊕ u uniquely identifies the integer error
pattern. By employing a look-up table (much like Table I) this bit
error pattern̂u⊕ u can be mapped to an integer error patterne,
used to find a two new estimated integer sequencesâ1 and â2:

â1 = â+ e, and (22)

â2 = â− e. (23)

Select the vector̂̂a that has the shortest distance from the received
sequencey:

̂̂a =

{
â1 ||â1 − y|| ≤ ||â2 − y||
â2 otherwise

. (24)

Thus, the entire integer sequence can generally be recovered, if
the correct RS symbol is known.

IV. N UMERICAL RESULTS

The proposed construction is evaluated numerically. Com-
parisons are made with the dominant conventional system for
error-correction in flash memories, BCH codes using Gray-coded
PAM. To show the benefit of the proposed construction, a fair
comparison is made by selecting code parameters to encode about
4096 bits, so that the number of cellsN (and thus the code rate)
are as similar as possible.

For parametersm, t and s, there exists a systematic, shorted
RS code of lengthnc = 2m−1−s symbols, encodingkc = 2m−
1− 2t− s information symbols, that can correctt symbol errors.
For parametersm, t and s, there exists a systematic, shortened
BCH code of length2m − 1− s bits, encoding2m − 1−mt− s
information bits, that can correctt symbol errors.

Fig. 1 shows the simulated word error probability forq = 8
(3 bits per flash cell), and various code rates. The specific code
parameters are in Table II. At a probability of word error rate
of 10−6, the uncoded E8 lattice has approximately 1.8 dB better
performance than PAM. This benefit is preserved after coding,
with gains of 1.6 to 1.8 dB are observed. Note that for each code
comparison the error-correction capability of the RS and BCH



RS over GF(28) BCH over GF(213)

RS rate Flash rate, bits/cell BCH Rate Flash rate, bits/cell
(nc, kc, t) s cells N bits k kc/nc R (21) (nc, kc, t) s cells N bits k kc/nc kc log2 q/nc

(172,170,1) 83 1376 4112 0.988 2.988 (4109,4096,1) 4082 1370 4096 0.997 2.991
(172,168,2) 83 1376 4096 0.977 2.977 (4122,4096,2) 4069 1374 4096 0.994 2.981
(173,167,3) 82 1384 4104 0.965 2.965 (4135,4096,3) 4056 1379 4096 0.991 2.972
(174,166,4) 81 1392 4112 0.954 2.954 (4148,4096,4) 4043 1383 4096 0.987 2.962
(174,164,5) 81 1392 4096 0.943 2.943 (4161,4096,5) 4030 1387 4096 0.984 2.953

TABLE II
RS AND BCH CODES CONSIDERED INFIG. 1
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BCH−Gray, t=1,2,3,4,5
RS−E8, t=1,2,3,4,5

Fig. 1. Probability of word error for Reed-Solomon codes with E8 lattice, com-
pared to BCH codes with Gray-coded PAM, for flash memory withq = 8 (uncoded
3 bits/cell). The proposed construction has 1.6 to 1.8 dB better performance. The
uncoded performance is also shown, where an error corresponds to a symbol (an
E8 lattice symbol or a q-ary PAM symbol) being in error.

code is essentially the same.
It should be noted that the E8 lattice decoder is a soft-input

decoder, whereas PAM decoding is hard decision. In both cases,
the RS and BCH decoders are using hard inputs. In commercial
flash memory products, the memory and error-correction functions
in separate chips. While the E8 decoder has soft inputs, because
it is a low-complexity decoder, future flash memory systems
could implement a lattice decoder on the flash memory chip.
Thus, the error-correction performance may be improved, without
significant changes to existing system architecture.
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